Lecture 23: Elimination Ideals \& Resultants

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

April 7, 2021

Overview

- Solving Polynomial Equations
- Elimination Theorem
- Extension Theorem
- Resultants
- Conclusion
- Acknowledgements

Solving Polynomial Equations

- We learned how to generalize division algorithm and Gaussian Elimination

Solving Polynomial Equations

- We learned how to generalize division algorithm and Gaussian Elimination
- Gröbner bases were crucial to make our generalized division algorithm work

Solving Polynomial Equations

- We learned how to generalize division algorithm and Gaussian Elimination
- Gröbner bases were crucial to make our generalized division algorithm work
- How can we use Gröbner bases to solve polynomial equations? After all, Gaussian Elimination helps us solve linear systems of equations

Solving Polynomial Equations

- We learned how to generalize division algorithm and Gaussian Elimination
- Gröbner bases were crucial to make our generalized division algorithm work
- How can we use Gröbner bases to solve polynomial equations? After all, Gaussian Elimination helps us solve linear systems of equations
- Today we will learn:
(1) Elimination Theorem: how to "eliminate" variables from our system of polynomial equations
(2) Extension Theorem: how to "extend" partial solutions to complete solutions

Elimination Theorem

- Example:

$$
\begin{aligned}
& x^{2}+y+z=1 \\
& x+y^{2}+z=1 \\
& x+y+z^{2}=1
\end{aligned}
$$

Elimination Theorem

- Example:

$$
\begin{array}{ll}
x^{2}+y_{1} z-1=0 & \leftrightarrow x^{2}+y+z=1 \\
x+y^{2}+z-1=0 & \leftrightarrow x+y^{2}+z=1 \\
x+y+z^{2}-1=0 & \longleftrightarrow x+y+z^{2}=1
\end{array}
$$

- $I=\left(x^{2}+y+z-1, x+y^{2}+z-1, x+y+z^{2}-1\right)$. Want $V(I)$.

Elimination Theorem

- Example:

$$
\begin{aligned}
& x^{2}+y+z=1 \\
& x+y^{2}+z=1 \\
& x+y+z^{2}=1
\end{aligned}
$$

- $I=\left(x^{2}+y+z-1, x+y^{2}+z-1, x+y+z^{2}-1\right)$. Want $V(I)$.
- Computing Gröbner basis of I with respect to lex order:

$$
G=\left(x+y+z^{2}-1, y^{2}-y-z^{2}+z, 2 y z^{2}+z^{4}-z^{2}, z^{6}-4 z^{4}+4 z^{3}-z^{2}\right)
$$

Elimination Theorem

- Example:

$$
\begin{aligned}
& x^{2}+y+z=1 \\
& x+y^{2}+z=1 \\
& x+y+z^{2}=1
\end{aligned}
$$

- $I=\left(x^{2}+y+z-1, x+y^{2}+z-1, x+y+z^{2}-1\right)$. Want $V(I)$.
- Computing Gröbner basis of I with respect to lex order:

$$
G=\left(x+y+z^{2}-1, y^{2}-y-z^{2}+z, 2 y z^{2}+z^{4}-z^{2}, z^{6}-4 z^{4}+4 z^{3}-z^{2}\right)
$$

- Since $G=I$ we know both systems have same zero set! What is special about the Gröbner basis set of equations?

$$
V(G)=V(\Psi) \leftarrow(B)=I
$$

Elimination Theorem

- Example:

$$
\begin{aligned}
& x^{2}+y+z=1 \\
& x+y^{2}+z=1 \\
& x+y+z^{2}=1
\end{aligned}
$$

- $I=\left(x^{2}+y+z-1, x+y^{2}+z-1, x+y+z^{2}-1\right)$. Want $V(I)$.
- Computing Gröbner basis of I with respect to lex order:

$$
G=(x+y+z^{2}-1, \underbrace{y^{2}-y-z^{2}+z, 2 y z^{2}+z^{4}-z^{2}}_{y, z}, \underbrace{6}-4 z^{4}+4 z^{3}-z^{2})
$$

- Since $G=I$ we know both systems have same zero set! What is special about the Gröbner basis set of equations?
- Last polynomial only depends on z

Elimination Theorem

- Example:
$I \cap \mathbb{F}[z]=\left(z^{6}-4 z^{4}, 4 z^{3}-z^{2}\right) \quad x^{2}+y+z=1$

$$
\begin{array}{ll}
x+y^{2}+z=1 & z=\alpha \\
x+y+z^{2}=1 & y=\beta
\end{array}
$$

- $I=\left(x^{2}+y+z-1, x+y^{2}+z-1, x+y+z^{2}-1\right)$. Want $V(I)$.
- Computing Gröbner basis of I with respect to lex order:

$$
G=(\underbrace{x+y+z^{2}-1}_{x_{1}}, \underbrace{y^{2}-y-z^{2}+z, 2 y z^{2}+z^{4}-z^{2}}_{y}, z^{6}-4 z^{4}+4 z^{3}-z^{2})
$$

- Since $G=I$ we know both systems have same zero set! What is special about the Gröbner basis set of equations?
- Last polynomial only depends on z
- Can find all possible z 's and propagate it up to find y and then x extension step

Elimination Theorem

- Main idea of elimination theory is to find the part of the ideal that "depends on less variables"

Elimination Theorem

- Main idea of elimination theory is to find the part of the ideal that "depends on less variables"
- Given $I \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, the $\ell^{\text {th }}$ elimination ideal I_{ℓ} is the ideal of $\mathbb{F}\left[x_{\ell+1}, \ldots, x_{n}\right]$ given by:
none of

$$
I_{\ell}:=I \cap \mathbb{F}\left[x_{\ell+1}, \ldots, x_{n}\right]
$$

$x_{1}, \ldots x_{2}$

Elimination Theorem

- Main idea of elimination theory is to find the part of the ideal that "depends on less variables"
- Given $I \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, the $\ell^{\text {th }}$ elimination ideal I_{ℓ} is the ideal of $\mathbb{F}\left[x_{\ell+1}, \ldots, x_{n}\right]$ given by:

$$
I_{\ell}:=I \cap \mathbb{F}\left[x_{\ell+1}, \ldots, x_{n}\right]
$$

- The elimination step is to find these ideals I_{ℓ} for all $\ell \in[n]$.

