
Lecture 25: Conclusion

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

April 14, 2021

1 / 64



Overview

Administrivia

Foundations of Symbolic Computation

Computational Linear Algebra

Modern Computational Algebra

Computational Invariant Theory

Topics I wish I had time to cover

2 / 64



Rate this course!

Please log in to

https://evaluate.uwaterloo.ca/

Today is the last day to provide us (and the school) with your evaluation
and feedback on the course!

This would really help me figuring out what worked and what didn’t
for the course

And let the school know if I was a good boy this term!

Teaching this course is also a learning experience for me :)

3 / 64



Administrivia

Foundations of Symbolic Computation

Computational Linear Algebra

Modern Computational Algebra

Computational Invariant Theory

Topics I wish I had time to cover

4 / 64



Models of Computation

In addition to the standard bit representation of integers, we learned
different models to represent algebraic objects:

1 Dense representation
2 Sparse representation
3 Algebraic circuits (straight-line programs)
4 Black-Box matrix representations

Complexity of certain problems become vastly different depending on
representation!
Some open problems:

1 factoring sparse (univariate or multivariate) polynomials fast
2 factoring multivariate polynomials computed by algebraic circuits

(without restriction on degree)
3 testing whether two objects from the same model compute the same

object

Given two straight-line programs, do they compute the same
polynomial?

4 more generally, the more succinct the representation, the harder it
should be to efficiently solve problems

5 / 64



Models of Computation

In addition to the standard bit representation of integers, we learned
different models to represent algebraic objects:

1 Dense representation

2 Sparse representation
3 Algebraic circuits (straight-line programs)
4 Black-Box matrix representations

Complexity of certain problems become vastly different depending on
representation!
Some open problems:

1 factoring sparse (univariate or multivariate) polynomials fast
2 factoring multivariate polynomials computed by algebraic circuits

(without restriction on degree)
3 testing whether two objects from the same model compute the same

object

Given two straight-line programs, do they compute the same
polynomial?

4 more generally, the more succinct the representation, the harder it
should be to efficiently solve problems

6 / 64

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Models of Computation

In addition to the standard bit representation of integers, we learned
different models to represent algebraic objects:

1 Dense representation
2 Sparse representation

3 Algebraic circuits (straight-line programs)
4 Black-Box matrix representations

Complexity of certain problems become vastly different depending on
representation!
Some open problems:

1 factoring sparse (univariate or multivariate) polynomials fast
2 factoring multivariate polynomials computed by algebraic circuits

(without restriction on degree)
3 testing whether two objects from the same model compute the same

object

Given two straight-line programs, do they compute the same
polynomial?

4 more generally, the more succinct the representation, the harder it
should be to efficiently solve problems

7 / 64

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Models of Computation

In addition to the standard bit representation of integers, we learned
different models to represent algebraic objects:

1 Dense representation
2 Sparse representation
3 Algebraic circuits (straight-line programs)

4 Black-Box matrix representations

Complexity of certain problems become vastly different depending on
representation!
Some open problems:

1 factoring sparse (univariate or multivariate) polynomials fast
2 factoring multivariate polynomials computed by algebraic circuits

(without restriction on degree)
3 testing whether two objects from the same model compute the same

object

Given two straight-line programs, do they compute the same
polynomial?

4 more generally, the more succinct the representation, the harder it
should be to efficiently solve problems

8 / 64

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Models of Computation

In addition to the standard bit representation of integers, we learned
different models to represent algebraic objects:

1 Dense representation
2 Sparse representation
3 Algebraic circuits (straight-line programs)
4 Black-Box matrix representations

Complexity of certain problems become vastly different depending on
representation!
Some open problems:

1 factoring sparse (univariate or multivariate) polynomials fast
2 factoring multivariate polynomials computed by algebraic circuits

(without restriction on degree)
3 testing whether two objects from the same model compute the same

object

Given two straight-line programs, do they compute the same
polynomial?

4 more generally, the more succinct the representation, the harder it
should be to efficiently solve problems

9 / 64

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Models of Computation

In addition to the standard bit representation of integers, we learned
different models to represent algebraic objects:

1 Dense representation
2 Sparse representation
3 Algebraic circuits (straight-line programs)
4 Black-Box matrix representations

Complexity of certain problems become vastly different depending on
representation!

