Lecture 5: Univariate Polynomial Division \& Newton Iteration

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

January 24, 2021

Overview

- Formal Power Series Ring \& Reversal
- Newton Iteration \& Inversion
- Division via Newton Iteration
- Conclusion
- Acknowledgements

Dividing Polynomials

$$
\begin{aligned}
& d_{a}:=\operatorname{deg}(a) \\
& d_{b}:=\operatorname{deg}(b)
\end{aligned}
$$

- In Lecture 1 , we saw how to divide polynomials over $\mathbb{Z}[x]$
- Running time $O\left(d_{a} d_{b}\right)$ to compute $a=\underline{q} \cdot b+\underline{r}$
assumed $b(x)$ was monic
(leading monomial is a unit
\therefore leading monomial in 1)
$b(x)=1 \cdot x^{2}+x+2$ is manic
$C(x)=\frac{3 x^{3}-x+1}{4}$ is not mosaic

Dividing Polynomials

- In Lecture 1 , we saw how to divide polynomials over $\mathbb{Z}[x]$
- Running time $O\left(d_{a} d_{b}\right)$ to compute $a=q \cdot b+r$
- That algorithm (Euclidean division) generalizes to the setting of $\mathbb{F}[x]$, where \mathbb{F} is a field.
(over $\mathbb{F}[x]$ every polynomial is monic
because every nonzero element of \mathbb{F} is a unit)

Dividing Polynomials

- In Lecture 1 , we saw how to divide polynomials over $\mathbb{Z}[x]$
- Running time $O\left(d_{a} d_{b}\right)$ to compute $a=q \cdot b+r \quad\left(d^{2}\right)$
- That algorithm (Euclidean division) generalizes to the setting of $\mathbb{F}[x]$, where \mathbb{F} is a field.
- Also saw in previous lecture how to multiply two polynomials of degree $O(d)$ in $O(d \log d)$ time

$$
d_{a}, d_{b}=O(d)
$$

Dividing Polynomials

- In Lecture 1, we saw how to divide polynomials over $\mathbb{Z}[x]$
- Running time $O\left(d_{a} d_{b}\right)$ to compute $a=q \cdot b+r$
- That algorithm (Euclidean division) generalizes to the setting of $\mathbb{F}[x]$, where \mathbb{F} is a field.
- Also saw in previous lecture how to multiply two polynomials of degree $O(d)$ in $O(d \log d)$ time
- Is division with remainder more complex than multiplication?
(1) Can compute division with remainder with $O(d \log d)$ operations in \mathbb{F} ?
(2) Can we use fast multiplication to speedup division?

Dividing Polynomials

- In Lecture 1, we saw how to divide polynomials over $\mathbb{Z}[x]$
- Running time $O\left(d_{a} d_{b}\right)$ to compute $a=q \cdot b+r$
- That algorithm (Euclidean division) generalizes to the setting of $\mathbb{F}[x]$, where \mathbb{F} is a field.
- Also saw in previous lecture how to multiply two polynomials of degree $O(d)$ in $O(d \log d)$ time
- Is division with remainder more complex than multiplication?
(1) Can compute division with remainder with $O(d \log d)$ operations in \mathbb{F} ?
(2) Can we use fast multiplication to speedup division?
- YES!

Dividing Polynomials

- In Lecture 1, we saw how to divide polynomials over $\mathbb{Z}[x]$
- Running time $O\left(d_{a} d_{b}\right)$ to compute $a=q \cdot b+r$
- That algorithm (Euclidean division) generalizes to the setting of $\mathbb{F}[x]$, where \mathbb{F} is a field.
- Also saw in previous lecture how to multiply two polynomials of degree $O(d)$ in $O(d \log d)$ time
- Is division with remainder more complex than multiplication?
(1) Can compute division with remainder with $O(d \log d)$ operations in \mathbb{F} ?
(2) Can we use fast multiplication to speedup division?
- YES!
- in 70s, Borodin and Moenck; Strassen; Sieveking and Kung; derived a division algorithm with $O\left(d \log ^{2} d \log \log d\right)$ operations
- Formal Power Series Ring \& Reversal
- Newton Iteration \& Inversion
- Division via Newton Iteration
- Conclusion
- Acknowledgements