Elimination Theorem

- Main idea of elimination theory is to find the part of the ideal that "depends on less variables"
- Given $I \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, the $\ell^{t h}$ elimination ideal I_{ℓ} is the ideal of $\mathbb{F}\left[x_{\ell+1}, \ldots, x_{n}\right]$ given by:

$$
I_{\ell}:=I \cap \mathbb{F}\left[x_{\ell+1}, \ldots, x_{n}\right]
$$

- The elimination step is to find these ideals I_{ℓ} for all $\ell \in[n]$.
- Elimination Theorem

For any ideal $I \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, if G is a Gröbner basis of I with respect to the lexicographic order $x_{1} \succ x_{2} \succ \ldots \succ x_{n}$, then

$$
G_{\ell}:=G \cap \mathbb{F}\left[x_{\ell+1}, \ldots, x_{n}\right]
$$

is a Gröbner basis of I_{ℓ}.

Proof of Elimination Theorem

- Suffices to show that $L M\left(l_{\ell}\right)=L M\left(G_{\ell}\right)$

$$
I_{l} \subset \mathbb{F}\left[x_{l+1}, \ldots, x_{n}\right] \quad G_{l} \subset I_{l}
$$

want to show: $L M\left(I_{l}\right) \subset L M\left(G_{l}\right)$

$$
f \in I_{l} \quad f^{G} \equiv 0 \quad\left\{f=\sum_{i=1}^{s} g_{i} h_{i} \quad \begin{array}{r}
t \\
E_{G} \cap F\left[x_{e+1}, \ldots, x_{n}\right] \\
\text { and if } h_{i} \neq 0 \\
\text { then } \operatorname{LH}\left(g_{i}\right) \mid \operatorname{LM}(f)
\end{array}\right.
$$

$$
\operatorname{LM}(f) \quad \exists i \in[s y \text { si. } \operatorname{LH}(g i) \mid \operatorname{LM}(f)
$$

$$
\begin{aligned}
& \operatorname{LH}(g:) \mid C M(f) \\
\Rightarrow & \operatorname{LM}(g i) \in\left[x_{n+1}, \ldots, x_{n}\right] \\
& g_{n}\left[x_{n+1} \cdots, x_{n}\right]
\end{aligned}
$$

Proof of Elimination Theorem

- Suffices to show that $L M\left(I_{\ell}\right)=L M\left(G_{\ell}\right)$
- So in our example above, the last polynomial was the best way to eliminate variables x, y from our system.
- Solving Polynomial Equations
- Elimination Theorem
- Extension Theorem
- Resultants
- Conclusion
- Acknowledgements

Extension Theorem

- Now that we know how eliminate variables from our system of polynomial equations, we need to learn how to reconstruct a full solution based on our partial solution

Extension Theorem

- Now that we know how eliminate variables from our system of polynomial equations, we need to learn how to reconstruct a full solution based on our partial solution
- Given solution $\left(a_{\ell+1}, \ldots, a_{n}\right) \in V\left(I_{\ell}\right) \subseteq \mathbb{F}^{n-\ell}$ we want to find a solution $\left(a_{\ell}, \ldots, a_{n}\right) \in V\left(l_{\ell-1}\right) \subseteq \mathbb{F}^{n-\ell+1}$

Extension Theorem

- Now that we know how eliminate variables from our system of polynomial equations, we need to learn how to reconstruct a full solution based on our partial solution
- Given solution $\left(a_{\ell+1}, \ldots, a_{n}\right) \in V\left(I_{\ell}\right) \subseteq \mathbb{F}^{n-\ell}$ we want to find a solution $\left(a_{\ell}, \ldots, a_{n}\right) \in V\left(I_{\ell-1}\right) \subseteq \mathbb{F}^{n-\ell+1}$
- So we are essentially trying to solve a system of univariate polynomials

$$
\begin{aligned}
& I_{l-1}=\left(f_{1}\left(x_{l}, x_{l+1, \ldots} x_{n}\right), \ldots, f_{s}\left(x_{l}, x_{l n}, \ldots x_{n}\right)\right) \\
& \left(a_{l+1}, a_{n}\right) \\
& \left(f_{1}\left(x_{l}, a_{l+1}, \ldots, a_{n}\right), \ldots, f s\left(x_{l}, a_{l n}, \ldots, a_{n}\right)\right) \\
& =\left(g\left(x_{l}\right)\right) \quad g=\operatorname{gcd}\left(f_{1}, \ldots, f_{1}\right)
\end{aligned}
$$

Extension Theorem

- Now that we know how eliminate variables from our system of polynomial equations, we need to learn how to reconstruct a full solution based on our partial solution
- Given solution $\left(a_{\ell+1}, \ldots, a_{n}\right) \in V\left(I_{\ell}\right) \subseteq \mathbb{F}^{n-\ell}$ we want to find a solution $\left(a_{\ell}, \ldots, a_{n}\right) \in V\left(l_{\ell-1}\right) \subseteq \mathbb{F}^{n-\ell+1}$
- So we are essentially trying to solve a system of univariate polynomials
- What could go wrong? Partial solutions that don't extend to complete solutions. Example:

$$
x y=1, \quad x z=1 \quad \text { partial solution } y=z=0
$$

Gröbner basis: $(x y-1, x z-1, y-z)$

$$
y=z=0
$$

Extension Theorem

- Now that we know how eliminate variables from our system of polynomial equations, we need to learn how to reconstruct a full solution based on our partial solution
- Given solution $\left(a_{\ell+1}, \ldots, a_{n}\right) \in V\left(I_{\ell}\right) \subseteq \mathbb{F}^{n-\ell}$ we want to find a solution $\left(a_{\ell}, \ldots, a_{n}\right) \in V\left(I_{\ell-1}\right) \subseteq \mathbb{F}^{n-\ell+1}$
- So we are essentially trying to solve a system of univariate polynomials
- What could go wrong? Partial solutions that don't extend to complete solutions. Example:

$$
x y=1, \quad x z=1 \quad \text { partial solution } y=z=0
$$

Gröbner basis: $(x y-1, x z-1, y-z)$

- Extension theorem gives us a sufficient condition to extend partial solutions.