Some open problems:
1 factoring sparse (univariate or multivariate) polynomials fast
2 factoring multivariate polynomials computed by algebraic circuits

(without restriction on degree)
3 testing whether two objects from the same model compute the same

object

Given two straight-line programs, do they compute the same
polynomial?

4 more generally, the more succinct the representation, the harder it
should be to efficiently solve problems

10 / 64



Models of Computation

In addition to the standard bit representation of integers, we learned
different models to represent algebraic objects:

1 Dense representation
2 Sparse representation
3 Algebraic circuits (straight-line programs)
4 Black-Box matrix representations

Complexity of certain problems become vastly different depending on
representation!
Some open problems:

1 factoring sparse (univariate or multivariate) polynomials fast
2 factoring multivariate polynomials computed by algebraic circuits

(without restriction on degree)
3 testing whether two objects from the same model compute the same

object

Given two straight-line programs, do they compute the same
polynomial?

4 more generally, the more succinct the representation, the harder it
should be to efficiently solve problems

11 / 64

Rafael Oliveira




Fundamental Operations - Multiplication

Learned how to multiply integers faster

Learned how to multiply polynomials much faster!
1 Highly non-trivial algorithms!
2 Karatsuba: reduce number of multiplications needed!

3 Fast multiplication via interpolation and polynomial evaluation

Quite far from the intuitive algorithm!
4 DFT for the rescue!

Polynomial multiplication quite often used in practice!

Even more ubiquitous is the Discrete Fourier Transform!

Used in audio and video compression [von zur Gathen, Gerhard 2013,
Chapter 13] and references
many more applications!

12 / 64



Fundamental Operations - Multiplication

Learned how to multiply integers faster

Learned how to multiply polynomials much faster!
1 Highly non-trivial algorithms!
2 Karatsuba: reduce number of multiplications needed!

3 Fast multiplication via interpolation and polynomial evaluation

Quite far from the intuitive algorithm!
4 DFT for the rescue!

Polynomial multiplication quite often used in practice!

Even more ubiquitous is the Discrete Fourier Transform!

Used in audio and video compression [von zur Gathen, Gerhard 2013,
Chapter 13] and references
many more applications!

13 / 64



Fundamental Operations - Multiplication

Learned how to multiply integers faster

Learned how to multiply polynomials much faster!
1 Highly non-trivial algorithms!
2 Karatsuba: reduce number of multiplications needed!
3 Fast multiplication via interpolation and polynomial evaluation

Quite far from the intuitive algorithm!
4 DFT for the rescue!

Polynomial multiplication quite often used in practice!

Even more ubiquitous is the Discrete Fourier Transform!

Used in audio and video compression [von zur Gathen, Gerhard 2013,
Chapter 13] and references
many more applications!

14 / 64



Fundamental Operations - Multiplication

Learned how to multiply integers faster

Learned how to multiply polynomials much faster!
1 Highly non-trivial algorithms!
2 Karatsuba: reduce number of multiplications needed!
3 Fast multiplication via interpolation and polynomial evaluation

Quite far from the intuitive algorithm!
4 DFT for the rescue!

Polynomial multiplication quite often used in practice!

Even more ubiquitous is the Discrete Fourier Transform!

Used in audio and video compression [von zur Gathen, Gerhard 2013,
Chapter 13] and references
many more applications!

15 / 64



Fundamental Operations - Multiplication

Learned how to multiply integers faster

Learned how to multiply polynomials much faster!
1 Highly non-trivial algorithms!
2 Karatsuba: reduce number of multiplications needed!
3 Fast multiplication via interpolation and polynomial evaluation

Quite far from the intuitive algorithm!
4 DFT for the rescue!

Polynomial multiplication quite often used in practice!

Even more ubiquitous is the Discrete Fourier Transform!

Used in audio and video compression [von zur Gathen, Gerhard 2013,
Chapter 13] and references
many more applications!

