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Dividing Polynomials &, := <3 (2
Sy tC deg(‘ﬂ

@ In Lecture 1, we saw how to divide polynomials over Z[x]

@ Running time O(d,dp) to compute a=q-b+r
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Dividing Polynomials

@ In Lecture 1, we saw how to divide polynomials over Z[x]

@ Running time O(d.dp) to compute a=q-b+r

e That algorithm (Euclidean division) generalizes to the setting of F[x],
where F is a field.
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Dividing Polynomials

@ In Lecture 1, we saw how to divide polynomials over Z[x]

@ Running time O(d.dp) to compute a=q-b+r

e That algorithm (Euclidean division) generalizes to the setting of F[x],
where F is a field.

@ Also saw in previous lecture how to multiply two polynomials of
degree O(d) in O(d log d) time

do  d, = O(d)



Dividing Polynomials

In Lecture 1, we saw how to divide polynomials over Z[x]

Running time O(d.dp) to compute a=q-b+r
That algorithm (Euclidean division) generalizes to the setting of F[x],
where F is a field.

@ Also saw in previous lecture how to multiply two polynomials of
degree O(d) in O(d log d) time
Is division with remainder more complex than multiplication?

@ Can compute division with remainder with O(d log d) operations in F?
@ Can we use fast multiplication to speedup division?
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Dividing Polynomials

@ In Lecture 1, we saw how to divide polynomials over Z[x]

@ Running time O(d.dp) to compute a=q-b+r

e That algorithm (Euclidean division) generalizes to the setting of F[x],
where T is a field.

@ Also saw in previous lecture how to multiply two polynomials of
degree O(d) in O(d log d) time

@ Is division with remainder more complex than multiplication?

@ Can compute division with remainder with O(d log d) operations in F?
@ Can we use fast multiplication to speedup division?

e YES!

@ in 70s, Borodin and Moenck; Strassen; Sieveking and Kung; derived a
division algorithm with O(d log? d log log d) operations



@ Formal Power Series Ring & Reversal



Ring of Formal Power Series

@ We have seen the polynomial ring F[x], whose elements are of the
form

p(x) = po + prx + -+ + pax?
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Ring of Formal Power Series

@ We have seen the polynomial ring F[x], whose elements are of the
form

p(x) = po + prx + -+ + pax?

e We can extend this ring to the formal power series ring F[[x]], whose
elements are now:

p(x) = po + p1x + pax® + -
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Ring of Formal Power Series

@ We have seen the polynomial ring F[x], whose elements are of the
form

p(x) = po + prx + -+ + pax?

e We can extend this ring to the formal power series ring F[[x]], whose
elements are now:

p(x) = po + p1x + pax? + -+

@ Addition and multiplication done similar to ring of polynomials

P~~~ k
(P+ak=prctax  (PQk=D_ Piqi—i
i=0
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Ring of Formal Power Series

@ We have seen the polynomial ring F[x], whose elements are of the
form

P(X):P0+P1X+-“+ded

e We can extend this ring to the formal power series ring F[[x]], whose
elements are now:

p(x) = po + p1x + pax? + -+

@ Addition and multiplication done similar to ring of polynomials

k
(P+ak=pcta  (PQk=D_ Pidi—i
i=0

@ We don't care about convergence of power series, as we will not

evaluate them. C’O =445 4 )<1'{— —-
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Property of Power Series Rings

@ Now more elements have inverses in the ring:
@ p(x) = po+ p1x+--- € F[[x]] has an inverse in F[[x]] iff py # 0.
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Reversal of Polynomials

e Given polynomial p(x) = pg + pix + - + prx® we can algebraically
reverse coefficients of p(x) getting

q(x) = px + pr_1x + -+ + pox*
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Reversal of Polynomials