Extension Theorem

- Extension Theorem

Let \mathbb{F} be an algebraically closed field, $I:=\left(f_{1}, \ldots, f_{s}\right) \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and let I_{1} be the first elimination ideal of l. For each $1 \leq i \leq s$, write f_{i} as

$$
f_{i}=c_{i}\left(x_{2}, \ldots, x_{n}\right) \cdot x_{1}^{d_{i}}+\text { lower degree terms in } x_{1}
$$

where c_{i} 's are non-zero and $d_{i} \geq 0$. If

$$
\left.\left(a_{2}, \ldots, a_{n}\right) \in V\left(I_{1}\right)\right\} \text { pertiol solution }
$$

that is, it is a partial solution, and if

$$
\left(a_{2}, \ldots, a_{n}\right) \notin V\left(c_{1}, \ldots, c_{s}\right)\left\{\begin{array}{l}
\text { not pers set } \\
\text { of the leading } \\
\text { terms }
\end{array}\right.
$$

then there is $a_{1} \in \mathbb{F}$ such that $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in V(I)$.

Extension Theorem

- Extension Theorem

Let \mathbb{F} be an algebraically closed field, $I:=\left(f_{1}, \ldots, f_{s}\right) \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and let I_{1} be the first elimination ideal of I. For each $1 \leq i \leq s$, write f_{i} as

$$
f_{i}=c_{i}\left(x_{2}, \ldots, x_{n}\right) \cdot x_{1}^{d_{i}}+\text { lower degree terms in } x_{1}
$$

where c_{i} 's are non-zero and $d_{i} \geq 0$. If

$$
\left(a_{2}, \ldots, a_{n}\right) \in V\left(l_{1}\right)
$$

that is, it is a partial solution, and if

$$
\left(a_{2}, \ldots, a_{n}\right) \notin V\left(c_{1}, \ldots, c_{s}\right)
$$

then there is $a_{1} \in \mathbb{F}$ such that $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in V(I)$.

- Extension step fails then the leading coefficients must vanish

Proof of Extension Theorem

- Let $G=\left(g_{1}, \ldots, g_{t}\right)$ be a Gröbner basis of $I \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ with respect to the lex order. For $1 \leq j \leq t$, let

$$
g_{j}=\underbrace{c_{j}\left(x_{2}, \ldots, x_{n}\right)} \cdot x^{x_{1}^{d_{j}}}+\underbrace{\text { lower degree terms in } x_{1}}
$$

where $d_{j} \geq 0$ and $c_{j} \in \mathbb{F}\left[x_{2}, \ldots, x_{n}\right]$ is non-zero.

Proof of Extension Theorem

- Let $G=\left(g_{1}, \ldots, g_{t}\right)$ be a Gröbner basis of $I \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ with respect to the lex order. For $1 \leq j \leq t$, let

$$
g_{j}=c_{j}\left(x_{2}, \ldots, x_{n}\right) \cdot x_{1}^{d_{j}}+\text { lower degree terms in } x_{1}
$$

where $d_{j} \geq 0$ and $c_{j} \in \mathbb{F}\left[x_{2}, \ldots, x_{n}\right]$ is non-zero.

- Let $\mathbf{a} \in V\left(l_{1}\right) \subseteq \mathbb{F}^{n-1}$ be a partial solution such that $\mathbf{a} \notin V\left(c_{1}, \ldots, c_{t}\right)$.

Proof of Extension Theorem

- Let $G=\left(g_{1}, \ldots, g_{t}\right)$ be a Gröbner basis of $I \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ with respect to the lex order. For $1 \leq j \leq t$, let

$$
g_{j}=c_{j}\left(x_{2}, \ldots, x_{n}\right) \cdot x_{1}^{d_{j}}+\quad \text { lower degree terms in } x_{1}
$$

where $d_{j} \geq 0$ and $c_{j} \in \mathbb{F}\left[x_{2}, \ldots, x_{n}\right]$ is non-zero.

- Let $\mathbf{a} \in V\left(I_{1}\right) \subseteq \mathbb{F}^{n-1}$ be a partial solution such that $\mathbf{a} \notin V\left(c_{1}, \ldots, c_{t}\right)$.
- We will prove

$$
\mathbf{l}_{\mathbf{a}}:=\left\{f\left(x_{1}, \mathbf{a}\right) \mid f \in I\right\}=\left(g_{o}\left(x_{1}, \mathbf{a}\right)\right) \subseteq \mathbb{F}\left[x_{1}\right]
$$

where $g_{o} \in G$ satisfies $c_{o}(\mathbf{a}) \neq 0$ and g_{o} has minimal x_{1} degree among all elements $g_{j} \in G$ with $c_{j}(\mathbf{a}) \neq 0$. Moreover
(1) $\operatorname{deg}\left(g_{0}\left(x_{1}, \mathbf{a}\right)\right)>0$
(2) If $g_{o}\left(a_{1}, \mathbf{a}\right)=0$ for $a_{1} \in \mathbb{F}$, then $\left(a_{1}, \mathbf{a}\right) \in V(I)$

Proof of Extension Theorem

- Choose an $g_{o} \in G$ as in previous slide (minimal x_{1}-degree among elements of G with non-zero leading term $\left.c_{j}(\mathbf{a}) \neq 0\right)$.