16 / 64



Fundamental Operations - Euclidean Algorithm

Learned how to compute the GCD between integers and two
polynomials

Extended Euclidean Algorithm fundamental for many other problems
1 Compute inverses in modular computations
2 Solving Pade Approximation problem in power series approximations

Much simpler to compute linear recurrence sequences!

17 / 64

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Fundamental Operations - Euclidean Algorithm

Learned how to compute the GCD between integers and two
polynomials

Extended Euclidean Algorithm fundamental for many other problems
1 Compute inverses in modular computations
2 Solving Pade Approximation problem in power series approximations

Much simpler to compute linear recurrence sequences!

18 / 64

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Modular Computation and Chinese Remandering Theorem

Often times computations over Z can lead to large intermediate
coefficients

Chinese Remaindering Theorem allows us to
1 “Parallelize” the problem: compute many instances of the problem

modulo small primes

Can compute all these instances in parallel!
2 Control intermediate coefficients

It can also be used to give fastest known algorithm for univariate
polynomial factoring over finite fields! Kedlaya-Umans 2011

19 / 64



Modular Computation and Chinese Remandering Theorem

Often times computations over Z can lead to large intermediate
coefficients

Chinese Remaindering Theorem allows us to
1 “Parallelize” the problem: compute many instances of the problem

modulo small primes

Can compute all these instances in parallel!
2 Control intermediate coefficients

It can also be used to give fastest known algorithm for univariate
polynomial factoring over finite fields! Kedlaya-Umans 2011

20 / 64

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Modular Computation and Chinese Remandering Theorem

Often times computations over Z can lead to large intermediate
coefficients

Chinese Remaindering Theorem allows us to
1 “Parallelize” the problem: compute many instances of the problem

modulo small primes

Can compute all these instances in parallel!
2 Control intermediate coefficients

It can also be used to give fastest known algorithm for univariate
polynomial factoring over finite fields! Kedlaya-Umans 2011

21 / 64



Resultants and Polynomial GCD

GCD between two polynomials can be characterized by algebraic
invariant: Resultant

Use resultant to compute a modular GCD algorithm for two
polynomials over Z[x ]

Allowed us to reduce the problem above to the Euclidean GCD
algorithm

Euclidean algorithm only works for Euclidean Domains, and Z[x ] is
not an Euclidean domain

Resultants also have nice theoretical properties
1 Identifies the bad primes in modular algorithms
2 Used as subroutine in factoring algorithms - when double roots appear
3 Also used to prove upper bound in complexity of ideal membership

problem!
4 Many more applications!

22 / 64



Resultants and Polynomial GCD

GCD between two polynomials can be characterized by algebraic
invariant: Resultant

Use resultant to compute a modular GCD algorithm for two
polynomials over Z[x ]

Allowed us to reduce the problem above to the Euclidean GCD
algorithm

Euclidean algorithm only works for Euclidean Domains, and Z[x ] is
not an Euclidean domain

Resultants also have nice theoretical properties
1 Identifies the bad primes in modular algorithms
2 Used as subroutine in factoring algorithms - when double roots appear
3 Also used to prove upper bound in complexity of ideal membership

problem!
4 Many more applications!

23 / 64



Resultants and Polynomial GCD

GCD between two polynomials can be characterized by algebraic
invariant: Resultant

Use resultant to compute a modular GCD algorithm for two
polynomials over Z[x ]

Allowed us to reduce the problem above to the Euclidean GCD
algorithm

Euclidean algorithm only works for Euclidean Domains, and Z[x ] is
not an Euclidean domain

Resultants also have nice theoretical properties
1 Identifies the bad primes in modular algorithms
2 Used as subroutine in factoring algorithms - when double roots appear
3 Also used to prove upper bound in complexity of ideal membership

problem!
4 Many more applications!

24 / 64

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Resultants and Polynomial GCD

GCD between two polynomials can be characterized by algebraic
invariant: Resultant

Use resultant to compute a modular GCD algorithm for two
polynomials over Z[x ]

Allowed us to reduce the problem above to the Euclidean GCD
algorithm

Euclidean algorithm only works for Euclidean Domains, and Z[x ] is
not an Euclidean domain

Resultants also have nice theoretical properties
1 Identifies the bad primes in modular algorithms
2 Used as subroutine in factoring algorithms - when double roots appear
3 Also used to prove upper bound in complexity of ideal membership

problem!
4 Many more applications!