@ Given polynomial p(x) = po + p1x + - - - + pxx¥ we can algebraically
reverse coefficients of p(x) getting

q(x) = pi + pr—1x + - -+ + pox*

@ Operation is called reversal, can be done algebraically as follows:
revi(p) := q(x) = x* - p(1/x)
pCla) = = 4 4 +2
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Reversal of Polynomials

e Given polynomial p(x) = po + p1x + - - - + pxx* we can algebraically
reverse coefficients of p(x) getting

q(x) = px + pr_1x + -+ + pox*
@ Operation is called reversal, can be done algebraically as follows:
revi(p) = a(x) = x* - p(1/x)

o Note that if k > deg(p) then the reversal just has extra factor of xk—¢



Reversal of Polynomials

@ Given polynomial p(x) = po + p1x + - - - + pxx¥ we can algebraically
reverse coefficients of p(x) getting

q(x) = pi + pr—1x + -+ + pox*
@ Operation is called reversal, can be done algebraically as follows:
revi(p) := q(x) = x* - p(1/x)

o Note that if k > deg(p) then the reversal just has extra factor of xk—¢

@ When a polynomial p(x) of degree d is monic (i.e., leading coefficient
1), we have revy(p) is invertible over F[[x]]
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@ Newton lteration & Inversion



Newton lteration

o Newton iteration: given differentiable f : R — R, compute successive
approximations to solutions of f(t) =0 (finding roots of f)
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Newton lteration

o Newton iteration: given differentiable f : R — R, compute successive

approximations to solutions of f(t) =0 (finding roots of f)
@ From initial approximation ty, get next approximation by
f(ti)
tig1 =t — ——=
next
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Newton lteration

o Newton iteration: given differentiable f : R — R, compute successive
approximations to solutions of f(t) =0 (finding roots of f)
@ From initial approximation ty, get next approximation by
b () com X o
i+1 i f/(t,') over H-{ZX‘).S

o Can use this to find inverse of a polynomial p(x) over the ring F[[x]]:

© Function to “find root of:” . A Mg) o
o(y) == — p(x) 4 in diffn
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Newton lteration

o Newton iteration: given differentiable f : R — R, compute successive
approximations to solutions of f(t) =0 (finding roots of f)
@ From initial approximation ty, get next approximation by

f(ti)
tiv1 =t — ——=
+1 f/(t,')

o Can use this to find inverse of a polynomial p(x) over the ring F[[x]]:
© Function to “find root of:”

d(y) == —p(x)

@ Derivative (over y):
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Newton lteration

o Newton iteration: given differentiable f : R — R, compute successive

approximations to solutions of f(t) =0 (finding roots of f)
@ From initial approximation ty, get next approximation by
f(ti)
t; -t — ——
IJrl 1 f/(tl)

@ Can use this to find inverse of a polynomial p(x) over the ring F[[x]]:
@ Function to “find root of:"

@ Derivative (over y):

© Newton iteration step:

fi+1:ﬁ'__:



Newton lteration

@ Have from Newton lteration:




Newton lteration

@ Have from Newton lteration:

1

fran = fi— L = 2 pf?

1

1/£2

@ How do we start finding the inverse of p(x)?

@ First guess: fy :=py " Yeolken Lhe ,g,{r\f)‘{—
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Newton lteration

@ Have from Newton lteration:

1

fir = &

/7

@ How do we start finding the inverse of p(x)?
@ First guess: fy := pgl
@ fo-p=1+ppy'x+:--

wﬂmé_

nabh* !

—2f

pf?

1

(right on constant term)



Newton lteration
@ Have from Newton Iteration:
1

fi 2
fiy1=fi— = = 2f; — pf;

@ How do we start finding the inverse of p(x)?

@ First guess: fy := pgl
Q@ fo-p=1+pipy 'x+-
Q fi=2f— 17 p(x)
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Newton lteration

@ Have from Newton lteration:

1
f;-

2
— =

1

fiy1="1i—

@ How do we start finding the inverse of p(x)?
@ First guess: fy := pgl

Q@ fh-p=1+ plpo’lx + - (right on constant term)
Q A =2f— 1§ p(x)
o

pfi:2fbpffb2p2:1+OX7(pl/p0)2X2+



Newton lteration

@ Have from Newton Iteration:

1

fion = fi— Ay = 26— pf?

