Lecture 4: Discrete Fourier Transform

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

January 20, 2021

Overview

Polynomial Evaluation & Interpolation

Basics for DFT

Fast Fourier Transform (FFT)

Conclusion

Acknowledgements

@ Polynomial Evaluation & Interpolation

Representing Polynomials

@ In previous classes saw two different ways of representing polynomials,
given an upper bound d on degree

Representing Polynomials

@ In previous classes saw two different ways of representing polynomials,
given an upper bound d on degree

J
© As a list of coefficients Pot P1X £ ¥ Ra b

p(x) < (po,p1,-- -, Pd)

=‘\'(Q:“i)

@ As evaluations at d + 1,points dc'\(.") i)
diat; oct o
(a07y0)7'-~7(ad7yd) =£
where y; := p(«;) \ 2
@ Proof of equivalence: ~—— g
. 4 PE
L g Oy -- o ?o P (oe.)
1 d(Olll - N‘J ?(_ .
Y} Lt v ‘l(| - :\
. . - 4 ('u‘\
T e b ¢

(LT 1T\ VS

Multiplying Polynomials via Interpolation

@ From previous lecture, saw how to multiply two polynomials via
interpolation
e Given p,q € R[x] of degree < d

Multiplying Polynomials via Interpolation

@ From previous lecture, saw how to multiply two polynomials via
interpolation
e Given p, g € R[x] of degree < d
@ Compute 2d + 1 evaluations of p, q (why 2d + 17)

PE>) < degres < 24

J
2d v evelue bisno
+e u.r\{cYud% du kotmine ct

Multiplying Polynomials via Interpolation

@ From previous lecture, saw how to multiply two polynomials via
interpolation
e Given p,q € R[x] of degree < d
@ Compute 2d + 1 evaluations of p, g (why 2d + 17)
@ Compute the products v; := p(a;) - g(a;)

Multiplying Polynomials via Interpolation

@ From previous lecture, saw how to multiply two polynomials via
interpolation
e Given p, g € R[x] of degree < d
© Compute 2d + 1 evaluations of p, g (why 2d + 17)
@ Compute the products v; := p(«;) - g(a;) *—
© Use Lagrange's interpolation polynomials

-T2]

i#

Li () = L
L () =© «{ MRS

Multiplying Polynomials via Interpolation

@ From previous lecture, saw how to multiply two polynomials via
interpolation
e Given p,q € R[x] of degree < d
@ Compute 2d + 1 evaluations of p, g (why 2d + 17)
@ Compute the products v; := p(a;) - g(a;)
© Use Lagrange's interpolation polynomials

L,-(X):H X — Qj

AT

@ From previous slide’s equivalence, we know

p(x) - q(x Z% i
PED: iﬁ"ﬂ = %0 E_S:Q
Yhay eraluak to Aes va.bwj— ot
24l ein

Multiplying Polynomials via Interpolation

@ From previous lecture, saw how to multiply two polynomials via
interpolation
e Given p,q € R[x] of degree < d
@ Compute 2d + 1 evaluations of p, g (why 2d + 17)
@ Compute the products v; := p(a;) - g(a;)
© Use Lagrange's interpolation polynomials

L,-(X):H X — Qj

AT

@ From previous slide’s equivalence, we know
2d
p(x) - q(x) = 3 7iLi(x)
i=0

@ We saw the analysis of this in Ostrowski's non-scalar model

Multiplying Polynomials via Interpolation

@ From previous lecture, saw how to multiply two polynomials via
interpolation
e Given p,q € R[x] of degree < d
@ Compute 2d + 1 evaluations of p, g (why 2d + 17)
@ Compute the products v; := p(a;) - g(a;)
© Use Lagrange's interpolation polynomials

L,-(X):H X — Qj

AT

@ From previous slide’s equivalence, we know
2d
p(x) - q(x) = 3 7iLi(x)
i=0

@ We saw the analysis of this in Ostrowski's non-scalar model

@ To get a fast algorithm in the scalar model (where we count all ring
operations) we will use Fast Fourier Transform

Fast Fourier Transform Idea

4{ we com evelunek Oty e@
d‘é d Ok“d ‘n K"P& ke \7% 0(
0‘”?:. ol ,@a/s-\' Hwm Com vnaleghy