25 / 64



Polynomial Factoring

Univariate polynomials over Finite Fields
Cantor-Zassenhaus algorithm
Berlekamp-Rabin algorithm

Widely used in coding theory!

Berlekamp’s decoding algorithm of Reed-Solomon Codes!

Univariate polynomials over Integers
Lenstra-Lenstra-Lovasz1 shortest vector in a lattice algorithm
Hensel lifting
Bounds on coefficients of factors

Lattice algorithm can be used to break some cryptosystems, and
other applications in number theory!

Factoring bivariate polynomials
Reduce to univariate factorization
Use Hensel lifting to recover multivariate factorization

Applications in list decoding of Reed-Solomon codes!

1Lovasz won the Abel prize this year - the Nobel prize for mathematics. In their
acknowledgments, they mentioned this algorithm as one of his (many) remarkable works!

26 / 64



Polynomial Factoring

Univariate polynomials over Finite Fields
Cantor-Zassenhaus algorithm
Berlekamp-Rabin algorithm

Widely used in coding theory!

Berlekamp’s decoding algorithm of Reed-Solomon Codes!

Univariate polynomials over Integers
Lenstra-Lenstra-Lovasz1 shortest vector in a lattice algorithm
Hensel lifting
Bounds on coefficients of factors

Lattice algorithm can be used to break some cryptosystems, and
other applications in number theory!

Factoring bivariate polynomials
Reduce to univariate factorization
Use Hensel lifting to recover multivariate factorization

Applications in list decoding of Reed-Solomon codes!

1Lovasz won the Abel prize this year - the Nobel prize for mathematics. In their
acknowledgments, they mentioned this algorithm as one of his (many) remarkable works!

27 / 64



Polynomial Factoring

Univariate polynomials over Finite Fields
Cantor-Zassenhaus algorithm
Berlekamp-Rabin algorithm

Widely used in coding theory!

Berlekamp’s decoding algorithm of Reed-Solomon Codes!

Univariate polynomials over Integers
Lenstra-Lenstra-Lovasz1 shortest vector in a lattice algorithm
Hensel lifting
Bounds on coefficients of factors

Lattice algorithm can be used to break some cryptosystems, and
other applications in number theory!

Factoring bivariate polynomials
Reduce to univariate factorization
Use Hensel lifting to recover multivariate factorization

Applications in list decoding of Reed-Solomon codes!

1Lovasz won the Abel prize this year - the Nobel prize for mathematics. In their
acknowledgments, they mentioned this algorithm as one of his (many) remarkable works!

28 / 64



Polynomial Factoring

Univariate polynomials over Finite Fields
Cantor-Zassenhaus algorithm
Berlekamp-Rabin algorithm

Widely used in coding theory!

Berlekamp’s decoding algorithm of Reed-Solomon Codes!

Univariate polynomials over Integers
Lenstra-Lenstra-Lovasz1 shortest vector in a lattice algorithm
Hensel lifting
Bounds on coefficients of factors

Lattice algorithm can be used to break some cryptosystems, and
other applications in number theory!

Factoring bivariate polynomials
Reduce to univariate factorization
Use Hensel lifting to recover multivariate factorization

Applications in list decoding of Reed-Solomon codes!

1Lovasz won the Abel prize this year - the Nobel prize for mathematics. In their
acknowledgments, they mentioned this algorithm as one of his (many) remarkable works!

29 / 64



Polynomial Factoring

Univariate polynomials over Finite Fields
Cantor-Zassenhaus algorithm
Berlekamp-Rabin algorithm

Widely used in coding theory!

Berlekamp’s decoding algorithm of Reed-Solomon Codes!

Univariate polynomials over Integers
Lenstra-Lenstra-Lovasz1 shortest vector in a lattice algorithm
Hensel lifting
Bounds on coefficients of factors

Lattice algorithm can be used to break some cryptosystems, and
other applications in number theory!