Proof of Extension Theorem

- Choose an $g_{o} \in G$ as in previous slide (minimal x_{1}-degree among elements of G with non-zero leading term $\left.c_{j}(\mathbf{a}) \neq 0\right)$.
- Note that $d_{0}>0$, otherwise we would have $g_{o}=c_{0}$, which would imply $g_{o}\left(x_{1}, \mathbf{a}\right)=c_{o}(\mathbf{a}) \neq 0$, which implies $\mathbf{a} \notin I_{1}$

$$
\Rightarrow g_{0} \in I_{1}
$$

Proof of Extension Theorem

- Choose an $g_{o} \in G$ as in previous slide (minimal x_{1}-degree among elements of G with non-zero leading term $\left.c_{j}(\mathbf{a}) \neq 0\right)$.
- Note that $d_{0}>0$, otherwise we would have $g_{o}=c_{0}$, which would imply $g_{o}\left(x_{1}, \mathbf{a}\right)=c_{o}(\mathbf{a}) \neq 0$, which implies $\mathbf{a} \notin I_{1}$
- We now need to prove that $g_{o}\left(x_{1}\right)$ generates the ideal l_{a}

Proof of Extension Theorem

- Choose an $g_{o} \in G$ as in previous slide (minimal x_{1}-degree among elements of G with non-zero leading term $\left.c_{j}(\mathbf{a}) \neq 0\right)$.
- Note that $d_{0}>0$, otherwise we would have $g_{o}=c_{0}$, which would imply $g_{o}\left(x_{1}, \mathbf{a}\right)=c_{o}(\mathbf{a}) \neq 0$, which implies $\mathbf{a} \notin I_{1}$
- We now need to prove that $g_{o}\left(x_{1}\right)$ generates the ideal l_{a}
- Since $I \subseteq G$ it is enough to show that

$$
g_{j}\left(x_{1}, \mathbf{a}\right) \in\left(g_{o}\left(x_{1}, \mathbf{a}\right)\right) \quad \forall g_{j} \in G
$$

Proof of Extension Theorem

- Choose an $g_{o} \in G$ as in previous slide (minimal x_{1}-degree among elements of G with non-zero leading term $\left.c_{j}(\mathbf{a}) \neq 0\right)$.
- Note that $d_{0}>0$, otherwise we would have $g_{0}=c_{0}$, which would imply $g_{o}\left(x_{1}, \mathbf{a}\right)=c_{o}(\mathbf{a}) \neq 0$, which implies $\mathbf{a} \notin I_{1}$
- We now need to prove that $g_{o}\left(x_{1}\right)$ generates the ideal l_{a}
- Since $I \subseteq G$ it is enough to show that

$$
g_{j}\left(x_{1}, \mathbf{a}\right) \in\left(g_{o}\left(x_{1}, \mathbf{a}\right)\right) \quad \forall g_{j} \in G
$$

- We will prove this by induction on the x_{1}-degree of the g_{j} 's

Proof of Extension Theorem

- Choose an $g_{0} \in G$ as in previous slide (minimal x_{1}-degree among elements of G with non-zero leading term $\left.c_{j}(\mathbf{a}) \neq 0\right)$.
- Note that $d_{0}>0$, otherwise we would have $g_{0}=c_{0}$, which would imply $g_{o}\left(x_{1}, \mathbf{a}\right)=c_{o}(\mathbf{a}) \neq 0$, which implies $\mathbf{a} \notin I_{1}$
- We now need to prove that $g_{o}\left(x_{1}\right)$ generates the ideal l_{a}
- Since $I \subseteq G$ it is enough to show that

$$
g_{j}\left(x_{1}, \mathbf{a}\right) \in\left(g_{o}\left(x_{1}, \mathbf{a}\right)\right) \quad \forall g_{j} \in G
$$

- We will prove this by induction on the x_{1}-degree of the g_{j} 's
- Our choice of g_{o} tells us that $d_{o}=\operatorname{deg}\left(g_{o}\left(x_{1}, \mathbf{a}\right)\right)$. By minimality of d_{o}, if any g_{j} is such that

$$
\operatorname{deg}\left(g_{j}\left(x_{1}, \mathbf{a}\right)\right)<d_{o}
$$

it must have been that $c_{j}(\mathbf{a})=0$. That is, g_{j} dropped degree on evaluation.

Proof of Extension Theorem

- If there is $g_{j} \in G$ with $d_{j}<d_{o}$ such that $g_{j}\left(x_{1}, \mathbf{a}\right) \neq 0$, let g_{b} be the one which minimizes the drop in degree when evaluated at a.
- Let $\delta=d_{b}-\operatorname{deg}\left(g_{b}\left(x_{1}, \mathbf{a}\right)\right)$.

Original \longrightarrow degree in x_{1} after substitution degree in X_{1} by \bar{a}.

Proof of Extension Theorem

- If there is $g_{j} \in G$ with $d_{j}<d_{o}$ such that $g_{j}\left(x_{1}, \mathbf{a}\right) \neq 0$, let g_{b} be the one which minimizes the drop in degree when evaluated at a.
- Let $\delta=d_{b}-\operatorname{deg}\left(g_{b}\left(x_{1}, \mathbf{a}\right)\right)$.
$d_{b}<d_{0}$
- Let

$$
S:=S\left(g_{o}, g_{b}\right)=c_{o} x_{1}^{d_{o}-d_{b}} g_{b}-c_{b} g_{o}
$$

Proof of Extension Theorem

- If there is $g_{j} \in G$ with $d_{j}<d_{o}$ such that $g_{j}\left(x_{1}, \mathbf{a}\right) \neq 0$, let g_{b} be the one which minimizes the drop in degree when evaluated at a.
- Let $\delta=d_{b}-\operatorname{deg}\left(g_{b}\left(x_{1}, \mathbf{a}\right)\right)$.
- Let
- Note that

$$
S:=S\left(g_{o}, g_{b}\right)=c_{o} x_{1}^{d_{o}-d_{b}} g_{b}-{\underset{C}{c}}_{c_{b}} g_{o}
$$

$$
S\left(x_{1}, \mathbf{a}\right)=c_{o}(\mathbf{a}) x_{1}^{d_{o}-d_{b}} g_{b}\left(x_{1}, \mathbf{a}\right)
$$

$$
c_{b}(\bar{a})=0
$$

so $\operatorname{deg}\left(S\left(x_{1}, \mathbf{a}\right)\right)=\underbrace{d_{o}-d_{b}}_{x_{1}^{d_{0}-d_{b}}}+\underbrace{\left(d_{b}-\delta\right)}=d_{o}-\delta$

