
Lecture 5: Univariate Polynomial Division & Newton
Iteration

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

January 24, 2021

1 / 55

Overview

Formal Power Series Ring & Reversal

Newton Iteration & Inversion

Division via Newton Iteration

Conclusion

Acknowledgements

2 / 55

Dividing Polynomials

In Lecture 1, we saw how to divide polynomials over Z[x]
Running time O(dadb) to compute a = q · b + r

3 / 55

Dividing Polynomials

In Lecture 1, we saw how to divide polynomials over Z[x]
Running time O(dadb) to compute a = q · b + r

That algorithm (Euclidean division) generalizes to the setting of F[x],
where F is a field.

4 / 55

Dividing Polynomials

In Lecture 1, we saw how to divide polynomials over Z[x]
Running time O(dadb) to compute a = q · b + r

That algorithm (Euclidean division) generalizes to the setting of F[x],
where F is a field.

Also saw in previous lecture how to multiply two polynomials of
degree O(d) in O(d log d) time

5 / 55

Dividing Polynomials

In Lecture 1, we saw how to divide polynomials over Z[x]
Running time O(dadb) to compute a = q · b + r

That algorithm (Euclidean division) generalizes to the setting of F[x],
where F is a field.

Also saw in previous lecture how to multiply two polynomials of
degree O(d) in O(d log d) time

Is division with remainder more complex than multiplication?
1 Can compute division with remainder with O(d log d) operations in F?
2 Can we use fast multiplication to speedup division?

6 / 55

Dividing Polynomials

In Lecture 1, we saw how to divide polynomials over Z[x]
Running time O(dadb) to compute a = q · b + r

That algorithm (Euclidean division) generalizes to the setting of F[x],
where F is a field.

Also saw in previous lecture how to multiply two polynomials of
degree O(d) in O(d log d) time

Is division with remainder more complex than multiplication?
1 Can compute division with remainder with O(d log d) operations in F?
2 Can we use fast multiplication to speedup division?

YES!

7 / 55

Dividing Polynomials

In Lecture 1, we saw how to divide polynomials over Z[x]
Running time O(dadb) to compute a = q · b + r

That algorithm (Euclidean division) generalizes to the setting of F[x],
where F is a field.

Also saw in previous lecture how to multiply two polynomials of
degree O(d) in O(d log d) time

Is division with remainder more complex than multiplication?
1 Can compute division with remainder with O(d log d) operations in F?
2 Can we use fast multiplication to speedup division?

YES!

in 70s, Borodin and Moenck; Strassen; Sieveking and Kung; derived a
division algorithm with O(d log2 d log log d) operations

8 / 55

Formal Power Series Ring & Reversal

Newton Iteration & Inversion

Division via Newton Iteration

Conclusion

Acknowledgements

9 / 55

Ring of Formal Power Series

We have seen the polynomial ring F[x], whose elements are of the
form

p(x) = p0 + p1x + · · ·+ pdx
d

10 / 55

Ring of Formal Power Series

We have seen the polynomial ring F[x], whose elements are of the
form

p(x) = p0 + p1x + · · ·+ pdx
d

We can extend this ring to the formal power series ring F[[x]], whose
elements are now:

p(x) = p0 + p1x + p2x
2 + · · ·

11 / 55

Ring of Formal Power Series

We have seen the polynomial ring F[x], whose elements are of the
form

p(x) = p0 + p1x + · · ·+ pdx
d

We can extend this ring to the formal power series ring F[[x]], whose
elements are now:

p(x) = p0 + p1x + p2x
2 + · · ·

Addition and multiplication done similar to ring of polynomials

(p + q)k = pk + qk (pq)k =
k�

i=0

piqk−i

12 / 55

Ring of Formal Power Series

We have seen the polynomial ring F[x], whose elements are of the
form

p(x) = p0 + p1x + · · ·+ pdx
d

We can extend this ring to the formal power series ring F[[x]], whose
elements are now:

p(x) = p0 + p1x + p2x
2 + · · ·

Addition and multiplication done similar to ring of polynomials

(p + q)k = pk + qk (pq)k =
k�

i=0

piqk−i

We don’t care about convergence of power series, as we will not
evaluate them.

13 / 55

Property of Power Series Rings

Now more elements have inverses in the ring:

p(x) = p0 + p1x + · · · ∈ F[[x]] has an inverse in F[[x]] iff p0 �= 0.