Ring of Formal Power Series

- We have seen the polynomial ring $\mathbb{F}[x]$, whose elements are of the form

$$
p(x)=p_{0}+p_{1} x+\cdots+p_{d} x^{d}
$$

$P_{i} \in \mathbb{F}$

Ring of Formal Power Series

- We have seen the polynomial ring $\mathbb{F}[x]$, whose elements are of the form

$$
p(x)=p_{0}+p_{1} x+\cdots+p_{d} x^{d}
$$

- We can extend this ring to the formal power series ring $\mathbb{F}[[x]]$, whose elements are now:

$$
\begin{gathered}
p(x)=p_{0}+p_{1} x+p_{2} x^{2}+\cdots \\
\left(p_{n}\right)_{n \geqslant 0} \longleftrightarrow p_{0}+p_{1} x+p_{2} x^{2}+\cdots+p_{01} x^{d}+\cdots \\
\mathbb{E}[x] \in \sqrt{T}[[x]]
\end{gathered}
$$

sequences evith finitely many non-zers elements

Ring of Formal Power Series

- We have seen the polynomial ring $\mathbb{F}[x]$, whose elements are of the form

$$
p(x)=p_{0}+p_{1} x+\cdots+p_{d} x^{d}
$$

- We can extend this ring to the formal power series ring $\mathbb{F}[[x]]$, whose elements are now:

$$
p(x)=p_{0}+p_{1} x+p_{2} x^{2}+\cdots
$$

- Addition and multiplication done similar to ring of polynomials

Ring of Formal Power Series

- We have seen the polynomial ring $\mathbb{F}[x]$, whose elements are of the form

$$
p(x)=p_{0}+p_{1} x+\cdots+p_{d} x^{d}
$$

- We can extend this ring to the formal power series ring $\mathbb{F}[[x]]$, whose elements are now:

$$
p(x)=p_{0}+p_{1} x+p_{2} x^{2}+\cdots
$$

- Addition and multiplication done similar to ring of polynomials

$$
(p+q)_{k}=p_{k}+q_{k} \quad(p q)_{k}=\sum_{i=0}^{k} p_{i} q_{k-i}
$$

- We don't care about convergence of power series, as we will not evaluate them.

Property of Power Series Rings

- Now more elements have inverses in the ring:
- $\left.p(x)=p_{0}+p_{1} x+\cdots \in \mathbb{F}[x]\right]$ has an inverse in $\mathbb{F}[[x]]$ if $p_{0} \neq 0$.

$$
\begin{array}{r}
\frac{1}{1-x}=\frac{1+x+x^{2}+\cdots}{\in \mathbb{F}[[x]]} \\
1-x \in \mathbb{F}[[x]] \\
q(x)=q_{0}+q_{1} x+\cdots
\end{array}
$$

Constant form
nonzero

$$
p \cdot q=1+0 \cdot x+
$$

$$
p \cdot q=1
$$

defined by
$q_{0}=p_{0}^{-1}$ (exists because $p_{0} \notin 0$ in II)

$$
\begin{aligned}
& q_{0}=p_{0} \\
& 0=q_{0} \cdot p_{1}+q_{1} p_{0} \rightarrow q_{1}=\frac{-q_{0} p_{1}}{p_{0}}=-q_{0}^{2} p_{1} \\
& 0=q_{0} \cdot p_{k}+q_{1} \cdot p_{n-1}+\cdots+q_{n} \cdot p_{0} \cdot q_{k}=-q_{0}\left(q_{0} p_{n} \cdots \cdots p_{1} \cdot n\right)
\end{aligned}
$$

Reversal of Polynomials

- Given polynomial $p(x)=\underline{p_{0}}+\underline{p_{1} x}+\cdots+\underline{p_{k}} x^{k}$ we can algebraically reverse coefficients of $p(\bar{x})$ getting

$$
q(x)=\underline{p_{k}}+\underline{p_{k-1} x}+\cdots+\underline{p_{0} x^{k}}
$$

computationally thin is easy

Reversal of Polynomials

- Given polynomial $p(x)=p_{0}+p_{1} x+\cdots+p_{k} x^{k}$ we can algebraically reverse coefficients of $p(x)$ getting

$$
q(x)=p_{k}+p_{k-1} x+\cdots+p_{0} x^{k}
$$

- Operation is called reversal, can be done algebraically as follows:

$$
\begin{aligned}
& \operatorname{rev}_{k}(p):=q(x)=x^{k} \cdot p(1 / x) \\
& p(x)=3 x^{2}+x+2 \\
& p(1 / x)=\frac{3}{x^{2}}+\frac{1}{x}+2 \\
& x^{2} \cdot p(1 / x)=3+x+2 x^{2}=\operatorname{rev}_{2}(p) \\
& x^{3} \cdot p(1 / x)=3 x+x^{2}+2 x^{3}=x \cdot \operatorname{rev}_{2}(p)
\end{aligned}
$$

