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@ Polynomial Evaluation & Interpolation



Representing Polynomials

@ In previous classes saw two different ways of representing polynomials,
given an upper bound d on degree
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Multiplying Polynomials via Interpolation

@ From previous lecture, saw how to multiply two polynomials via
interpolation
e Given p,q € R[x] of degree < d



Multiplying Polynomials via Interpolation

@ From previous lecture, saw how to multiply two polynomials via
interpolation
e Given p, g € R[x] of degree < d
@ Compute 2d + 1 evaluations of p, q (why 2d + 17)
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Multiplying Polynomials via Interpolation

@ From previous lecture, saw how to multiply two polynomials via
interpolation
e Given p,q € R[x] of degree < d
@ Compute 2d + 1 evaluations of p, g (why 2d + 17)
@ Compute the products v; := p(a;) - g(a;)



Multiplying Polynomials via Interpolation

@ From previous lecture, saw how to multiply two polynomials via
interpolation
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Multiplying Polynomials via Interpolation

@ From previous lecture, saw how to multiply two polynomials via
interpolation
e Given p,q € R[x] of degree < d
@ Compute 2d + 1 evaluations of p, g (why 2d + 17)
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@ We saw the analysis of this in Ostrowski's non-scalar model



Multiplying Polynomials via Interpolation

@ From previous lecture, saw how to multiply two polynomials via
interpolation
e Given p,q € R[x] of degree < d
@ Compute 2d + 1 evaluations of p, g (why 2d + 17)
@ Compute the products v; := p(a;) - g(a;)
© Use Lagrange's interpolation polynomials

L,-(X):H X — Qj

AT

@ From previous slide’s equivalence, we know
2d
p(x) - q(x) = 3 7iLi(x)
i=0

@ We saw the analysis of this in Ostrowski's non-scalar model

@ To get a fast algorithm in the scalar model (where we count all ring
operations) we will use Fast Fourier Transform



Fast Fourier Transform Idea
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@ Basics for DFT



Roots of Unity

o Fafield, neN
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o Fafield, neN
o We say w € I is a primitive n" root of unity (n-PRU) if
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Roots of Unity

o Fafield, neN
o We say w € I is a primitive n" root of unity (n-PRU) if

Quw' =1
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Roots of Unity

o Fafield, neN
o We say w € I is a primitive n" root of unity (n-PRU) if
QO uw=1
Q@ wk#1forl1<k<n
@ Examples:
Q@ F=C and w=e?mi/n
@ If pisaprime and F = Zj,, then F has a (p — 1)-PRU. How many such
roots does Z, have?
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More on Roots of Unity



Vandermonde Matrix

o Given elements ug, ..., uy

V(ug,...,ug) =
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Vandermonde Matrix

@ Given elements wug, ..., uy
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Vandermonde Matrix

@ Given elements wug, ..., uy
0 1 d
Ug U U
upuj uf
V(ug,...,ug) = :
1 d
Ug Ug Ug

@ From previous lecture, maps coefficients to evaluations:
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@ For interpolation, we can choose our evaluation points. Choosing
roots of unity give rise to the FFT!



@ Fast Fourier Transform (FFT)



Vandermonde with Roots of Unity

@ Given d, Take w to be a (d + 1)-PRU, and let
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Proof of lemma
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Discrete Fourier Transform (DFT)

o Given w a (d +1)-PRU, the DFT is given by DFT (w) : F9+1 — Fd+1
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Discrete Fourier Transform (DFT)

o Given w a (d +1)-PRU, the DFT is given by DFT (w) : F9+1 — Fd+1

Po p(1)
DFT() | _ p(.w)
Pd p(w?)

e Fast Fourier Transform is a way of computing the DFT in O(nlog n)
operations!



Discrete Fourier Transform (DFT)

o Given w a (d +1)-PRU, the DFT is given by DFT (w) : F9+1 — Fd+1

Po p(1)
DFT() | _ p(.cv)
Pd p(w?)

e Fast Fourier Transform is a way of computing the DFT in O(nlog n)
operations!

DFT(w) computes polynomial evaluation

DFT(w™!) computes polynomial interpolation



Fast Fourier Transform

@ Assume that d = 2k
o Idea:
° P(X) = peven(Xz) +£' Podd(X2)

PO = po 4 o< 1 P TP X *pux
d‘r“iﬁvw (4) = P+ P2y + qz.ua;_
<d

= (Pud (g7 = P+ P34



Fast Fourier Transform

@ Assume that d = 2k
o Idea:

° p(X) :peven( )+X podd d'.'s o
e Reduced problem of

evaluating p(x) at 1w, ..., w!
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Fast Fourier Transform w d-PRV
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o Idea:
° P(X) = Peven(Xz) +x- podd(X2)
o Reduced problem of 2
evaluating p(x) at 1,w,...,w
_ even PINVT2
into 2
evaluating peven(X), Podd(x) (of degree d/2) at 1,w?, w* Wb, ... ,w2‘7")
e are we evaluating it at d points? ﬂc+ d
d/ = Jd _ L ‘ﬂ"b |
(b)) = s gecnths !
ole2 2 fthey ot
2
—)C(u d’-..“) = W = W (JJ'Q ac
. ) \
‘ o4 o, -Petn'h .
L i Ry $then =