14 / 55

Reversal of Polynomials

Given polynomial p(x) = p0 + p1x + · · ·+ pkx
k we can algebraically

reverse coefficients of p(x) getting

q(x) = pk + pk−1x + · · ·+ p0x
k

15 / 55

Reversal of Polynomials

Given polynomial p(x) = p0 + p1x + · · ·+ pkx
k we can algebraically

reverse coefficients of p(x) getting

q(x) = pk + pk−1x + · · ·+ p0x
k

Operation is called reversal, can be done algebraically as follows:

revk(p) := q(x) = xk · p(1/x)

16 / 55

Reversal of Polynomials

Given polynomial p(x) = p0 + p1x + · · ·+ pkx
k we can algebraically

reverse coefficients of p(x) getting

q(x) = pk + pk−1x + · · ·+ p0x
k

Operation is called reversal, can be done algebraically as follows:

revk(p) := q(x) = xk · p(1/x)

Note that if k ≥ deg(p) then the reversal just has extra factor of xk−d

17 / 55

Reversal of Polynomials

Given polynomial p(x) = p0 + p1x + · · ·+ pkx
k we can algebraically

reverse coefficients of p(x) getting

q(x) = pk + pk−1x + · · ·+ p0x
k

Operation is called reversal, can be done algebraically as follows:

revk(p) := q(x) = xk · p(1/x)

Note that if k ≥ deg(p) then the reversal just has extra factor of xk−d

When a polynomial p(x) of degree d is monic (i.e., leading coefficient
1), we have revd(p) is invertible over F[[x]]

18 / 55

Formal Power Series Ring & Reversal

Newton Iteration & Inversion

Division via Newton Iteration

Conclusion

Acknowledgements

19 / 55

Newton Iteration
Newton iteration: given differentiable f : R → R, compute successive
approximations to solutions of f (t) = 0 (finding roots of f)

20 / 55

Newton Iteration
Newton iteration: given differentiable f : R → R, compute successive
approximations to solutions of f (t) = 0 (finding roots of f)
From initial approximation t0, get next approximation by

ti+1 = ti −
f (ti)

f �(ti)

21 / 55

Newton Iteration
Newton iteration: given differentiable f : R → R, compute successive
approximations to solutions of f (t) = 0 (finding roots of f)
From initial approximation t0, get next approximation by

ti+1 = ti −
f (ti)

f �(ti)

Can use this to find inverse of a polynomial p(x) over the ring F[[x]]:
1 Function to “find root of:”

Φ(y) =
1

y
− p(x)

22 / 55

Newton Iteration
Newton iteration: given differentiable f : R → R, compute successive
approximations to solutions of f (t) = 0 (finding roots of f)
From initial approximation t0, get next approximation by

ti+1 = ti −
f (ti)

f �(ti)

Can use this to find inverse of a polynomial p(x) over the ring F[[x]]:
1 Function to “find root of:”

Φ(y) =
1

y
− p(x)

2 Derivative (over y):

Φ�(y) = − 1

y2

23 / 55

Newton Iteration
Newton iteration: given differentiable f : R → R, compute successive
approximations to solutions of f (t) = 0 (finding roots of f)
From initial approximation t0, get next approximation by

ti+1 = ti −
f (ti)

f �(ti)

Can use this to find inverse of a polynomial p(x) over the ring F[[x]]:
1 Function to “find root of:”

Φ(y) =
1

y
− p(x)

2 Derivative (over y):

Φ�(y) = − 1

y2

3 Newton iteration step:

fi+1 = fi −
1

fi
− p

−1/f 2i
= 2fi − pf 2i

24 / 55

Newton Iteration

Have from Newton Iteration:

fi+1 = fi −
1

fi
− p

−1/f 2i
= 2fi − pf 2i

25 / 55

Newton Iteration

Have from Newton Iteration:

fi+1 = fi −
1

fi
− p

−1/f 2i
= 2fi − pf 2i

How do we start finding the inverse of p(x)?
1 First guess: f0 := p−1

0

26 / 55

Newton Iteration

Have from Newton Iteration:

fi+1 = fi −
1

fi
− p

−1/f 2i
= 2fi − pf 2i

How do we start finding the inverse of p(x)?
1 First guess: f0 := p−1

0
2 f0 · p = 1 + p1p

−1
0 x + · · · (right on constant term)

27 / 55

Newton Iteration

Have from Newton Iteration:

fi+1 = fi −
1

fi
− p

−1/f 2i
= 2fi − pf 2i

How do we start finding the inverse of p(x)?
1 First guess: f0 := p−1

0
2 f0 · p = 1 + p1p

−1
0 x + · · · (right on constant term)

3 f1 = 2f0 − f 20 · p(x)

28 / 55

Newton Iteration

Have from Newton Iteration:

fi+1 = fi −
1

fi
− p

−1/f 2i
= 2fi − pf 2i

How do we start finding the inverse of p(x)?
1 First guess: f0 := p−1

0
2 f0 · p = 1 + p1p

−1
0 x + · · · (right on constant term)