Reversal of Polynomials

- Given polynomial $p(x)=p_{0}+p_{1} x+\cdots+p_{k} x^{k}$ we can algebraically reverse coefficients of $p(x)$ getting

$$
q(x)=p_{k}+p_{k-1} x+\cdots+p_{0} x^{k}
$$

- Operation is called reversal, can be done algebraically as follows:

$$
\operatorname{rev}_{k}(p):=q(x)=x^{k} \cdot p(1 / x)
$$

- Note that if $k \geq \operatorname{deg}(p)$ then the reversal just has extra factor of x^{k-d}

Reversal of Polynomials

- Given polynomial $p(x)=p_{0}+p_{1} x+\cdots+p_{k} x^{k}$ we can algebraically reverse coefficients of $p(x)$ getting

$$
q(x)=p_{k}+p_{k-1} x+\cdots+p_{0} x^{k}
$$

- Operation is called reversal, can be done algebraically as follows:

$$
\operatorname{rev}_{k}(p):=q(x)=x^{k} \cdot p(1 / x)
$$

- Note that if $k \geq \operatorname{deg}(p)$ then the reversal just has extra factor of x^{k-d}
- When a polynomial $p(x)$ of degree d is monic (i.e., leading coefficient $1)$, we have $\operatorname{rev}_{d}(p)$ is invertible over $\mathbb{F}[[x]]$ $\operatorname{rev}_{d}(p)=\int_{1}^{p_{d}}+p_{d-1} x+\cdots+p_{0} \cdot x^{d}$

- Formal Power Series Ring \& Reversal

- Newton Iteration \& Inversion
- Division via Newton Iteration
- Conclusion
- Acknowledgements

Newton Iteration

- Newton iteration: given differentiable $f: \mathbb{R} \rightarrow \mathbb{R}$, compute successive approximations to solutions of $f(t)=0 \quad$ (finding roots of f)

Newton Iteration

- Newton iteration: given differentiable $f: \mathbb{R} \rightarrow \mathbb{R}$, compute successive approximations to solutions of $f(t)=0$ (finding roots of f)
- From initial approximation t_{0}, get next approximation by

$$
t_{i+1}=t_{i}-\frac{f\left(t_{i}\right)}{f^{\prime}\left(t_{i}\right)}
$$

Newton Iteration

- Newton iteration: given differentiable $f: \mathbb{R} \rightarrow \mathbb{R}$, compute successive approximations to solutions of $f(t)=0$ (finding roots of f)
- From initial approximation t_{0}, get next approximation by

$$
t_{i+1}=t_{i}-\frac{f\left(t_{i}\right)}{f^{\prime}\left(t_{i}\right)}
$$

can be define over $\mathbb{F}[[x]]$

- Can use this to find inverse of a polynomial $p(x)$ over the ring $\mathbb{F}[[x]]$:
(1) Function to "find root of:"

$$
\Phi(y)=\frac{1}{y}-p(x)
$$

no long as f is differen. table

$$
\Phi\left(p^{-1}\right)=\frac{1}{p^{-1}}-p=p-p=0
$$

p^{-1} is root of $\Phi(y)$

Newton Iteration

- Newton iteration: given differentiable $f: \mathbb{R} \rightarrow \mathbb{R}$, compute successive approximations to solutions of $f(t)=0$
(finding roots of f)
- From initial approximation t_{0}, get next approximation by

$$
t_{i+1}=t_{i}-\frac{f\left(t_{i}\right)}{f^{\prime}\left(t_{i}\right)}
$$

- Can use this to find inverse of a polynomial $p(x)$ over the ring $\mathbb{F}[[x]]$:
(1) Function to "find root of:"

$$
\Phi(y)=\frac{1}{y}-p(x)
$$

(2) Derivative (over y):

$$
\Phi^{\prime}(y)=-\frac{1}{y^{2}}
$$

$\frac{d}{d y}\left(\frac{1}{y}-p(x)\right)=\frac{d}{d y}\left(\frac{1}{y}\right)=-y^{-2}$