Factoring bivariate polynomials
Reduce to univariate factorization
Use Hensel lifting to recover multivariate factorization

Applications in list decoding of Reed-Solomon codes!

1Lovasz won the Abel prize this year - the Nobel prize for mathematics. In their
acknowledgments, they mentioned this algorithm as one of his (many) remarkable works!

30 / 64



Polynomial Factoring

Univariate polynomials over Finite Fields
Cantor-Zassenhaus algorithm
Berlekamp-Rabin algorithm

Widely used in coding theory!

Berlekamp’s decoding algorithm of Reed-Solomon Codes!

Univariate polynomials over Integers
Lenstra-Lenstra-Lovasz1 shortest vector in a lattice algorithm
Hensel lifting
Bounds on coefficients of factors

Lattice algorithm can be used to break some cryptosystems, and
other applications in number theory!

Factoring bivariate polynomials
Reduce to univariate factorization
Use Hensel lifting to recover multivariate factorization

Applications in list decoding of Reed-Solomon codes!
1Lovasz won the Abel prize this year - the Nobel prize for mathematics. In their

acknowledgments, they mentioned this algorithm as one of his (many) remarkable works!
31 / 64



Administrivia

Foundations of Symbolic Computation

Computational Linear Algebra

Modern Computational Algebra

Computational Invariant Theory

Topics I wish I had time to cover

32 / 64



Matrix Multiplication

Arguably the most used operation in practice

Strassen’s algorithm for faster than naive matrix multiplication

Like Karatsuba, reduce number of multiplications (as addition is
cheaper)

Also saw that algorithmically matrix multiplication is a fundamental
problem in linear algebra

Exponent of matrix multiplication ubiquitous in computational linear
algebra!

One of the major open problems in computer science!

Deep connections between matrix multiplication and ranks of tensors

33 / 64



Matrix Multiplication

Arguably the most used operation in practice

Strassen’s algorithm for faster than naive matrix multiplication

Like Karatsuba, reduce number of multiplications (as addition is
cheaper)

Also saw that algorithmically matrix multiplication is a fundamental
problem in linear algebra

Exponent of matrix multiplication ubiquitous in computational linear
algebra!

One of the major open problems in computer science!

Deep connections between matrix multiplication and ranks of tensors

34 / 64



Matrix Multiplication

Arguably the most used operation in practice

Strassen’s algorithm for faster than naive matrix multiplication

Like Karatsuba, reduce number of multiplications (as addition is
cheaper)

Also saw that algorithmically matrix multiplication is a fundamental
problem in linear algebra

Exponent of matrix multiplication ubiquitous in computational linear
algebra!

One of the major open problems in computer science!

Deep connections between matrix multiplication and ranks of tensors

35 / 64



Matrix Multiplication

Arguably the most used operation in practice

Strassen’s algorithm for faster than naive matrix multiplication

Like Karatsuba, reduce number of multiplications (as addition is
cheaper)

Also saw that algorithmically matrix multiplication is a fundamental
problem in linear algebra

Exponent of matrix multiplication ubiquitous in computational linear
algebra!

One of the major open problems in computer science!

Deep connections between matrix multiplication and ranks of tensors

36 / 64



Matrix Inversion & Determinant

Matrix inversion and determinant often used to solve linear systems

Both problems have same complexity as matrix multiplication!

To compute the determinant quickly, had to learn how to compute
ALL partial derivatives of a polynomial with same complexity as
computing the polynomial itself!

Known as backpropagation in Machine Learning.

Good thing about the recurrence we found is that parallel algorithms
for matrix multiplication yield parallel algorithms for matrix inversion
and determinant!

37 / 64



Matrix Inversion & Determinant

Matrix inversion and determinant often used to solve linear systems

Both problems have same complexity as matrix multiplication!

To compute the determinant quickly, had to learn how to compute
ALL partial derivatives of a polynomial with same complexity as
computing the polynomial itself!

Known as backpropagation in Machine Learning.

Good thing about the recurrence we found is that parallel algorithms
for matrix multiplication yield parallel algorithms for matrix inversion
and determinant!