N OCa®) oo
‘w ’ g ‘ bn nesvss (’l’%—

OCJ\W)\K F’T'_Tl uML*A“m- / /[: Zk“é’z:‘;,s d)

oulput

albe 2d 4| . YT
C?:’“;“al; _f"'«il--'(’\i cebiowo Ces.d o-‘;) > O(M&)
in 14 l Pq(’ N

— o>

@ Basics for DFT

Roots of Unity

o Fafield, neN

Roots of Unity

o Fafield, neN
o We say w € I is a primitive n" root of unity (n-PRU) if

QO uw=1
Q@ wk#1forl1<k<n

- L w xeer

Roots of Unity

o Fafield, neN
o We say w € I is a primitive n" root of unity (n-PRU) if

Quw' =1
Q@ wi#1forl1<k<n

o Examples:

. z—i' . . 2u
QFI(Candw_:e2“’/" = Cen —%) + (DN (

Roots of Unity

o Fafield, neN
o We say w € I is a primitive n" root of unity (n-PRU) if
QO uw=1
Q@ wk#1forl1<k<n
@ Examples:
Q@ F=C and w=e?mi/n
@ If pisaprime and F = Zj,, then F has a (p — 1)-PRU. How many such
roots does Z, have?

in 7Zp we knsw +aet c«f-l—’-‘ 4 Y aézp*
Y?Cz)_— L har exactly P+ (2o

v Zp P = (xzii—O(x.e:’iH)

p —_— —_—
o < Bt xoob hee pol pste
o2 = -L i e 7,
p-1 . K B h y ¥
of =1 - '(e.f)-PF-U = £ s oc noot

N @

More on Roots of Unity

Vandermonde Matrix

o Given elements ug, ..., uy

V(ug,...,ug) =

@H)x (dt\) maeinig

Vandermonde Matrix

@ Given elements wug, ..., uy
0 1 d
uO uo DY uO
ug u% . U:‘Lj
V(ug,...,ug) =
0,1 d
ud ud ... ud

@ From previous lecture, maps coefficients to evaluations:

w vy o ug\ (o p(uo)
up by g P1 p(u1)

ug uy - ug) \pd p(uq)

Vandermonde Matrix

@ Given elements wug, ..., uy
0 1 d
Ug U U
upuj uf
V(ug,...,ug) = :
1 d
Ug Ug Ug

@ From previous lecture, maps coefficients to evaluations:

g ug e ug\ [po p(uo)
ufp uf oeeouf | || p(o)
8 o ut) \po) \pluw)

@ For interpolation, we can choose our evaluation points. Choosing
roots of unity give rise to the FFT!

@ Fast Fourier Transform (FFT)

Vandermonde with Roots of Unity

@ Given d, Take w to be a (d + 1)-PRU, and let

1 1
1 Wt
V(w) = V(wo,w, ,wd) — (1 w?
Lew - wd
—~——— 1 wd
oJ..Q Sk

Il

Vandermonde with Roots of Unity "C _ll):(xd“d-:f_ txr)
=(%x-

e Given d, Take w to be a (d + 1)-PRU, and let .
w! oloe (d+1) - PRV W et
1 1 .- 1
1 wl wd
V(w) = V(W w,...,w?) = 1 w2 ... w2
_' :
\l(w) 1 wd wdz

e Lemma: V(w) V(w)=(d+1)-1/

(oY
=L WL

o W , 2 o
W = 7w w= 2 4 - o
ito)

=9 o-b
2 eniry L0 evinyg Cw
Ve A vw)

d i)
Vo = & w* - w2 2 o™'s O

Proof of lemma

L\.().A\\B ‘\' 3{ L_e_W\Wc.

,i.(wnre T RO Hron
\(’ng':D =e—-—/-@_“ >$. V,-,.(:,):m«

cq.JNk\("

=) En-\mys(al—\‘m C(mwwfc e \/MdnmA)

AR ecbu.‘v«,oyv\‘r 4o
e_\[a.ﬁﬂ\a.'\-l'q"\ Cw\c.\-n(x— Ver bet Mh-‘,m,t
oo % Uow ol men ok
YMa- §Nn(X

Discrete Fourier Transform (DFT)

o Given w a (d +1)-PRU, the DFT is given by DFT (w) : F9+1 — Fd+1
Po p(1)
p1 p(w)

DFT (w)

Zd)

pd p(w
. 10
\IC‘*’><T) - < \)
T4 P(w‘)

Discrete Fourier Transform (DFT)

o Given w a (d +1)-PRU, the DFT is given by DFT (w) : F9+1 — Fd+1

Po p(1)
DFT() | _ p(.w)
Pd p(w?)

e Fast Fourier Transform is a way of computing the DFT in O(nlog n)
operations!