1

/7

@ How do we start finding the inverse of p(x)?
@ First guess: fy := pgl

Q forp=1+pipyix+-- (right on constant term)
Q fi=2f— 1 p(x)
(%)

pfi:zfép_f62p2:1+0X_(p1/p0)2X2+

Right up to linear term...
p-fi=1 mod x>

P =4 +0x -(—W/J&Q
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Newton lteration Theorem

Theorem (Newton lteration)

If p(x) € F[x] is such that po = 1 and foy = 1,f1,... are the polynomials
obtained by the Newton Iteration, then for all i > 0:
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Newton lteration Theorem

Theorem (Newton lteration)

If p(x) € F[x] is such that po =1 and fy = 1, f1,... are the polynomials
obtained by the Newton Iteration, then for all i > 0:

p-fi=1 mod x?

@ Proof by induction: base case i = 0 we saw in previous slide



Newton lteration Theorem

Theorem (Newton lteration)

If p(x) € F[x] is such that po =1 and fo = 1, f1,... are the polynomials
obtained by the Newton Iteration, then for all i > 0:

p-i=1 mod x*

@ Proof by induction: base case / = 0 we saw |n previous sllde,l_
@ Assume p-fi=1 mod x?': u ‘a() ‘4.. (()4'3\7""\ ,J
1-p-fin=1-p- (2 —pf?) mod x*" "‘
El—2-p-f,~—|—p2-f,-2 mod x2
=(1-p-f)*> mod X2
=0 modx®" enducten
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Newton lteration Algorithm for Polynomial Inversion

e Input: p(x) € F[x] of degree d such that pgp =1, t € N
@ Output: inverse f;(x) € F[x] of p(x) up to degree 2t. That is:

fi(x)-p(x) =1 mod x*



Newton lteration Algorithm for Polynomial Inversion

e Input: p(x) € F[x] of degree d such that pgp =1, t € N
@ Output: inverse f;(x) € F[x] of p(x) up to degree 2t. That is:

fi(x)-p(x) =1 mod x*

e fp=1



Newton lteration Algorithm for Polynomial Inversion

Input: p(x) € F[x] of degree d such that pp =1, t € N
Output: inverse f;(x) € F[x] of p(x) up to degree 2t. That is:

f(x)-p(x)=1 mod x*

fo=1

Fori=0,...,t—1: '
Compute fi 1 =2fi—p- f,-2 mod x?'
Return f;
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Newton lteration Algorithm for Polynomial Inversion

Input: p(x) € F[x] of degree d such that pp =1, t € N

Output: inverse f;(x) € F[x] of p(x) up to degree 2t. That is:

fi(x)-p(x) =1 mod x*

o =1 QBA;&\%A‘}NM""% va»& ('\'q)\( ca i )
o Fori=0,...,t—1: '/ = daz 2
i ' e
Compute fiy 1 =2f ~p-f? mod x> /> " 2&
@ Return f; ,Q.MN\L{'I()\( o bin

Assumptions on polynomial multiplication
@ M(d) := # field operations to multiply two degree < d polynomials
@ d < M(d) and M(2d) > 2 - M(d)




Analysis
@ The algorithm from previous slide runs in time O(M(2"))
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Analysis

o The algorithm from previous slide runs in time O(M(2"))
o We have fi, 1 =2fi — p-f? mod x*
o # field operations to compute fi11 from f; is at most

2-M(2"y+2-2

. i
as we perform all computations modulo x2



Analysis
o The algorithm from previous slide runs in time O(M(2"))
o We have fi; 1 =2fi—p- f,-2 mod x? &— £ tiean
o # field operations to compute fi11 from f; is at most

2-M(2"y+2-2

as we perform all computations modulo x2
@ Total running time is:
t
2(2 . M(Qi) + 2i+1)

i=1



Analysis
o The algorithm from previous slide runs in time O(M(2"))
o We have fi 1 =2fi—p- f,-2 mod x?
o # field operations to compute fi11 from f; is at most
2-M(2"y+2-2
as we perform all computations modulo x2