38 / 64



Matrix Inversion & Determinant

Matrix inversion and determinant often used to solve linear systems

Both problems have same complexity as matrix multiplication!

To compute the determinant quickly, had to learn how to compute
ALL partial derivatives of a polynomial with same complexity as
computing the polynomial itself!

Known as backpropagation in Machine Learning.

Good thing about the recurrence we found is that parallel algorithms
for matrix multiplication yield parallel algorithms for matrix inversion
and determinant!

39 / 64



Matrix Inversion & Determinant

Matrix inversion and determinant often used to solve linear systems

Both problems have same complexity as matrix multiplication!

To compute the determinant quickly, had to learn how to compute
ALL partial derivatives of a polynomial with same complexity as
computing the polynomial itself!

Known as backpropagation in Machine Learning.

Good thing about the recurrence we found is that parallel algorithms
for matrix multiplication yield parallel algorithms for matrix inversion
and determinant!

40 / 64



Black-Box Linear Algebra

An ubiquitous problem in scientific computing is to solve system of
linear equations Ay = b

1 linear programming
2 optimization
3 polynomial multiplication
4 factoring
5 polynomial interpolation (DFT)
6 computing GCD of polynomials (Resultants)
7 many more

Often times, the input matrix A has very special structure, can exploit
this structure to obtain faster algorithms

Often times, given a vector c, we can evaluate Ac much faster than
the naive O(n2) algorithm. Can use it to get faster algorithms for
linear system solving.

We have already done that many times!

41 / 64



Black-Box Linear Algebra

An ubiquitous problem in scientific computing is to solve system of
linear equations Ay = b

1 linear programming
2 optimization
3 polynomial multiplication
4 factoring
5 polynomial interpolation (DFT)
6 computing GCD of polynomials (Resultants)
7 many more

Often times, the input matrix A has very special structure, can exploit
this structure to obtain faster algorithms

Often times, given a vector c, we can evaluate Ac much faster than
the naive O(n2) algorithm. Can use it to get faster algorithms for
linear system solving.

We have already done that many times!

42 / 64



Black-Box Linear Algebra

An ubiquitous problem in scientific computing is to solve system of
linear equations Ay = b

1 linear programming
2 optimization
3 polynomial multiplication
4 factoring
5 polynomial interpolation (DFT)
6 computing GCD of polynomials (Resultants)
7 many more

Often times, the input matrix A has very special structure, can exploit
this structure to obtain faster algorithms

Often times, given a vector c, we can evaluate Ac much faster than
the naive O(n2) algorithm. Can use it to get faster algorithms for
linear system solving.

We have already done that many times!

43 / 64



Black-Box Linear Algebra

An ubiquitous problem in scientific computing is to solve system of
linear equations Ay = b

1 linear programming
2 optimization
3 polynomial multiplication
4 factoring
5 polynomial interpolation (DFT)
6 computing GCD of polynomials (Resultants)
7 many more

Often times, the input matrix A has very special structure, can exploit
this structure to obtain faster algorithms

Often times, given a vector c, we can evaluate Ac much faster than
the naive O(n2) algorithm. Can use it to get faster algorithms for
linear system solving.

We have already done that many times!

44 / 64

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Cost of Evaluation

Often times, given a vector b, we can evaluate Ab much faster than
the naive O(n2) algorithm. Can use it to get faster algorithms

Let c(A) be the cost of multiplying A by any vector b, and M(n) the
cost of multiplying two degree n polynomials

Class of matrices c(A)

general 2n2 − 2
Sylvester Matrix O(M(n))
DFT O(n log n)
Vandermonde matrix O(M(n) log n)
Berlekamp matrix over Fq O(M(n) log q)
Sparse matrix with s non-zero entries 2s
Toeplitz matrix O(M(n))

And these matrices appear quite often in practical applications!