3 f1 = 2f0 − f 20 · p(x)
4

p · f1 = 2f0 · p − f 20 · p2 = 1 + 0 · x − (p1/p0)
2 · x2 + · · ·

29 / 55

Newton Iteration

Have from Newton Iteration:

fi+1 = fi −
1

fi
− p

−1/f 2i
= 2fi − pf 2i

How do we start finding the inverse of p(x)?
1 First guess: f0 := p−1

0
2 f0 · p = 1 + p1p

−1
0 x + · · · (right on constant term)

3 f1 = 2f0 − f 20 · p(x)
4

p · f1 = 2f0 · p − f 20 · p2 = 1 + 0 · x − (p1/p0)
2 · x2 + · · ·

Right up to linear term...

p · f1 ≡ 1 mod x2

30 / 55

Newton Iteration Theorem

Theorem (Newton Iteration)

If p(x) ∈ F[x] is such that p0 = 1 and f0 = 1, f1, . . . are the polynomials
obtained by the Newton Iteration, then for all i ≥ 0:

p · fi ≡ 1 mod x2
i

31 / 55

Newton Iteration Theorem

Theorem (Newton Iteration)

If p(x) ∈ F[x] is such that p0 = 1 and f0 = 1, f1, . . . are the polynomials
obtained by the Newton Iteration, then for all i ≥ 0:

p · fi ≡ 1 mod x2
i

Proof by induction: base case i = 0 we saw in previous slide

32 / 55

Newton Iteration Theorem

Theorem (Newton Iteration)

If p(x) ∈ F[x] is such that p0 = 1 and f0 = 1, f1, . . . are the polynomials
obtained by the Newton Iteration, then for all i ≥ 0:

p · fi ≡ 1 mod x2
i

Proof by induction: base case i = 0 we saw in previous slide

Assume p · fi ≡ 1 mod x2
i
:

1− p · fi+1 ≡ 1− p · (2fi − pf 2i) mod x2
i+1

≡ 1− 2 · p · fi + p2 · f 2i mod x2
i+1

≡ (1− p · fi)2 mod x2
i+1

≡ 0 mod x2
i+1

33 / 55

Newton Iteration Algorithm for Polynomial Inversion

Input: p(x) ∈ F[x] of degree d such that p0 = 1, t ∈ N
Output: inverse ft(x) ∈ F[x] of p(x) up to degree 2t . That is:

ft(x) · p(x) ≡ 1 mod x2
t

34 / 55

Newton Iteration Algorithm for Polynomial Inversion

Input: p(x) ∈ F[x] of degree d such that p0 = 1, t ∈ N
Output: inverse ft(x) ∈ F[x] of p(x) up to degree 2t . That is:

ft(x) · p(x) ≡ 1 mod x2
t

f0 = 1

35 / 55

Newton Iteration Algorithm for Polynomial Inversion

Input: p(x) ∈ F[x] of degree d such that p0 = 1, t ∈ N
Output: inverse ft(x) ∈ F[x] of p(x) up to degree 2t . That is:

ft(x) · p(x) ≡ 1 mod x2
t

f0 = 1

For i = 0, . . . , t − 1:
Compute fi+1 = 2fi − p · f 2i mod x2

i

Return ft

36 / 55

Newton Iteration Algorithm for Polynomial Inversion

Input: p(x) ∈ F[x] of degree d such that p0 = 1, t ∈ N
Output: inverse ft(x) ∈ F[x] of p(x) up to degree 2t . That is:

ft(x) · p(x) ≡ 1 mod x2
t

f0 = 1

For i = 0, . . . , t − 1:
Compute fi+1 = 2fi − p · f 2i mod x2

i

Return ft

Assumptions on polynomial multiplication

1 M(d) := # field operations to multiply two degree ≤ d polynomials

2 d ≤ M(d) and M(2d) ≥ 2 ·M(d)

37 / 55

Analysis
The algorithm from previous slide runs in time O(M(2t))

38 / 55

Analysis
The algorithm from previous slide runs in time O(M(2t))

We have fi+1 = 2fi − p · f 2i mod x2
i

field operations to compute fi+1 from fi is at most

2 ·M(2i) + 2 · 2i

as we perform all computations modulo x2
i

39 / 55

Analysis
The algorithm from previous slide runs in time O(M(2t))

We have fi+1 = 2fi − p · f 2i mod x2
i

field operations to compute fi+1 from fi is at most

2 ·M(2i) + 2 · 2i

as we perform all computations modulo x2
i

Total running time is:
t�

i=1

(2 ·M(2i) + 2i+1)

40 / 55

Analysis
The algorithm from previous slide runs in time O(M(2t))