@ Total running time is:
t

2M2I +2i+1
> ME)+2 N

i=1 Q
e Using 2- M(2") < M(2/*1) and 2/ < I\/I(2i), we get: 41“
t t t
> 2 M)+ 2y =2 M2) + > 27!
i=1 i=1 i=1
t+1 t+1

<Y M)+ M2) <4 M2
i=2 i=2
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@ Division via Newton Iteration



Division With Remainder dy
@ Input: polynomials a(x), b(x) € F[x] d = deg(a) > deg(b) >0
@ Output: polynomials g(x), r(x) € F[x] such that
a(x) = b(x) - g(x) + r(x)

deg (r)< 9e ()



Division With Remainder
@ Input: polynomials a(x), b(x) € F[x] d = deg(a) > deg(b) >0
@ Output: polynomials g(x), r(x) € F[x] such that
a(x) = b(x) - g(x) + r(x)

@ Assume b(x) is monic (easy to do)



Division With Remainder

@ Input: polynomials a(x), b(x) € F[x] d = deg(a) > deg(b) >0
@ Output: polynomials g(x), r(x) € F[x] such that

a(x) = b(x) - q(x) + r(x) dns db—-l.
@ Assume b(x) is monicr dp ol-de (easy to do)
o If dp, = deg(b), we have: )—({\Id‘(”-)
t
revg(a) = revy_q,(q) - revy,(b) + x¥~ % . revy, 1(r)

e
e\, (b )= xev‘(b(b) teng 4 (§)
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Division With Remainder degy () = d-d,
@ Input: polynomials a(x), b(x) € F[x] d = deg(a) > deg(b) >0
@ Output: polynomials g(x), r(x) € F[x] such that
) = b 4+ )

\‘m
@ Assume b(x) is monic = NCVJ"U») hen © (easy to do)
o If dp = deg(b), we have: foem =L = b (s invekible!

revg(a) = revy_a,(q) - reva,(b) + x?~ %t - revy, 1(r)
@ Thus:
revg(a) = revy_q,(q) - revgq,(b) mod yd—db+1
adet revg(a) - revg,(b) "t = revg_g,(q) mod x4~ 9*1
M—“.\,,Uo\ —
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Division With Remainder
@ Input: polynomials a(x), b(x) € F[x] d = deg(a) > deg(b) >0
@ Output: polynomials g(x), r(x) € F[x] such that

a(x) = b(x) - q(x) + r(x)

@ Assume b(x) is monic (easy to do)
o If dp = deg(b), we have:
revg(a) = revy_q,(q) - revg,(b) + x?= %1 . revy, 1(r)
e Thus:
revg(a) = revy_q,(q) - revgq,(b) mod xd=dt1
revg(a) - revg,(b) "t = revy_q,(q) mod x4~ dT1
o We get

q = revy—d,(revi-d,(q))



Division With Remainder
@ Input: polynomials a(x), b(x) € F[x] d = deg(a) > deg(b) >0
@ Output: polynomials g(x), r(x) € F[x] such that

a(x) = b(x) - q(x) + r(x)

@ Assume b(x) is monic (easy to do)
o If dp = deg(b), we have:
revg(a) = revy_q,(q) - revg,(b) + x?= %1 . revy, 1(r)
e Thus:
revg(a) = revy_q,(q) - revy,(b) mod x99 +1
revg(a) - revg,(b) "t = revy_q,(q) mod x4~ dT1
o We get

q = revy—d,(revi-d,(q))

e Andr=a—-b-g



Runtime and Analysis

@ Correctness follows from properties of reversal



Runtime and Analysis

@ Correctness follows from properties of reversal

@ Running time follows from our algorithm for inversion and two more

polynomial multiplication

J‘(evdb<b> @(M@O)
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Analysis



@ Conclusion



Conclusion

In today's lecture, we learned

@ Properties of Ring of Power Series

@ Newton iteration

@ How to use Newton lIteration to compute inverses in ring of power
series

@ How to use reversal and Newton iteration to perform fast polynomial

division with remainder
@ Division with remainder in O(&Iog&) field operations
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