In lecture 22 we devised much faster algorithms for inverting matrices
with low c(A) in black-box model

45 / 64



Cost of Evaluation

Often times, given a vector b, we can evaluate Ab much faster than
the naive O(n2) algorithm. Can use it to get faster algorithms

Let c(A) be the cost of multiplying A by any vector b, and M(n) the
cost of multiplying two degree n polynomials

Class of matrices c(A)

general 2n2 − 2
Sylvester Matrix O(M(n))
DFT O(n log n)
Vandermonde matrix O(M(n) log n)
Berlekamp matrix over Fq O(M(n) log q)
Sparse matrix with s non-zero entries 2s
Toeplitz matrix O(M(n))

And these matrices appear quite often in practical applications!

In lecture 22 we devised much faster algorithms for inverting matrices
with low c(A) in black-box model

46 / 64

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Cost of Evaluation

Often times, given a vector b, we can evaluate Ab much faster than
the naive O(n2) algorithm. Can use it to get faster algorithms

Let c(A) be the cost of multiplying A by any vector b, and M(n) the
cost of multiplying two degree n polynomials

Class of matrices c(A)

general 2n2 − 2
Sylvester Matrix O(M(n))
DFT O(n log n)
Vandermonde matrix O(M(n) log n)
Berlekamp matrix over Fq O(M(n) log q)
Sparse matrix with s non-zero entries 2s
Toeplitz matrix O(M(n))

And these matrices appear quite often in practical applications!

In lecture 22 we devised much faster algorithms for inverting matrices
with low c(A) in black-box model

47 / 64



Cost of Evaluation

Often times, given a vector b, we can evaluate Ab much faster than
the naive O(n2) algorithm. Can use it to get faster algorithms

Let c(A) be the cost of multiplying A by any vector b, and M(n) the
cost of multiplying two degree n polynomials

Class of matrices c(A)

general 2n2 − 2
Sylvester Matrix O(M(n))
DFT O(n log n)
Vandermonde matrix O(M(n) log n)
Berlekamp matrix over Fq O(M(n) log q)
Sparse matrix with s non-zero entries 2s
Toeplitz matrix O(M(n))

And these matrices appear quite often in practical applications!

In lecture 22 we devised much faster algorithms for inverting matrices
with low c(A) in black-box model

48 / 64



Administrivia

Foundations of Symbolic Computation

Computational Linear Algebra

Modern Computational Algebra

Computational Invariant Theory

Topics I wish I had time to cover

49 / 64



Connections Between Algebra & Geometry

Ideals in C[x1, . . . , xn] are finitely generated

Hilbert’s basis theorem.

(radical) Ideals in polynomial rings correspond to algebraic sets in
finite-dimensional vector spaces

Hilbert’s Nullstellensatz.

Central problems in modern commutative algebra:
1 Ideal membership problem Gröbner bases
2 Solving System of Polynomial equations Elimination Theory
3 Extending partial solutions Extension Theorem
4 Implicitization Problem

50 / 64



Connections Between Algebra & Geometry

Ideals in C[x1, . . . , xn] are finitely generated

Hilbert’s basis theorem.

(radical) Ideals in polynomial rings correspond to algebraic sets in
finite-dimensional vector spaces

Hilbert’s Nullstellensatz.

Central problems in modern commutative algebra:
1 Ideal membership problem Gröbner bases
2 Solving System of Polynomial equations Elimination Theory
3 Extending partial solutions Extension Theorem
4 Implicitization Problem

51 / 64



Connections Between Algebra & Geometry

Ideals in C[x1, . . . , xn] are finitely generated

Hilbert’s basis theorem.

(radical) Ideals in polynomial rings correspond to algebraic sets in
finite-dimensional vector spaces

Hilbert’s Nullstellensatz.

Central problems in modern commutative algebra:
1 Ideal membership problem Gröbner bases
2 Solving System of Polynomial equations Elimination Theory
3 Extending partial solutions Extension Theorem
4 Implicitization Problem

52 / 64



Applications of Symbolic Commutative Algebra

Applications in mathematics
1 Compute dimension of algebraic sets
2 compute Hilbert Polynomials important numeric invariants
3 Betti numbers
4 Resolution of singularities
5 Many more!

Robotics (robot motion and gemetric descriptions)

Automatic Geometric Theorem Proving

Methods to solve integer programming use Gröbner bases

Bayesian Networks conditional dependencies define algebraic sets!

Topological data analysis

many more!