Newton Iteration

- Newton iteration: given differentiable $f: \mathbb{R} \rightarrow \mathbb{R}$, compute successive approximations to solutions of $f(t)=0$
(finding roots of f)
- From initial approximation t_{0}, get next approximation by

$$
t_{i+1}=t_{i}-\frac{f\left(t_{i}\right)}{f^{\prime}\left(t_{i}\right)}
$$

- Can use this to find inverse of a polynomial $p(x)$ over the ring $\mathbb{F}[[x]]$:
(1) Function to "find root of:"

$$
\Phi(y)=\frac{1}{y}-p(x)
$$

(2) Derivative (over y):

$$
\Phi^{\prime}(y)=-\frac{1}{y^{2}}
$$

(3) Newton iteration step:

$$
f_{i+1}=f_{i}-\frac{\frac{1}{f_{i}}-p}{-1 / f_{i}^{2}}=2 f_{i}-p f_{i}^{2}
$$

Newton Iteration

- Have from Newton Iteration:

$$
f_{i+1}=f_{i}-\frac{\frac{1}{f_{i}}-p}{-1 / f_{i}^{2}}=2 f_{i}-p f_{i}^{2}
$$

Newton Iteration

- Have from Newton Iteration:

$$
f_{i+1}=f_{i}-\frac{\frac{1}{f_{i}}-p}{-1 / f_{i}^{2}}=2 f_{i}-p f_{i}^{2}
$$

- How do we start finding the inverse of $p(x)$?
(1) First guess: $f_{0}:=p_{0}^{-1}$ makes the first coefficient of power series correct

$$
\begin{aligned}
& p(x)^{-1}=f_{0}+\left(\cdots x+x^{2}+\cdots\right) \\
& f_{0}=p_{0}^{-1} p(x) \cdot p^{-1}(x)=1+0 \cdot x+0 x^{2}+\cdots \\
& \quad f_{0} \cdot p_{0}=1
\end{aligned}
$$

Newton Iteration

- Have from Newton Iteration:

$$
f_{i+1}=f_{i}-\frac{\frac{1}{f_{i}}-p}{-1 / f_{i}^{2}}=2 f_{i}-p f_{i}^{2}
$$

- How do we start finding the inverse of $p(x)$?
(1) First guess: $f_{0}:=p_{0}^{-1}$
(2) $f_{0} \cdot p=1+p_{1} p_{0}^{-1} x+\cdots$

Newton Iteration

- Have from Newton Iteration:

$$
f_{i+1}=f_{i}-\frac{\frac{1}{f_{i}}-p}{-1 / f_{i}^{2}}=2 f_{i}-p f_{i}^{2}
$$

- How do we start finding the inverse of $p(x)$?
(1) First guess: $f_{0}:=p_{0}^{-1}$
(2) $f_{0} \cdot p=1+p_{1} p_{0}^{-1} x+\cdots$
(right on constant term)
(3) $f_{1}=2 f_{0}-f_{0}^{2} \cdot p(x)$

$$
\begin{aligned}
f_{1} & =2 f_{0}-f_{0}^{2}\left(p_{0}+p_{1} x+p_{2} x^{2}+\cdots\right) \\
& =f_{0}-f_{0}^{2} p_{1} x-f_{0}^{2} p_{2} x^{2}-f_{0}^{2}(\cdots)
\end{aligned}
$$

$$
f \cdot p=\left(f_{0} p_{0}\right)+\left(f_{0} \cdot p_{1}+\left(-f_{0}^{2} p_{1}\right) \cdot p_{0}\right) x+\cdots
$$

$$
=1+\left(f_{0} p_{1}-f_{0} p_{1}\right) x t_{1}=1+0 \cdot x
$$

Newton Iteration

- Have from Newton Iteration:

$$
f_{i+1}=f_{i}-\frac{\frac{1}{f_{i}}-p}{-1 / f_{i}^{2}}=2 f_{i}-p f_{i}^{2}
$$

- How do we start finding the inverse of $p(x)$?
(1) First guess: $f_{0}:=p_{0}^{-1}$
(2) $f_{0} \cdot p=1+p_{1} p_{0}^{-1} x+\cdots$
(right on constant term)
(3) $f_{1}=2 f_{0}-f_{0}^{2} \cdot p(x)$

$$
p \cdot f_{1}=2 f_{0} \cdot p-f_{0}^{2} \cdot p^{2}=1+0 \cdot x-\left(p_{1} / p_{0}\right)^{2} \cdot x^{2}+\cdots
$$