Proof of Extension Theorem

- If there is $g_{j} \in G$ with $d_{j}<d_{o}$ such that $g_{j}\left(x_{1}, \mathbf{a}\right) \neq 0$, let g_{b} be the one which minimizes the drop in degree when evaluated at a.
- Let $\delta=d_{b}-\operatorname{deg}\left(g_{b}\left(x_{1}, \mathbf{a}\right)\right)$.
- Let

$$
S:=S\left(g_{o}, g_{b}\right)=c_{o} x_{1}^{d_{o}-d_{b}} g_{b}-c_{b} g_{o}
$$

- Note that

$$
S\left(x_{1}, \mathbf{a}\right)=c_{o}(\mathbf{a}) x^{d_{o}-d_{b}} g_{b}\left(x_{1}, \mathbf{a}\right)
$$

so $\operatorname{deg}\left(S\left(x_{1}, \mathbf{a}\right)\right)=d_{o}-d_{b}+\left(d_{b}-\delta\right)=d_{o}-\delta$

- Since G is a Gröbner basis, $S=\sum_{i=1}^{t} B_{j} g_{j}$ standard representation, which implies

$$
\operatorname{deg}_{1}\left(B_{j}\right)+\operatorname{deg}_{1}\left(g_{j}\right)=\operatorname{deg}_{1}\left(B_{j} g_{j}\right) \leq \operatorname{deg}_{1}(S)<d_{o}
$$

when $B_{j} g_{j} \neq 0$.

Proof of Extension Theorem

- Since G is a Gröbner basis, $S=\sum_{i=1}^{t} B_{j} g_{j}$ standard representation, which implies

$$
\operatorname{deg}_{1}\left(B_{j}\right)+\operatorname{deg}_{1}\left(g_{j}\right)=\operatorname{deg}_{1}\left(B_{j} g_{j}\right) \leq \operatorname{deg}_{1}(S)<d_{o}
$$

when $B_{j} g_{j} \neq 0$.

Proof of Extension Theorem

- Since G is a Gröbner basis, $S=\sum_{i=1}^{t} B_{j} g_{j}$ standard representation, which implies

$$
\operatorname{deg}_{1}\left(B_{j}\right)+\operatorname{deg}_{1}\left(g_{j}\right)=\operatorname{deg}_{1}\left(B_{j} g_{j}\right) \leq \operatorname{deg}_{1}(S)<d_{o}
$$

when $B_{j} g_{j} \neq 0$.

- So if g_{j} appears in standard representation, then $\operatorname{deg}_{1}\left(g_{j}\right)<d_{o}$ which implies g_{j} must drop degree or go to zero when evaluated at a

Proof of Extension Theorem

- Since G is a Gröbner basis, $S=\sum_{i=1}^{t} B_{j} g_{j}$ standard representation, which implies

$$
\operatorname{deg}_{1}\left(B_{j}\right)+\operatorname{deg}_{1}\left(g_{j}\right)=\operatorname{deg}_{1}\left(B_{j} g_{j}\right) \leq \operatorname{deg}_{1}(S)<d_{0}
$$

when $B_{j} g_{j} \neq 0$.

- So if g_{j} appears in standard representation, then $\operatorname{deg}_{1}\left(g_{j}\right)<d_{0}$ which implies g_{j} must drop degree or go to zero when evaluated at a
- Thus, we have:

$$
\operatorname{deg}\left(B_{j}\left(x_{1}, \mathbf{a}\right)\right)+\underbrace{\operatorname{deg}\left(g_{j}\left(x_{1}, \mathbf{a}\right)\right)}_{\text {it }} \leq \frac{\operatorname{deg}_{1}\left(B_{j}\right)}{\text { degree then } \operatorname{deg}_{1}\left(g_{j}\right)}-\delta<d_{o}-\delta
$$

$$
y \text { must drop } \geqslant \delta\left(\begin{array}{c}
\text { by sun choice } \\
\text { of } \delta
\end{array}\right.
$$

Proof of Extension Theorem

- Since G is a Gröbner basis, $S=\sum_{i=1}^{t} B_{j} g_{j}$ standard representation, which implies

$$
\operatorname{deg}_{1}\left(B_{j}\right)+\operatorname{deg}_{1}\left(g_{j}\right)=\operatorname{deg}_{1}\left(B_{j} g_{j}\right) \leq \operatorname{deg}_{1}(S)<d_{o}
$$

when $B_{j} g_{j} \neq 0$.

- So if g_{j} appears in standard representation, then $\operatorname{deg}_{1}\left(g_{j}\right)<d_{o}$ which implies g_{j} must drop degree or go to zero when evaluated at a
- Thus, we have:

$$
\operatorname{deg}\left(B_{j}\left(x_{1}, \mathbf{a}\right)\right)+\operatorname{deg}\left(g_{j}\left(x_{1}, \mathbf{a}\right)\right) \leq \operatorname{deg}_{1}\left(B_{j}\right)+\operatorname{deg}_{1}\left(g_{j}\right)-\delta<d_{o}-\delta
$$

- Thus:

$$
\operatorname{deg}\left(S\left(x_{1}, \mathbf{a}\right)\right) \leq \max \left\{\operatorname{deg}\left(B_{j}\left(x_{1}, \mathbf{a}\right)\right)+\operatorname{deg}\left(g_{j}\left(x_{1}, \mathbf{a}\right)\right)\right\}<d_{o}-\delta
$$

contradiction.

$$
\underline{S\left(x_{1}, \bar{a}\right)}=\sum \underbrace{B_{j}\left(x_{1}, \bar{a}\right) \cdot g_{j}\left(y_{1}, \bar{a}\right)}_{d_{j} 1}
$$

Proof of Extension Theorem

- Since G is a Gröbner basis, $S=\sum_{i=1}^{t} B_{j} g_{j}$ standard representation, which implies

$$
\operatorname{deg}_{1}\left(B_{j}\right)+\operatorname{deg}_{1}\left(g_{j}\right)=\operatorname{deg}_{1}\left(B_{j} g_{j}\right) \leq \operatorname{deg}_{1}(S)<d_{o}
$$

when $B_{j} g_{j} \neq 0$.