53 / 64



Applications of Symbolic Commutative Algebra

Applications in mathematics
1 Compute dimension of algebraic sets
2 compute Hilbert Polynomials important numeric invariants
3 Betti numbers
4 Resolution of singularities
5 Many more!

Robotics (robot motion and gemetric descriptions)

Automatic Geometric Theorem Proving

Methods to solve integer programming use Gröbner bases

Bayesian Networks conditional dependencies define algebraic sets!

Topological data analysis

many more!

54 / 64



Applications of Symbolic Commutative Algebra

Applications in mathematics
1 Compute dimension of algebraic sets
2 compute Hilbert Polynomials important numeric invariants
3 Betti numbers
4 Resolution of singularities
5 Many more!

Robotics (robot motion and gemetric descriptions)

Automatic Geometric Theorem Proving

Methods to solve integer programming use Gröbner bases

Bayesian Networks conditional dependencies define algebraic sets!

Topological data analysis

many more!

55 / 64



Administrivia

Foundations of Symbolic Computation

Computational Linear Algebra

Modern Computational Algebra

Computational Invariant Theory

Topics I wish I had time to cover

56 / 64



Finite Generation of Rings of Invariants

We learned that Hilbert himself when he proved the Nullstellensatz
and the basis theorem was after proving that

Ring of invariant polynomials are finitely generated

Invariants capture many interesting properties of our algebraic and
geometric objects

1 Whether a matrix is singular or not
2 bipartite matching
3 nilpotent matrices
4 graph isomorphism
5 word problem over free skew fields
6 linear matroid intersection
7 computation of optimal transport distances
8 contingency tables
9 Maximum Likelihood Estimation
10 Symmetries in chemistry molecules
11 many more

57 / 64



Finite Generation of Rings of Invariants

We learned that Hilbert himself when he proved the Nullstellensatz
and the basis theorem was after proving that

Ring of invariant polynomials are finitely generated

Invariants capture many interesting properties of our algebraic and
geometric objects

1 Whether a matrix is singular or not
2 bipartite matching
3 nilpotent matrices
4 graph isomorphism
5 word problem over free skew fields
6 linear matroid intersection
7 computation of optimal transport distances
8 contingency tables
9 Maximum Likelihood Estimation
10 Symmetries in chemistry molecules
11 many more

58 / 64



Computational Aspects of Invariant Rings

Algorithm (via Reynolds operator) to compute invariant polynomials
of a certain degree

Reynolds + Hilbert’s argument gave us finite generation of ring of
invariants

One major open question in computational invariant theory is to
efficiently compute a generating set of invariants

Depending on how efficient we can compute the invariants, it can
have striking applications in computer science and other fields!

59 / 64



Computational Aspects of Invariant Rings

Algorithm (via Reynolds operator) to compute invariant polynomials
of a certain degree

Reynolds + Hilbert’s argument gave us finite generation of ring of
invariants

One major open question in computational invariant theory is to
efficiently compute a generating set of invariants

Depending on how efficient we can compute the invariants, it can
have striking applications in computer science and other fields!

60 / 64



Computational Aspects of Invariant Rings

Algorithm (via Reynolds operator) to compute invariant polynomials
of a certain degree

Reynolds + Hilbert’s argument gave us finite generation of ring of
invariants

One major open question in computational invariant theory is to
efficiently compute a generating set of invariants

Depending on how efficient we can compute the invariants, it can
have striking applications in computer science and other fields!

61 / 64



Topics I wish I had time to cover

Solving Differential Equations

Symbolic Integration

Semialgebraic Systems of Equations

Computing Radical of Ideal

Checking Algebraic Independence

Computing Primary Decompositions of Ideals

Complexity theory for algebraic computation

Many more amazing topics in symbolic computation to explore!

62 / 64

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Thank you for taking the class!

63 / 64



References I

von zur Gathen, J. and Gerhard, J. 2013.

Modern Computer Algebra

Cambridge University Press

64 / 64


	Administrivia
	Foundations of Symbolic Computation
	Computational Linear Algebra
	Modern Computational Algebra
	Computational Invariant Theory
	Topics I wish I had time to cover