Discrete Fourier Transform (DFT)

o Given w a (d +1)-PRU, the DFT is given by DFT (w) : F9+1 — Fd+1

Po p(1)
DFT() | _ p(.cv)
Pd p(w?)

e Fast Fourier Transform is a way of computing the DFT in O(nlog n)
operations!

DFT(w) computes polynomial evaluation

DFT(w™!) computes polynomial interpolation

Fast Fourier Transform

@ Assume that d = 2k
o Idea:
° P(X) = peven(Xz) +£' Podd(X2)

PO = po 4 o< 1 P TP X *pux
d‘r“iﬁvw (4) = P+ P2y + qz.ua;_
<d

= (Pud (g7 = P+ P34

Fast Fourier Transform

@ Assume that d = 2k
o Idea:

° p(X) :peven()+X podd d'.'s o
e Reduced problem of

evaluating p(x) at 1w, ..., w!

——
into e\ velseo

evaluating peven(x), Podd(X) (of degree d/2) at 1,w? w* w® ... w

N
del velws

2d

Fast Fourier Transform w d-PRV

d

— 2
o Assume that d = 2K G L S d—; - PRY
o Idea:
° P(X) = Peven(Xz) +x- podd(X2)
o Reduced problem of 2
evaluating p(x) at 1,w,...,w
_ even PINVT2
into 2
evaluating peven(X), Podd(x) (of degree d/2) at 1,w?, w* Wb, ... ,w2‘7")
e are we evaluating it at d points? ﬂc+ d
d/ = Jd _ L ‘ﬂ"b |
(b)) = s gecnths !
ole2 2 fthey ot
2
—)C(u d’-..“) = W = W (JJ'Q ac
.) \
‘ o4 o, -Petn'h .
L i Ry $then =

L Zo_ NS N
_)Cwé-\)= w C (W) fi‘fﬂi&.& Wy

Fast Fourier Transform

@ Assume that d = 2k

o ldea:
° P(X) = peven(Xz) +x- podd(X2)
e Reduced problem of

evaluating p(x) at 1,w, ... ,w

into

evaluating peven(X), Podd(X) (of degree d/2) at 1,w? w* w®, ..., w?d

o are we evaluating it at d points? 9 d/‘b Q-\A
e need to combine them back

Q[P peen(w?) + 9 poaa(w?)
X9 IR U -
Two more operations to get p(w') plus d operations to get 1,w, ..., w

d eveluchom { P _g_j_ eJdMa_l-\"‘“”"'] Pever
;: PRIV Y N TE 4ug) *P“’l’(

d

Fast Fourier Transform

@ Assume that d = 2k
o Idea:

° P(X) = Peven(Xz) +x- podd(X2)
e Reduced problem of

evaluating p(x) at 1,w, ... ,w
into
evaluating peven(X), Podd(X) (of degree d/2) at 1,w? w* w®, ..., w?d

e are we evaluating it at d points?
e need to combine them back

p(wt) = peven(wzt) + wh- podd(wzt)

(o ol

Two more operations to get p(w®) plus d operations to get 1,w, ..., w?

e Recurrence:
T(d):2T(d/2)+3ﬁ\/
T g I
evel plw') Pantol Aogaoun

Fast Fourier Transform

@ Assume that d = 2k
o ldea:

° P(X) = Peven(Xz) +x- podd(Xz)
e Reduced problem of

evaluating p(x) at 1,w, ... ,w
into
evaluating peven(X), Podd(X) (of degree d/2) at 1,w?, w* w®, ..., w?d

e are we evaluating it at d points?
e need to combine them back

p(wt) = peven(wzt) + w' - podd(w2t)

Two more operations to get p(w') plus d operations to get 1,w, ..., w

e Recurrence:
T(d)=2T(d/2)+3d

o Master’s theorem gives us O(nlog n)

Fast Polynomial Multiplication

@ Now that we know how to evaluate and interpolate polynomials fast,
can use it to multiply faster!

e Given p, g of degree < 2k~ take w to be a 2X-PRU.