- So if g_{j} appears in standard representation, then $\operatorname{deg}_{1}\left(g_{j}\right)<d_{o}$ which implies g_{j} must drop degree or go to zero when evaluated at a
- Thus, we have:

$$
\operatorname{deg}\left(B_{j}\left(x_{1}, \mathbf{a}\right)\right)+\operatorname{deg}\left(g_{j}\left(x_{1}, \mathbf{a}\right)\right) \leq \operatorname{deg}_{1}\left(B_{j}\right)+\operatorname{deg}_{1}\left(g_{j}\right)-\delta<d_{o}-\delta
$$

- Thus:

$$
\operatorname{deg}\left(S\left(x_{1}, \mathbf{a}\right)\right) \leq \max \left\{\operatorname{deg}\left(B_{j}\left(x_{1}, \mathbf{a}\right)\right)+\operatorname{deg}\left(g_{j}\left(x_{1}, \mathbf{a}\right)\right)\right\}<d_{o}-\delta
$$

contradiction.

- Thus, if g_{j} dropped degree and it is non-zero after evaluation, it must be $d_{j} \geq d_{0}$.

Proof of Extension Theorem

- Now we are ready to prove that $I_{a}=\left(g_{o}\left(x_{1}, \mathbf{a}\right)\right)$ by induction.

Proof of Extension Theorem

- Now we are ready to prove that $I_{a}=\left(g_{o}\left(x_{1}, \mathbf{a}\right)\right)$ by induction.
- By the above, claim is true for any $g_{j} \in G$ with $d_{j}<d_{o}$.
- Let $d \geq d_{o}$ and assume claim is true for any $g_{j} \in G$ with $d_{j}<d$.

$$
\begin{aligned}
& g_{j} \in G \quad \operatorname{leg}_{1}\left(g_{j}\right)<d_{0} \\
& d_{j} \\
& \Rightarrow g_{j}\left(x_{1}, \bar{a}\right)=0 \in\left(g_{0}(x, \bar{a})\right)
\end{aligned}
$$

Proof of Extension Theorem

- Now we are ready to prove that $I_{a}=\left(g_{0}\left(x_{1}, \mathbf{a}\right)\right)$ by induction.
- By the above, claim is true for any $g_{j} \in G$ with $d_{j}<d_{0}$.
- Let $d \geq d_{o}$ and assume claim is true for any $g_{j} \in G$ with $d_{j}<d$.
- Let $g_{i} \in G$ be such that $d_{i}=d$.
- Taking standard representation of $S\left(g_{i}, g_{o}\right)=\sum_{k=1}^{t} B_{k} g_{k}$, where

$$
S:=c_{o} g_{j}-c_{j} x_{1}^{d-d_{o}} g_{o}\left\{\begin{array}{c}
\text { Conceling max } \\
\text { degrice in } x_{1}
\end{array}\right.
$$

we see that $\operatorname{deg}_{1}(S)<d$

$$
\operatorname{deg}_{1}\left(g_{i}\right) \geqslant \operatorname{deg}_{1}\left(g_{0}\right)
$$

Proof of Extension Theorem

- Now we are ready to prove that $I_{a}=\left(g_{0}\left(x_{1}, \mathbf{a}\right)\right)$ by induction.
- By the above, claim is true for any $g_{j} \in G$ with $d_{j}<d_{0}$.
- Let $d \geq d_{o}$ and assume claim is true for any $g_{j} \in G$ with $d_{j}<d$.
- Let $g_{i} \in G$ be such that $d_{i}=d$.
- Taking standard representation of $S\left(g_{i}, g_{o}\right)=\sum_{k=1}^{t} B_{k} g_{k}$, where

$$
S:=c_{o} g_{j}-c_{j} x_{1}^{d-d_{o}} g_{0} \quad \operatorname{deg}\left(B_{h} g_{h}\right) \leqslant \operatorname{dog}_{1}(5)
$$

we see that $\operatorname{deg}_{1}(S)<d$

- Thus, if $B_{k} g_{k} \neq 0$ then $\operatorname{deg}_{1}\left(g_{k}\left(x_{1}, \bar{x}\right)\right)<d$, which by induction implies

- Solving Polynomial Equations
- Elimination Theorem
- Extension Theorem
- Resultants
- Conclusion
- Acknowledgements

Resultants - Another Proof of Extension Theorem

- Univariate question: given two polynomials $f, g \in \mathbb{F}[x]$, when will they have a common root?

Resultants - Another Proof of Extension Theorem

- Univariate question: given two polynomials $f, g \in \mathbb{F}[x]$, when will they have a common root?
- As $\mathbb{F}[x]$ is an Euclidean domain, we have:

$$
\begin{aligned}
& \operatorname{gcd}(f(x), g(x))=1 \Leftrightarrow \\
\exists s(x), t(x) & \in \mathbb{F}[x] \text { s.t. } s(x) \cdot f(x)+t(x) \cdot g(x)=1
\end{aligned}
$$

Resultants - Another Proof of Extension Theorem

- Univariate question: given two polynomials $f, g \in \mathbb{F}[x]$, when will they have a common root?
- As $\mathbb{F}[x]$ is an Euclidean domain, we have: $(今-a g) y+(t+0 . \rho g=1$

$$
\operatorname{gcd}(f(x), g(x))=1 \Leftrightarrow
$$

$$
\exists s(x), t(x) \in \mathbb{F}[x] \text { s.t. } s(x) \cdot f(x)+t(x) \cdot g(x)=1
$$

- We can also assume w.l.o.g. that $\operatorname{deg}(s)<\operatorname{deg}(g)$ and $\operatorname{deg}(t)<\operatorname{deg}(f)$.
- Viewing the equation $s(x) \cdot f(x)+t(x) \cdot g(x)=1$ as a linear system, we have:

$$
\begin{aligned}
s_{0} \cdot f_{0}+t_{0} \cdot g_{0}=1 & \text { constant coefficient } \\
\sum_{i=0}^{k} s_{i} \cdot f_{k-i}+t_{i} \cdot g_{k-i}=0 & \text { coefficient of degree } k
\end{aligned}
$$

