Lecture 22: Black-Box Linear Algebra \& Wiedemann's Algorithm for Linear System Solving

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

April 4, 2021

Overview

- Administrivia
- Black-Box Linear Algebra
- Wiedemann's Algorithm
- Computing Minimal Polynomials of Krylov Sequences
- Conclusion

Rate this course!

Please log in to

https://evaluate.uwaterloo.ca/

Today is the last day to provide us (and the school) with your evaluation and feedback on the course!

- This would really help me figuring out what worked and what didn't for the course
- And let the school know if I was a good boy this term!
- Teaching this course is also a learning experience for me:)

- Administrivia

- Black-Box Linear Algebra
- Wiedemann's Algorithm
- Computing Minimal Polynomials of Krylov Sequences
- Conclusion

Generic Approach to Linear Algebra

- Problem: given an input matrix $A \in \mathbb{F}^{n \times m}$ and a vector $\mathbf{b} \in \mathbb{F}^{n}$, find a (all) solution(s) $\mathbf{y} \in \mathbb{F}^{m}$ to

$$
A \mathbf{y}=\mathbf{b}
$$

Generic Approach to Linear Algebra

- Problem: given an input matrix $A \in \mathbb{F}^{n \times m}$ and a vector $\mathbf{b} \in \mathbb{F}^{n}$, find a (all) solution(s) $\mathbf{y} \in \mathbb{F}^{m}$ to

$$
A \mathbf{y}=\mathbf{b}
$$

- Naive solution: Gaussian elimination
- Running time: $O\left(\max \{m, n\}^{3}\right)$

Generic Approach to Linear Algebra

- Problem: given an input matrix $A \in \mathbb{F}^{n \times m}$ and a vector $\mathbf{b} \in \mathbb{F}^{n}$, find a (all) solution(s) $\mathbf{y} \in \mathbb{F}^{m}$ to

$$
A \mathbf{y}=\mathbf{b}
$$

- Naive solution: Gaussian elimination
- Running time: $O\left(\max \{m, n\}^{3}\right)$
- If A is a square and invertible matrix (for simplicity), above problem amounts to inverting A

Generic Approach to Linear Algebra

- Problem: given an input matrix $A \in \mathbb{F}^{n \times m}$ and a vector $\mathbf{b} \in \mathbb{F}^{n}$, find a (all) solution(s) $\mathbf{y} \in \mathbb{F}^{m}$ to

$$
A \mathbf{y}=\mathbf{b}
$$

- Naive solution: Gaussian elimination
- Running time: $O\left(\max \{m, n\}^{3}\right)$
- If A is a square and invertible matrix (for simplicity), above problem amounts to inverting A
- Can invert matrices $O\left(n^{\omega}\right)$ time!

Generic Approach to Linear Algebra

- Problem: given an input matrix $A \in \mathbb{F}^{n \times m}$ and a vector $\mathbf{b} \in \mathbb{F}^{n}$, find a (all) solution(s) $\mathbf{y} \in \mathbb{F}^{m}$ to

$$
A \mathbf{y}=\mathbf{b}
$$

- Naive solution: Gaussian elimination
- Running time: $O\left(\max \{m, n\}^{3}\right)$
- If A is a square and invertible matrix (for simplicity), above problem amounts to inverting A
- Can invert matrices $O\left(n^{\omega}\right)$ time!
- Can we do better?

Black-Box Model

- An ubiquitous problem in scientific computing is to solve system of linear equations $A \mathbf{y}=\mathbf{b}$
(1) linear programming
(2) optimization
(3) polynomial multiplication
(3) factoring
(5) polynomial interpolation (DFT)
(0) computing GCD of polynomials (Resultants)
(3) many more

Black-Box Model

- An ubiquitous problem in scientific computing is to solve system of linear equations $A \mathbf{y}=\mathbf{b}$
(1) linear programming
(2) optimization
(3) polynomial multiplication
(3) factoring
(3) polynomial interpolation (DFT)
(0) computing GCD of polynomials (Resultants)
(7) many more
- Often times, the input matrix A has very special structure, can exploit this structure to obtain faster algorithms

Black-Box Model

- An ubiquitous problem in scientific computing is to solve system of linear equations $A \mathbf{y}=\mathbf{b}$
(1) linear programming
(2) optimization
(3) polynomial multiplication
(3) factoring
(3) polynomial interpolation (DFT)
(0) computing GCD of polynomials (Resultants)
(3) many more
- Often times, the input matrix A has very special structure, can exploit this structure to obtain faster algorithms
- Often times, given a vector c, we can evaluate Ac much faster than the naive $O\left(n^{2}\right)$ algorithm. Can use it to get faster algorithms for linear system solving.