Newton Iteration

- Have from Newton Iteration:

$$
f_{i+1}=f_{i}-\frac{\frac{1}{f_{i}}-p}{-1 / f_{i}^{2}}=2 f_{i}-p f_{i}^{2}
$$

- How do we start finding the inverse of $p(x)$?
(1) First guess: $f_{0}:=p_{0}^{-1}$
(2) $f_{0} \cdot p=1+p_{1} p_{0}^{-1} x+\cdots$
(right on constant term)
(3) $f_{1}=2 f_{0}-f_{0}^{2} \cdot p(x)$

$$
p \cdot f_{1}=2 f_{0} \cdot p-f_{0}^{2} \cdot p^{2}=1+0 \cdot x-\left(p_{1} / p_{0}\right)^{2} \cdot x^{2}+\cdots
$$

Right up to linear term...
$p \cdot f_{1}=1+0 \cdot x+x^{2} \cdot$ (Something)

Newton Iteration Theorem
Theorem (Newton Iteration)
If $p(x) \in \mathbb{F}[x]$ is such that $p_{0}=1$ and $f_{0}=1, f_{1}, \ldots$ are the polynomials obtained by the Newton Iteration, then for all $i \geq 0$:

Newton Iteration Theorem
Theorem (Newton Iteration)
If $p(x) \in \mathbb{F}[x]$ is such that $p_{0}=1$ and $f_{0}=1, f_{1}, \ldots$ are the polynomials obtained by the Newton Iteration, then for all $i \geq 0$:

$$
p \cdot f_{i} \equiv 1 \quad \bmod x^{2^{i}}
$$

- Proof by induction: base case $i=0$ we saw in previous slide

$$
\begin{gathered}
p \cdot f_{0}=1 \bmod x \\
\Leftrightarrow
\end{gathered}
$$

constant
form of

$$
p \cdot \rho_{0} \equiv 1
$$

Newton Iteration Theorem
Theorem (Newton Iteration)
If $p(x) \in \mathbb{F}[x]$ is such that $p_{0}=1$ and $f_{0}=1, f_{1}, \ldots$ are the polynomials obtained by the Newton Iteration, then for all $i \geq 0$:

$$
p \cdot f_{i} \equiv 1 \quad \bmod x^{2^{i}}
$$

- Proof by induction: base case $i=0$ we saw in previous slide ${ }_{2}$
- Assume $p \cdot f_{i} \equiv 1 \bmod x^{2^{i}}:\left(1-p f_{i}\right)^{2}=x^{2^{i+1}}(\text { polynomial })^{2}$

$$
\begin{aligned}
& 1-p \cdot f_{i+1} \equiv 1-p \cdot\left(2 f_{i}-p f_{i}^{2}\right) \quad \bmod x^{2^{i+1}} \equiv 0 \quad \text { mod } \quad x^{2^{i+1}} \\
& \equiv 1-2 \cdot p \cdot f_{i}+p^{2} \cdot f_{i}^{2} \bmod x^{2^{i+1}} \text { expand } \\
& \begin{aligned}
& f_{i+1}=2 f_{i}-p f_{i}^{2} \equiv\left(1-p \cdot f_{i}\right)^{2} \bmod x^{2^{i+1}} \text { per } \\
& \equiv 0 \bmod x^{2^{i+1}} \text { induction }
\end{aligned} \\
& 1-p \cdot f_{i} \equiv 0 \bmod x^{2^{i}} \Leftrightarrow 1-p f_{i}=x^{2^{i}}(p d y n g m i a l)
\end{aligned}
$$