—_—

Fast Polynomial Multiplication

@ Now that we know how to evaluate and interpolate polynomials fast,
can use it to multiply faster!

e Given p, g of degree < 2k~ take w to be a 2X-PRU.

o c¢(x) = p(x)q(x) has degree i&k so it is uniquely determined by the
evaluations c(1),. .., c(w? 1)

—_— ————
adl foshs of umily
evelumediow

Fast Polynomial Multiplication d - 2"“

@ Now that we know how to evaluate and interpolate polynomials fast,
can use it to multiply faster!

e Given p, g of degree < 2k~ take w to be a 2X-PRU.
o c(x) = p(x)q(x) has degree < 2% so it is uniquely determined by the
evaluations c(1), ..., c(w?1)

e use FFT to evaluatekp(l),p(w), -, p(w?1) and
q(1).q(w), ..., q(w>)

O(d fegd) goreti

Fast Polynomial Multiplication

@ Now that we know how to evaluate and interpolate polynomials fast,
can use it to multiply faster!

e Given p, g of degree < 2k~ take w to be a 2X-PRU.

o c(x) = p(x)q(x) has degree < 2% so it is uniquely determined by the
evaluations c(1), ..., c(w?1)

e use FFT to evaluate p(1), p(w), ..., p(w® 1) and
q(1), g(w), ..., q(w? 1)

e Multiply c(w?) = p(w?) - g(w?)

Fast Polynomial Multiplication

@ Now that we know how to evaluate and interpolate polynomials fast,
can use it to multiply faster!

e Given p, g of degree < 2k~ take w to be a 2X-PRU.

o c(x) = p(x)q(x) has degree < 2% so it is uniquely determined by the
evaluations c(1), ..., c(w?1)

e use FFT to evaluate p(1), p(w), ..., p(w® 1) and
q(1), g(w), ..., q(w? 1)

e Multiply c(w?) = p(w?) - g(w?)

@ use FFT to interpolate ¢(1),..., c(w2k_1)

Fast Polynomial Multiplication

@ Now that we know how to evaluate and interpolate polynomials fast,
can use it to multiply faster!

e Given p, g of degree < 2k~ take w to be a 2X-PRU.

o c(x) = p(x)q(x) has degree < 2% so it is uniquely determined by the
evaluations c(1), ..., c(w?1)

e use FFT to evaluate p(1), p(w), ..., p(w® 1) and OCC‘ %A)
q(1), g(w), ..., q(w? 1)

e Multiply c(w?) = p(w?) - g(w?) 9(._6 3

@ use FFT to interpolate ¢(1),..., c(w2k_1) O(P\-Qa‘.)"\)

@ running time: Qfslegn).

O(d Je3d)

Fast Polynomial Multiplication

@ Now that we know how to evaluate and interpolate polynomials fast,
can use it to multiply faster!

e Given p, g of degree < 2k~ take w to be a 2X-PRU.

o c(x) = p(x)q(x) has degree < 2% so it is uniquely determined by the
evaluations c(1), ..., c(w?1)

e use FFT to evaluate p(1), p(w), ..., p(w® 1) and
q(1), g(w), ..., q(w? 1)

e Multiply c(w?) = p(w?) - g(w?)

@ use FFT to interpolate ¢(1),..., c(w2k_1)

@ running time: O(nlog n)

e Remark: FFT can be (and is) used in fast integer multiplication -

starting from the works of Strassen and Schonhage in 1971 up to the
recent work of Harvey and van der Hoeven in 2019.

Peod mne e Amnes nsten

@ Conclusion

Conclusion

In today's lecture, we learned

@ Discrete Fourier Transform for evaluation and interpolation
@ Properties of roots of unity

@ Fast Fourier Transform
°

Multiplying polynomials in O(nlog n) operations

Acknowledgement

o Based largely on Arne's notes

https://cs.uwaterloo.ca/~rbolivei/courses/
2021-winter-cs487/lec4-ref .pdf

T() = o T(F)+ £

Manier' A Hh estenne

P A qeven g

U QA boum At N yumniwg e

A Tn)

-f(m)—'3“
® =2
P2

T(n) = GQT(I-}.D o n
- 2(27@3)« 33) « 7
_—;;T@f) + 2-(Gn)
= —,-(1’; +
k.
o D)+ k(20)

n-T(L
@Cﬂiggz; o