Sylvester Matrix \& Resultant

- In matrix form (for simplicity $\operatorname{deg}(f)=3, \operatorname{deg}(g)=2$):

$$
\left(\begin{array}{ccccc}
f_{0} & 0 & g_{0} & 0 & 0 \\
f_{1} & f_{0} & g_{1} & g_{0} & 0 \\
f_{2} & f_{1} & g_{2} & g_{1} & g_{0} \\
f_{3} & f_{2} & 0 & g_{2} & g_{1} \\
0 & f_{3} & 0 & 0 & g_{2}
\end{array}\right) \cdot\left(\begin{array}{c}
s_{0} \\
s_{1} \\
t_{0} \\
t_{1} \\
t_{2}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Sylvester Matrix \& Resultant

- In matrix form (for simplicity $\operatorname{deg}(f)=3, \operatorname{deg}(g)=2$):

$$
\left(\begin{array}{ccccc}
f_{0} & 0 & g_{0} & 0 & 0 \\
f_{1} & f_{0} & g_{1} & g_{0} & 0 \\
f_{2} & f_{1} & g_{2} & g_{1} & g_{0} \\
f_{3} & f_{2} & 0 & g_{2} & g_{1} \\
0 & f_{3} & 0 & 0 & g_{2}
\end{array}\right) \cdot\left(\begin{array}{l}
s_{0} \\
s_{1} \\
t_{0} \\
t_{1} \\
t_{2}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Definition (Sylvester Matrix)

The matrix arising from the linear system is called Sylvester Matrix. It is denoted by

$$
S y I_{x}(f, g)
$$

Sylvester Matrix \& Resultant

- In matrix form (for simplicity $\operatorname{deg}(f)=3, \operatorname{deg}(g)=2$):

$$
\left(\begin{array}{ccccc}
f_{0} & 0 & g_{0} & 0 & 0 \\
f_{1} & f_{0} & g_{1} & g_{0} & 0 \\
f_{2} & f_{1} & g_{2} & g_{1} & g_{0} \\
f_{3} & f_{2} & 0 & g_{2} & g_{1} \\
0 & f_{3} & 0 & 0 & g_{2}
\end{array}\right) \cdot\left(\begin{array}{c}
s_{0} \\
s_{1} \\
t_{0} \\
t_{1} \\
t_{2}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Definition (Sylvester Matrix)

The matrix arising from the linear system is called Sylvester Matrix. It is denoted by

$$
S y I_{x}(f, g)
$$

Definition (Resultant)

The Resultant of f, g is the determinant of the Sylvester Matrix:

$$
\operatorname{Res}_{x}(f, g)=\operatorname{det}\left(S y I_{x}(f, g)\right)
$$

Resultants - Properties

- Resultant between two polynomials f, g is an algebraic invariant, and it is very important in computational algebra and algebraic geometry
- An important property is that the resultant is a polynomial over the coefficients of f, g

Resultants - Properties

- Resultant between two polynomials f, g is an algebraic invariant, and it is very important in computational algebra and algebraic geometry
- An important property is that the resultant is a polynomial over the coefficients of f, g
- From previous slides, another property is:

$$
\operatorname{Res}_{x}(f, g) \neq 0 \Leftrightarrow \operatorname{gcd}(f, g)=1 \quad \text { over } \mathbb{F}[x]
$$

Resultants - Properties

- Resultant between two polynomials f, g is an algebraic invariant, and it is very important in computational algebra and algebraic geometry
- An important property is that the resultant is a polynomial over the coefficients of f, g
- From previous slides, another property is:

$$
\operatorname{Res}_{x}(f, g) \neq 0 \Leftrightarrow \operatorname{gcd}(f, g)=1 \quad \text { over } \mathbb{F}[x]
$$

- Another important property is that, in some nice cases, the resultant behaves well under certain homomorphisms.
Let $f, g \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be such that $\operatorname{deg}_{1}(f)=\ell$ and $\operatorname{deg}_{1}(g)=m$. If $\mathbf{a} \in \mathbb{F}^{n-1}$ satisfies:
\leftarrow (1) $\operatorname{deg}\left(f\left(x_{1}, \mathbf{a}\right)\right)=\ell \quad$ portial substitulion
(2) $g\left(x_{1}, \mathbf{a}\right)$ is non-zero of degree $p \leq m$ and if $c\left(x_{2}, \ldots, x_{n}\right)$ is the leading coefficient of f, we have:

$$
\operatorname{Res}_{x_{1}}(f, g)(\mathbf{a})=c(\mathbf{a})^{m-p} \cdot \operatorname{Res}_{{x_{1}}}\left(f\left(x_{1}, \mathbf{a}\right), g\left(x_{1}, \mathbf{a}\right)\right)
$$

Extension Theorem

- Extension Theorem

Let \mathbb{F} be an algebraically closed field, $I:=\left(f_{1}, \ldots, f_{s}\right) \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and let I_{1} be the first elimination ideal of l. For each $1 \leq i \leq s$, write f_{i} as

$$
f_{i}=c_{i}\left(x_{2}, \ldots, x_{n}\right) \cdot x_{1}^{d_{i}}+\text { lower degree terms in } x_{1}
$$

where c_{i} 's are non-zero and $d_{i} \geq 0$. If

$$
\left(a_{2}, \ldots, a_{n}\right) \in V\left(l_{1}\right)
$$

that is, it is a partial solution, and if

$$
\left(a_{2}, \ldots, a_{n}\right) \notin V\left(c_{1}, \ldots, c_{s}\right)
$$

then there is $a_{1} \in \mathbb{F}$ such that $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in V(I)$.

Extension Theorem

- Extension Theorem

Let \mathbb{F} be an algebraically closed field, $I:=\left(f_{1}, \ldots, f_{s}\right) \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and let I_{1} be the first elimination ideal of I. For each $1 \leq i \leq s$, write f_{i} as

$$
f_{i}=c_{i}\left(x_{2}, \ldots, x_{n}\right) \cdot x_{1}^{d_{i}}+\text { lower degree terms in } x_{1}
$$

where c_{i} 's are non-zero and $d_{i} \geq 0$. If

$$
\left(a_{2}, \ldots, a_{n}\right) \in V\left(l_{1}\right)
$$

that is, it is a partial solution, and if

$$
\left(a_{2}, \ldots, a_{n}\right) \notin V\left(c_{1}, \ldots, c_{s}\right)
$$

then there is $a_{1} \in \mathbb{F}$ such that $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in V(I)$.