Black-Box Model

- An ubiquitous problem in scientific computing is to solve system of linear equations $A \mathbf{y}=\mathbf{b}$
(1) linear programming
(2) optimization
(3) polynomial multiplication
(3) factoring
(3) polynomial interpolation (DFT)
(0) computing GCD of polynomials (Resultants)
(3) many more
- Often times, the input matrix A has very special structure, can exploit this structure to obtain faster algorithms
- Often times, given a vector c, we can evaluate Ac much faster than the naive $O\left(n^{2}\right)$ algorithm. Can use it to get faster algorithms for linear system solving.
- We have already done that many times!

Black-Box Model: Example

- Often times, the input matrix $A \in \mathbb{F}^{n \times n}$ has very special structure, can exploit this structure to obtain faster algorithms

Black-Box Model: Example

- Often times, the input matrix $A \in \mathbb{F}^{n \times n}$ has very special structure, can exploit this structure to obtain faster algorithms
- Discrete Fourier Transform: $n=2^{k}, z=e^{2 \pi i / n}$.

$$
A=V\left(1, z, z^{2}, \ldots, z^{n-1}\right)
$$

Black-Box Model: Example

- Often times, the input matrix $A \in \mathbb{F}^{n \times n}$ has very special structure, can exploit this structure to obtain faster algorithms
- Discrete Fourier Transform: $n=2^{k}, z=e^{2 \pi i / n}$.

$$
A=V\left(1, z, z^{2}, \ldots, z^{n-1}\right)
$$

- We know that

$$
A^{-1}=V\left(1, z^{-1}, z^{-2}, \ldots, z^{1-n}\right)^{\top} \cdot \frac{1}{n}
$$

Black-Box Model: Example

- Often times, the input matrix $A \in \mathbb{F}^{n \times n}$ has very special structure, can exploit this structure to obtain faster algorithms
- Discrete Fourier Transform: $n=2^{k}, z=e^{2 \pi i / n}$.

$$
A=V\left(1, z, z^{2}, \ldots, z^{n-1}\right)
$$

- We know that

$$
A^{-1}=V\left(1, z^{-1}, z^{-2}, \ldots, z^{1-n}\right)
$$

- Know that $\mathbf{y}=A^{-1} \mathbf{b}$, so
cost to solve the system $=$ cost to multiply DFT matrix by vector

$$
A^{-1} \mathbf{b}
$$

Black-Box Model: Example

- Often times, the input matrix $A \in \mathbb{F}^{n \times n}$ has very special structure, can exploit this structure to obtain faster algorithms
- Discrete Fourier Transform: $n=2^{k}, z=e^{2 \pi i / n}$.

$$
A=V\left(1, z, z^{2}, \ldots, z^{n-1}\right)
$$

- We know that

$$
A^{-1}=V\left(1, z^{-1}, z^{-2}, \ldots, z^{1-n}\right)
$$

- Know that $\mathbf{y}=A^{-1} \mathbf{b}$, so
cost to solve the system $=$ cost to multiply DFT matrix by vector

$$
A^{-1} \mathbf{b}
$$

- Saw that this cost is $O(n \log n)$, which is much faster than $O\left(n^{\omega}\right)$

Cost of Evaluation

- Often times, given a vector \mathbf{b}, we can evaluate $A \mathbf{b}$ much faster than the naive $O\left(n^{2}\right)$ algorithm. Can use it to get faster algorithms

Cost of Evaluation

- Often times, given a vector \mathbf{b}, we can evaluate $A \mathbf{b}$ much faster than the naive $O\left(n^{2}\right)$ algorithm. Can use it to get faster algorithms
- Let $c(A)$ be the cost of multiplying A by any vector \mathbf{b}, and $M(n)$ the cost of multiplying two degree n polynomials