We have fi+1 = 2fi − p · f 2i mod x2
i

field operations to compute fi+1 from fi is at most

2 ·M(2i) + 2 · 2i

as we perform all computations modulo x2
i

Total running time is:
t�

i=1

(2 ·M(2i) + 2i+1)

Using 2 ·M(2i) ≤ M(2i+1) and 2i ≤ M(2i), we get:

t�

i=1

(2 ·M(2i) + 2i+1) = 2 ·
t�

i=1

M(2i) +
t�

i=1

2i+1

≤
t+1�

i=2

M(2i) +
t+1�

i=2

M(2i) ≤ 4 ·M(2t+1)

41 / 55

Analysis

42 / 55

Formal Power Series Ring & Reversal

Newton Iteration & Inversion

Division via Newton Iteration

Conclusion

Acknowledgements

43 / 55

Division With Remainder

Input: polynomials a(x), b(x) ∈ F[x] d = deg(a) ≥ deg(b) ≥ 0

Output: polynomials q(x), r(x) ∈ F[x] such that

a(x) = b(x) · q(x) + r(x)

44 / 55

Division With Remainder

Input: polynomials a(x), b(x) ∈ F[x] d = deg(a) ≥ deg(b) ≥ 0

Output: polynomials q(x), r(x) ∈ F[x] such that

a(x) = b(x) · q(x) + r(x)

Assume b(x) is monic (easy to do)

45 / 55

Division With Remainder

Input: polynomials a(x), b(x) ∈ F[x] d = deg(a) ≥ deg(b) ≥ 0

Output: polynomials q(x), r(x) ∈ F[x] such that

a(x) = b(x) · q(x) + r(x)

Assume b(x) is monic (easy to do)

If db = deg(b), we have:

revd(a) = revd−db(q) · revdb(b) + xd−db+1 · revdb−1(r)

46 / 55

Division With Remainder

Input: polynomials a(x), b(x) ∈ F[x] d = deg(a) ≥ deg(b) ≥ 0

Output: polynomials q(x), r(x) ∈ F[x] such that

a(x) = b(x) · q(x) + r(x)

Assume b(x) is monic (easy to do)

If db = deg(b), we have:

revd(a) = revd−db(q) · revdb(b) + xd−db+1 · revdb−1(r)

Thus:

revd(a) ≡ revd−db(q) · revdb(b) mod xd−db+1

revd(a) · revdb(b)−1 ≡ revd−db(q) mod xd−db+1

47 / 55

Division With Remainder

Input: polynomials a(x), b(x) ∈ F[x] d = deg(a) ≥ deg(b) ≥ 0

Output: polynomials q(x), r(x) ∈ F[x] such that

a(x) = b(x) · q(x) + r(x)

Assume b(x) is monic (easy to do)

If db = deg(b), we have:

revd(a) = revd−db(q) · revdb(b) + xd−db+1 · revdb−1(r)

Thus:

revd(a) ≡ revd−db(q) · revdb(b) mod xd−db+1

revd(a) · revdb(b)−1 ≡ revd−db(q) mod xd−db+1

We get
q = revd−db(revd−db(q))

48 / 55

Division With Remainder

Input: polynomials a(x), b(x) ∈ F[x] d = deg(a) ≥ deg(b) ≥ 0

Output: polynomials q(x), r(x) ∈ F[x] such that

a(x) = b(x) · q(x) + r(x)

Assume b(x) is monic (easy to do)

If db = deg(b), we have:

revd(a) = revd−db(q) · revdb(b) + xd−db+1 · revdb−1(r)

Thus:

revd(a) ≡ revd−db(q) · revdb(b) mod xd−db+1

revd(a) · revdb(b)−1 ≡ revd−db(q) mod xd−db+1

We get
q = revd−db(revd−db(q))

And r = a− b · q
49 / 55

Runtime and Analysis

Correctness follows from properties of reversal

50 / 55

Runtime and Analysis

Correctness follows from properties of reversal

Running time follows from our algorithm for inversion and two more
polynomial multiplication

51 / 55

Analysis

52 / 55

Formal Power Series Ring & Reversal

Newton Iteration & Inversion

Division via Newton Iteration

Conclusion

Acknowledgements

53 / 55

Conclusion

In today’s lecture, we learned

Properties of Ring of Power Series

Newton iteration

How to use Newton Iteration to compute inverses in ring of power
series

How to use reversal and Newton iteration to perform fast polynomial
division with remainder

Division with remainder in O(n log n) field operations

54 / 55

Acknowledgement

Based largely on Arne’s notes

https://cs.uwaterloo.ca/~r5olivei/courses/

2021-winter-cs487/lec5-ref.pdf

55 / 55