Newton Iteration Algorithm for Polynomial Inversion

- Input: $p(x) \in \mathbb{F}[x]$ of degree d such that $p_{0}=1, t \in \mathbb{N}$
- Output: inverse $f_{t}(x) \in \mathbb{F}[x]$ of $p(x)$ up to degree 2^{t}. That is:

$$
f_{t}(x) \cdot p(x) \equiv 1 \quad \bmod x^{2^{t}}
$$

Newton Iteration Algorithm for Polynomial Inversion

- Input: $p(x) \in \mathbb{F}[x]$ of degree d such that $p_{0}=1, t \in \mathbb{N}$
- Output: inverse $f_{t}(x) \in \mathbb{F}[x]$ of $p(x)$ up to degree 2^{t}. That is:

$$
f_{t}(x) \cdot p(x) \equiv 1 \quad \bmod x^{2^{t}}
$$

- $f_{0}=1$

Newton Iteration Algorithm for Polynomial Inversion

- Input: $p(x) \in \mathbb{F}[x]$ of degree d such that $p_{0}=1, t \in \mathbb{N}$
- Output: inverse $f_{t}(x) \in \mathbb{F}[x]$ of $p(x)$ up to degree 2^{t}. That is:

$$
f_{t}(x) \cdot p(x) \equiv 1 \quad \bmod x^{2^{t}}
$$

- $f_{0}=1$
- For $i=0, \ldots, t-1$:

Compute $f_{i+1}=2 f_{i}-p \cdot f_{i}^{2} \bmod x^{2^{i}}$ Newton iteration

- Return f_{t}
previous sliele ojves as correctrun of thin algorithm

Newton Iteration Algorithm for Polynomial Inversion

- Input: $p(x) \in \mathbb{F}[x]$ of degree d such that $p_{0}=1, t \in \mathbb{N}$
- Output: inverse $f_{t}(x) \in \mathbb{F}[x]$ of $p(x)$ up to degree 2^{t}. That is:

$$
f_{t}(x) \cdot p(x) \equiv 1 \quad \bmod x^{2^{t}}
$$

- $f_{0}=1$

- Return f_{t} Tmultiplicetern

Assumptions on polynomial multiplication
(1) $M(d):=$ \# field operations to multiply two degree $\leq d$ polynomials
(2) $d \leq M(d)$ and $M(2 d) \geq 2 \cdot M(d)$

Analysis

- The algorithm from previous slide runs in time $O\left(M\left(2^{t}\right)\right)$ precinion

Analysis

- The algorithm from previous slide runs in time $O\left(M\left(2^{t}\right)\right)$
- We have $f_{i+1}=2 f_{i}-p \cdot f_{i}^{2} \bmod x^{2^{i}}$
- \# field operations to compute f_{i+1} from f_{i} is at most

$$
2 \cdot M\left(2^{i}\right)+2 \cdot 2^{i}
$$

as we perform all computations modulo $x^{2^{i}}$

Analysis

- The algorithm from previous slide runs in time $O\left(M\left(2^{t}\right)\right)$
- We have $f_{i+1}=2 f_{i}-p \cdot f_{i}^{2} \bmod x^{2^{i}} \leftarrow t$ timus
- \# field operations to compute f_{i+1} from f_{i} is at most

$$
2 \cdot M\left(2^{i}\right)+2 \cdot 2^{i}
$$

as we perform all computations modulo $x^{2^{i}}$

- Total running time is:

$$
\sum_{i=1}^{t}\left(2 \cdot M\left(2^{i}\right)+2^{i+1}\right)
$$

Analysis

- The algorithm from previous slide runs in time $O\left(M\left(2^{t}\right)\right)$
- We have $f_{i+1}=2 f_{i}-p \cdot f_{i}^{2} \bmod x^{2^{i}}$
- \# field operations to compute f_{i+1} from f_{i} is at most

$$
2 \cdot M\left(2^{i}\right)+2 \cdot 2^{i}
$$

as we perform all computations modulo $x^{2^{i}}$

- Total running time is:

$$
\sum_{i=1}^{t}\left(2 \cdot M\left(2^{i}\right)+2^{i+1}\right)
$$

- Using $2 \cdot M\left(2^{i}\right) \leq M\left(2^{i+1}\right)$ and $2^{i} \leq M\left(2^{i}\right)$, we get:

$$
\sum_{i=1}^{t}\left(2 \cdot M\left(2^{i}\right)+2^{i+1}\right)=2 \cdot \sum_{i=1}^{t} M\left(2^{i}\right)+\sum_{i=1}^{2^{i+1}} \leq M\left(2^{i n}\right)
$$

$$
\begin{aligned}
& \leq \sum_{i=2}^{t+1} M\left(2^{i}\right)+\sum_{i=2}^{t+1} M\left(2^{i}\right) \leq 4 \cdot M\left(2^{t+1}\right) \\
& 2 \cdot \sum M\left(2^{i}\right)
\end{aligned}
$$

Punch line
We showed the we can invert element

$$
P(x) \in \mathbb{F}[x] \quad p_{0}=1 \quad \text { up to preciaise }
$$

in "same \# opera ions" it takes to multiply two polynomials of degree id.