Class of matrices
general
Sylvester Matrix
DFT
Vandermonde matrix
Berlekamp matrix over \mathbb{F}_{q}
Sparse matrix with s non-zero entries
Toeplitz matrix
$c(A)$
$2 n^{2}-2$
$O(M(n))$
$O(n \log n)$
$O(M(n) \log n)$
$O(M(n) \log q)$
$2 s$
$O(M(n)) \leftarrow$

Cost of Evaluation

- Often times, given a vector \mathbf{b}, we can evaluate $A \mathbf{b}$ much faster than the naive $O\left(n^{2}\right)$ algorithm. Can use it to get faster algorithms
- Let $c(A)$ be the cost of multiplying A by any vector \mathbf{b}, and $M(n)$ the cost of multiplying two degree n polynomials

Class of matrices	$c(A)$
general	$2 n^{2}-2$
Sylvester Matrix	$O(M(n))$
DFT	$O(n \log n)$
Vandermonde matrix	$O(M(n) \log n)$
Berlekamp matrix over \mathbb{F}_{q}	$O(M(n) \log q)$
Sparse matrix with s non-zero entries	$2 s$
Toeplitz matrix	$O(M(n))$

- And these matrices appear quite often in practical applications!
input:

task: solve linear system $A y=b$ by using blach-bax.
- Administrivia
- Black-Box Linear Algebra
- Wiedemann's Algorithm
- Computing Minimal Polynomials of Krylov Sequences
- Conclusion

Wiedemann's Idea

- Problem: given an input invertible matrix $A \in \mathbb{F}^{n \times n}$ and a vector $\mathbf{b} \in \mathbb{F}^{n}$, find the solution $\mathbf{y} \in \mathbb{F}^{n}$ to

$$
A \mathbf{y}=\mathbf{b}
$$

$$
y=A^{-1} b
$$

- Cost of multiplying A by any vector: $c(A)$

Wiedemann's Idea

- Problem: given an input invertible matrix $A \in \mathbb{F}^{n \times n}$ and a vector $\mathbf{b} \in \mathbb{F}^{n}$, find the solution $\mathbf{y} \in \mathbb{F}^{n}$ to

$$
A \mathbf{y}=\mathbf{b}
$$

- Cost of multiplying A by any vector: $c(A)$
- We need to compute $A^{-1} b$.

Wiedemann's Idea

- Problem: given an input invertible matrix $A \in \mathbb{F}^{n \times n}$ and a vector $\mathbf{b} \in \mathbb{F}^{n}$, find the solution $\mathbf{y} \in \mathbb{F}^{n}$ to

$$
A \mathbf{y}=\mathbf{b}
$$

- Cost of multiplying A by any vector: $c(A)$
- We need to compute $A^{-1} b$.
- Let $p_{A}(x)$ be the characteristic polynomial of A

$$
\begin{aligned}
& p_{A}(x)=x^{n}+f_{n-1} x^{n-1}+\cdots+f_{1} x+\frac{(-1)^{n} \operatorname{det}(A)}{\neq 0} \\
& \operatorname{det}(x I-A)
\end{aligned}
$$

$$
p_{A}(x)=\operatorname{det}(x I-A)
$$

Wiedemann's Idea

- Problem: given an input invertible matrix $A \in \mathbb{F}^{n \times n}$ and a vector $\mathbf{b} \in \mathbb{F}^{n}$, find the solution $\mathbf{y} \in \mathbb{F}^{n}$ to

$$
A \mathbf{y}=\mathbf{b}
$$

- Cost of multiplying A by any vector: $c(A)$
- We need to compute $A^{-1} b$.
- Let $p_{A}(x)$ be the characteristic polynomial of A

$$
p_{A}(x)=x^{n}+f_{n-1} x^{n-1}+\cdots+f_{1} x+(-1)^{n} \operatorname{det}(A)
$$