L Zo\_ NS N
_)Cwé-\ )= w C (W) fi‘fﬂi&.& Wy



Fast Fourier Transform

@ Assume that d = 2k

o ldea:
° P(X) = peven(Xz) +x- podd(X2)
e Reduced problem of

evaluating p(x) at 1,w, ... ,w

into

evaluating peven(X), Podd(X) (of degree d/2) at 1,w? w* w®, ..., w?d

o are we evaluating it at d points? 9 d/‘b Q-\A
e need to combine them back

Q[P peen(w?) + 9 poaa(w?)
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Two more operations to get p(w') plus d operations to get 1,w, ..., w
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Fast Fourier Transform

@ Assume that d = 2k
o Idea:

° P(X) = Peven(Xz) +x- podd(X2)
e Reduced problem of

evaluating p(x) at 1,w, ... ,w
into
evaluating peven(X), Podd(X) (of degree d/2) at 1,w? w* w®, ..., w?d

e are we evaluating it at d points?
e need to combine them back

p(wt) = peven(wzt) + wh- podd(wzt)
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Fast Fourier Transform

@ Assume that d = 2k
o ldea:

° P(X) = Peven(Xz) +x- podd(Xz)
e Reduced problem of

evaluating p(x) at 1,w, ... ,w
into
evaluating peven(X), Podd(X) (of degree d/2) at 1,w?, w* w®, ..., w?d

e are we evaluating it at d points?
e need to combine them back

p(wt) = peven(wzt) + w' - podd(w2t)

Two more operations to get p(w') plus d operations to get 1,w, ..., w

e Recurrence:
T(d)=2T(d/2)+3d

o Master’s theorem gives us O(nlog n)



Fast Polynomial Multiplication

@ Now that we know how to evaluate and interpolate polynomials fast,
can use it to multiply faster!

e Given p, g of degree < 2k~ take w to be a 2X-PRU.
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Fast Polynomial Multiplication

@ Now that we know how to evaluate and interpolate polynomials fast,
can use it to multiply faster!

e Given p, g of degree < 2k~ take w to be a 2X-PRU.

o c¢(x) = p(x)q(x) has degree i&k so it is uniquely determined by the
evaluations c(1),. .., c(w? 1)
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Fast Polynomial Multiplication d - 2"“

@ Now that we know how to evaluate and interpolate polynomials fast,
can use it to multiply faster!

e Given p, g of degree < 2k~ take w to be a 2X-PRU.
o c(x) = p(x)q(x) has degree < 2% so it is uniquely determined by the
evaluations c(1), ..., c(w?1)

e use FFT to evaluatekp(l),p(w), -, p(w?1) and
q(1).q(w), ..., q(w> )
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Fast Polynomial Multiplication

@ Now that we know how to evaluate and interpolate polynomials fast,
can use it to multiply faster!

e Given p, g of degree < 2k~ take w to be a 2X-PRU.

o c(x) = p(x)q(x) has degree < 2% so it is uniquely determined by the
evaluations c(1), ..., c(w?1)

e use FFT to evaluate p(1), p(w), ..., p(w® 1) and
q(1), g(w), ..., q(w? 1)

e Multiply c(w?) = p(w?) - g(w?)



Fast Polynomial Multiplication

@ Now that we know how to evaluate and interpolate polynomials fast,
can use it to multiply faster!

e Given p, g of degree < 2k~ take w to be a 2X-PRU.

o c(x) = p(x)q(x) has degree < 2% so it is uniquely determined by the
evaluations c(1), ..., c(w?1)

e use FFT to evaluate p(1), p(w), ..., p(w® 1) and
q(1), g(w), ..., q(w? 1)

e Multiply c(w?) = p(w?) - g(w?)

@ use FFT to interpolate ¢(1),..., c(w2k_1)



Fast Polynomial Multiplication

@ Now that we know how to evaluate and interpolate polynomials fast,
can use it to multiply faster!

e Given p, g of degree < 2k~ take w to be a 2X-PRU.

o c(x) = p(x)q(x) has degree < 2% so it is uniquely determined by the
evaluations c(1), ..., c(w?1)

e use FFT to evaluate p(1), p(w), ..., p(w® 1) and OCC‘ %A)
q(1), g(w), ..., q(w? 1)

e Multiply c(w?) = p(w?) - g(w?) 9(._6 3

@ use FFT to interpolate ¢(1),..., c(w2k_1) O(P\-Qa‘.)"\)

@ running time: Qfslegn).
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Fast Polynomial Multiplication

@ Now that we know how to evaluate and interpolate polynomials fast,
can use it to multiply faster!

e Given p, g of degree < 2k~ take w to be a 2X-PRU.

o c(x) = p(x)q(x) has degree < 2% so it is uniquely determined by the
evaluations c(1), ..., c(w?1)

e use FFT to evaluate p(1), p(w), ..., p(w® 1) and
q(1), g(w), ..., q(w? 1)

e Multiply c(w?) = p(w?) - g(w?)

@ use FFT to interpolate ¢(1),..., c(w2k_1)

@ running time: O(nlog n)

e Remark: FFT can be (and is) used in fast integer multiplication -

starting from the works of Strassen and Schonhage in 1971 up to the
recent work of Harvey and van der Hoeven in 2019.
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@ Conclusion



Conclusion

In today's lecture, we learned

@ Discrete Fourier Transform for evaluation and interpolation
@ Properties of roots of unity

@ Fast Fourier Transform
°

Multiplying polynomials in O(nlog n) operations
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