- Formal Power Series Ring \& Reversal
- Newton Iteration \& Inversion
- Division via Newton Iteration
- Conclusion
- Acknowledgements

Division With Remainder

- Input: polynomials $a(x), b(x) \in \mathbb{F}[x] d=\operatorname{deg}(a) \geq \operatorname{deg}(b) \geq 0$
- Output: polynomials $q(x), r(x) \in \mathbb{F}[x]$ such that

$$
\begin{aligned}
& a(x)=b(x) \cdot q(x)+r(x) \\
& \operatorname{deg}(r)<\operatorname{deg}(b)
\end{aligned}
$$

Division With Remainder

- Input: polynomials $a(x), b(x) \in \mathbb{F}[x] d=\operatorname{deg}(a) \geq \operatorname{deg}(b) \geq 0$
- Output: polynomials $q(x), r(x) \in \mathbb{F}[x]$ such that

$$
a(x)=b(x) \cdot q(x)+r(x)
$$

- Assume $b(x)$ is monic
(easy to do)

Division With Remainder

- Input: polynomials $a(x), b(x) \in \mathbb{F}[x] d=\operatorname{deg}(a) \geq \operatorname{deg}(b) \geq 0$
- Output: polynomials $q(x), r(x) \in \mathbb{F}[x]$ such that
- Assume $b(x)$ is monic

$$
\frac{a(x)=b(x) \cdot q(x)+r(x)}{d_{b} d-d_{b}} \quad d_{n} \leqslant d_{b}-1
$$

- If $d_{b}=\operatorname{deg}(b)$, we have:

$$
\begin{aligned}
& \operatorname{rev}_{d}(\eta)^{(\text {easy to do) }} \\
& =V_{d_{0}}^{d-d_{b}+1} \cdot \frac{r_{0}(b) \cdot v_{d_{b}-1}(r)}{\operatorname{rev}_{d-d_{b}}(q)}
\end{aligned}
$$

$$
\frac{x^{d} \cdot \underline{b}(1 / x) \cdot \underline{g(1 / x)}}{\underline{x}^{d_{b}} \cdot \underline{x}^{d-d_{b}}} \operatorname{rev}_{d_{b}}(b) \cdot \operatorname{rel}_{d-d_{b}}(Q) \quad .
$$

Division With Remainder

$$
\operatorname{deg}(g)=d-d_{b}
$$

- Input: polynomials $a(x), b(x) \in \mathbb{F}[x] d=\operatorname{deg}(a) \geq \operatorname{deg}(b) \geq 0$
- Output: polynomials $q(x), r(x) \in \mathbb{F}[x]$ such that

$$
a(x)=b(x) \cdot q(x)+r(x)
$$

- Assume $b(x)$ is manic $\Rightarrow \operatorname{rev}_{d_{0}}$ (b) has content (easy to do)
- If $d_{b}=\operatorname{deg}(b)$, we have: $\operatorname{ferm}=1 \Rightarrow b$ is invertible!

$$
r e v_{d}(a)=\operatorname{rev}_{d-d_{b}}(q) \cdot \operatorname{rev}_{d_{b}}(b)+x^{d-d_{b}+1} \cdot \operatorname{rev}_{d_{b}-1}(r)
$$

- Thus:

$$
\operatorname{rev}_{d}(a) \equiv \operatorname{rev}_{d-d_{b}}(q) \cdot \operatorname{rev}_{d_{b}}(b) \quad \bmod x^{d-d_{b}+1}
$$

invert $\quad \operatorname{rev}_{d}(a) \cdot \operatorname{rev}_{d_{b}}(b)^{-1} \equiv \operatorname{rev}_{d-d_{b}}(q) \quad \underline{\bmod x^{d-d_{b}+1}}$
rev $_{d_{s}}(b)$
reversal of quotient q can be computed by a product of tow o poly nomials we know!