- Extension step fails then the leading coefficients must vanish

Resultants and Extension Theorem

- Similarly to the previous proof we know that the ideal

$$
l_{\mathbf{a}}:=\left\{f\left(x_{1}, \mathbf{a}\right) \mid f \in I\right\} \subseteq \mathbb{F}\left[x_{1}\right]
$$

is generated by some polynomial $g\left(x_{1}, \mathbf{a}\right) \in \mathbb{F}\left[x_{1}\right]$, where $g \in I$, as $\mathbb{F}\left[x_{1}\right]$ is PID.

Resultants and Extension Theorem

- Similarly to the previous proof we know that the ideal

$$
l_{\mathbf{a}}:=\left\{f\left(x_{1}, \mathbf{a}\right) \mid f \in I\right\} \subseteq \mathbb{F}\left[x_{1}\right]
$$

is generated by some polynomial $g\left(x_{1}, \mathbf{a}\right) \in \mathbb{F}\left[x_{1}\right]$, where $g \in I$, as $\mathbb{F}\left[x_{1}\right]$ is PID.

- $\mathbf{a} \notin V\left(c_{1}, \ldots, c_{s}\right)$ implies that for some $i \in[s]$, we have $c_{i}(\mathbf{a}) \neq 0$. Thus, we know that $g\left(x_{1}\right)$ is non-zero.

$$
I_{\bar{a}} \neq(0)
$$

Resultants and Extension Theorem

- Similarly to the previous proof we know that the ideal

$$
\mathbf{l}_{\mathbf{a}}:=\left\{f\left(x_{1}, \mathbf{a}\right) \mid f \in I\right\} \subseteq \mathbb{F}\left[x_{1}\right]
$$

is generated by some polynomial $g\left(x_{1}, \mathbf{a}\right) \in \mathbb{F}\left[x_{1}\right]$, where $g \in I$, as $\mathbb{F}\left[x_{1}\right]$ is PID.

- $\mathbf{a} \notin V\left(c_{1}, \ldots, c_{s}\right)$ implies that for some $i \in[s]$, we have $c_{i}(\mathbf{a}) \neq 0$. Thus, we know that $g\left(x_{1}\right)$ is non-zero.
- Let $h(\mathbf{x})=\operatorname{Res}_{x_{1}}(f, g) \in I_{1}$
- We know that $h(\mathbf{a})=0$, since $\mathbf{a} \in V\left(l_{1}\right)$
$\operatorname{Res}_{x_{1}}(f, g) \in I_{1} \Rightarrow \operatorname{Res}_{x_{1}}(f, g)(\overline{0})=0$

Resultants and Extension Theorem

- Similarly to the previous proof we know that the ideal

$$
\mathbf{l}_{\mathbf{a}}:=\left\{f\left(x_{1}, \mathbf{a}\right) \mid f \in I\right\} \subseteq \mathbb{F}\left[x_{1}\right]
$$

is generated by some polynomial $g\left(x_{1}, \mathbf{a}\right) \in \mathbb{F}\left[x_{1}\right]$, where $g \in I$, as $\mathbb{F}\left[x_{1}\right]$ is PID.

- $\mathbf{a} \notin V\left(c_{1}, \ldots, c_{s}\right)$ implies that for some $i \in[s]$, we have $c_{i}(\mathbf{a}) \neq 0$. Thus, we know that $g\left(x_{1}\right)$ is non-zero.
- Let $h(\mathbf{x})=\operatorname{Res}_{x_{1}}(f, g) \in I_{1}$
- We know that $h(\mathbf{a})=0$, since $\mathbf{a} \in V\left(I_{1}\right)$
- By property of Resultant, and the fact that the degree of f did not drop, there is $a_{1} \in \mathbb{F}$ such that $f\left(a_{1}, \mathbf{a}\right)=g\left(a_{1}, \mathbf{a}\right)=0$

Resultants and Extension Theorem

- Similarly to the previous proof we know that the ideal

$$
\mathbf{l}_{\mathbf{a}}:=\left\{f\left(x_{1}, \mathbf{a}\right) \mid f \in I\right\} \subseteq \mathbb{F}\left[x_{1}\right]
$$

is generated by some polynomial $g\left(x_{1}, \mathbf{a}\right) \in \mathbb{F}\left[x_{1}\right]$, where $g \in I$, as $\mathbb{F}\left[x_{1}\right]$ is PID.

- $\mathbf{a} \notin V\left(c_{1}, \ldots, c_{s}\right)$ implies that for some $i \in[s]$, we have $c_{i}(\mathbf{a}) \neq 0$. Thus, we know that $g\left(x_{1}\right)$ is non-zero.
- Let $h(\mathbf{x})=\operatorname{Res}_{x_{1}}(f, g) \in I_{1}$
- We know that $h(\mathbf{a})=0$, since $\mathbf{a} \in V\left(I_{1}\right)$
- By property of Resultant, and the fact that the degree of f did not drop, there is $a_{1} \in \mathbb{F}$ such that $f\left(a_{1}, \mathbf{a}\right)=g\left(a_{1}, \mathbf{a}\right)=0$
- Since $I_{a}=\left(g\left(x_{1}, \mathbf{a}\right)\right)$, if a_{1} is a root of $g\left(x_{1}, \mathbf{a}\right)$ then it is a root of any polynomial in I_{a} and thus $\left(a_{1}, \mathbf{a}\right)$ is a solution.
$\zeta \in V(I)$
- Solving Polynomial Equations
- Elimination Theorem
- Extension Theorem
- Resultants
- Conclusion
- Acknowledgements

Conclusion

- Today we learned about Elimination and Extension Theorems
- These results allow us to solve systems of polynomial equations
- Saw how Gröbner bases (w.r.t. lex order) behave nicely with respect to elimination
- Saw how Gröbner bases can help us extend partial solutions
- Saw how Resultant can help us in proving the Extension Theorem

Acknowledgement

- Lecture based entirely on the book by CLO: Ideals, varieties and algorithms (see course webpage for a copy - or get online version through UW library)