Division With Remainder

- Input: polynomials $a(x), b(x) \in \mathbb{F}[x] d=\operatorname{deg}(a) \geq \operatorname{deg}(b) \geq 0$
- Output: polynomials $q(x), r(x) \in \mathbb{F}[x]$ such that

$$
a(x)=b(x) \cdot q(x)+r(x)
$$

- Assume $b(x)$ is monic
- If $d_{b}=\operatorname{deg}(b)$, we have:

$$
\operatorname{rev}_{d}(a)=\operatorname{rev}_{d-d_{b}}(q) \cdot \operatorname{rev}_{d_{b}}(b)+x^{d-d_{b}+1} \cdot \operatorname{rev}_{d_{b}-1}(r)
$$

- Thus:

$$
\begin{array}{r}
\operatorname{rev}_{d}(a) \equiv \operatorname{rev}_{d-d_{b}}(q) \cdot \operatorname{rev}_{d_{b}}(b) \quad \bmod x^{d-d_{b}+1} \\
\operatorname{rev}_{d}(a) \cdot \operatorname{rev}_{d_{b}}(b)^{-1} \equiv \operatorname{rev}_{d-d_{b}}(q)
\end{array} \quad \bmod x^{d-d_{b}+1}
$$

- We get

$$
q=\operatorname{rev}_{d-d_{b}}\left(\operatorname{rev}_{d-d_{b}}(q)\right)
$$

Division With Remainder

- Input: polynomials $a(x), b(x) \in \mathbb{F}[x] d=\operatorname{deg}(a) \geq \operatorname{deg}(b) \geq 0$
- Output: polynomials $q(x), r(x) \in \mathbb{F}[x]$ such that

$$
a(x)=b(x) \cdot q(x)+r(x)
$$

- Assume $b(x)$ is monic
- If $d_{b}=\operatorname{deg}(b)$, we have:

$$
\operatorname{rev}_{d}(a)=\operatorname{rev}_{d-d_{b}}(q) \cdot \operatorname{rev}_{d_{b}}(b)+x^{d-d_{b}+1} \cdot \operatorname{rev}_{d_{b}-1}(r)
$$

- Thus:

$$
\begin{array}{r}
\operatorname{rev}_{d}(a) \equiv \operatorname{rev}_{d-d_{b}}(q) \cdot \operatorname{rev}_{d_{b}}(b) \quad \bmod x^{d-d_{b}+1} \\
\operatorname{rev}_{d}(a) \cdot \operatorname{rev}_{d_{b}}(b)^{-1} \equiv \operatorname{rev}_{d-d_{b}}(q)
\end{array} \bmod x^{d-d_{b}+1}
$$

- We get

$$
q=\operatorname{rev}_{d-d_{b}}\left(\operatorname{rev}_{d-d_{b}}(q)\right)
$$

- And $r=a-b \cdot q$

Runtime and Analysis

- Correctness follows from properties of reversal

Runtime and Analysis

- Correctness follows from properties of reversal
- Running time follows from our algorithm for inversion and two more polynomial multiplication

$$
\begin{gathered}
\operatorname{rev}_{d_{b}}(b) \quad O(M(2 d)) \\
\operatorname{rev}_{d}(a) \cdot \operatorname{rev}_{d_{b}}(b) \quad O\left(M\left(2\left(d-d_{b}+1\right)\right)\right. \\
q \quad \text { blear time } \\
r=a-b \cdot q \\
O(M(2 d))
\end{gathered}
$$

Analysis

- Formal Power Series Ring \& Reversal
- Newton Iteration \& Inversion
- Division via Newton Iteration
- Conclusion
- Acknowledgements

Conclusion

In today's lecture, we learned

- Properties of Ring of Power Series
- Newton iteration
- How to use Newton Iteration to compute inverses in ring of power series
- How to use reversal and Newton iteration to perform fast polynomial division with remainder
- Division with remainder in $O(\mathbb{k} \log d)$ field operations

Acknowledgement

- Based largely on Arne's notes

$$
\begin{gathered}
\text { https://cs.uwaterloo.ca/~r5olivei/courses/ } \\
\text { 2021-winter-cs487/lec5-ref.pdf }
\end{gathered}
$$