- By Cayley-Hamilton, we know that $p_{A}(A)=0$

$$
\begin{array}{r}
p_{A}(A)=0=A^{n}+f_{n-1} A^{n-1}+\cdots+f_{1} A+(-1)^{n} \operatorname{det}(A) \cdot 1 \\
0 \cdot b=\stackrel{\rightharpoonup}{0}=A^{n} \vec{b}+f_{n-1} A^{n-1} \stackrel{b}{b}+\cdots+f_{1} A_{b}+(-1)^{n} \operatorname{det}(A) \cdot \frac{1}{b}
\end{array}
$$

Wiedemann's Idea

- Problem: given an input invertible matrix $A \in \mathbb{F}^{n \times n}$ and a vector $\mathbf{b} \in \mathbb{F}^{n}$, find the solution $\mathbf{y} \in \mathbb{F}^{n}$ to

$$
A \mathbf{y}=\mathbf{b}
$$

- Cost of multiplying A by any vector: $c(A)$
- We need to compute $A^{-1} b$.
- Let $p_{A}(x)$ be the characteristic polynomial of A

$$
p_{A}(x)=x^{n}+f_{n-1} x^{n-1}+\cdots+f_{1} x+(-1)^{n} \operatorname{det}(A)
$$

- By Cayley-Hamilton, we know that $p_{A}(A)=0$

$$
p_{A}(A)=0=A^{n}+f_{n-1} A^{n-1}+\cdots+f_{1} A+(-1)^{n} \operatorname{det}(A) \cdot I
$$

- Multiplying by b, we get:

$$
(-1)^{n+1} \operatorname{det}(A) \cdot \mathbf{b}=A \cdot \underbrace{\left(A^{n-1}+f_{n-1} A^{n-2}+\cdots+f_{1} I\right)}_{M} \cdot \mathbf{b}
$$

Wiedemann's Idea

$$
\begin{aligned}
& (-1)^{n+1} \cdot \operatorname{det}(A) \cdot \vec{b}=A \cdot \mu \cdot \vec{b} \\
& (-1)^{n+1} \operatorname{det}(A) \cdot A^{-1} \vec{b}=\mu \cdot b \\
& \frac{\mu}{(-1)^{n+1} \operatorname{det}(A)}=A^{-1}
\end{aligned}
$$

M con be computed from charectaintic polynomial of A :

Wiedemann's Algorithm

- Problem: given an input invertible matrix $A \in \mathbb{F}^{n \times n}$ and a vector $\mathbf{b} \in \mathbb{F}^{n}$, find the solution $\mathbf{y} \in \mathbb{F}^{n}$ to

$$
A \mathbf{y}=\mathbf{b}
$$

- A's characteristic polynomial can be used to compute the inverse!

Wiedemann's Algorithm

- Problem: given an input invertible matrix $A \in \mathbb{F}^{n \times n}$ and a vector $\mathbf{b} \in \mathbb{F}^{n}$, find the solution $\mathbf{y} \in \mathbb{F}^{n}$ to

$$
A \mathbf{y}=\mathbf{b}
$$

- A's characteristic polynomial can be used to compute the inverse!
- If we pay closer attention, any annihilating polynomial of the Krylov sequence $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$ works!

Can use the minimal polynomial of $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$

$$
\begin{aligned}
& m(x)=x^{d}+m_{d-1} x^{d-1}, r m_{1} x+m_{0} \\
& m(x) \mid \underbrace{p_{A}(x)}_{\text {abs characteristic preynomial of }\left(4^{\prime} b\right)_{i>0}} \\
& m_{0} \mid(-1)^{n} \operatorname{det}(A) \Rightarrow m_{0} \neq 0
\end{aligned}
$$

Wiedemann's Algorithm

- Problem: given an input invertible matrix $A \in \mathbb{F}^{n \times n}$ and a vector $\mathbf{b} \in \mathbb{F}^{n}$, find the solution $\mathbf{y} \in \mathbb{F}^{n}$ to

$$
A \mathbf{y}=\mathbf{b}
$$

- A's characteristic polynomial can be used to compute the inverse!
- If we pay closer attention, any annihilating polynomial of the Krylov sequence $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$ works!

Can use the minimal polynomial of $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$

- Wiedemann's Algorithm: on input $A \in \mathbb{F}^{n \times n}$ invertible and $\mathbf{b} \in \mathbb{F}^{n}$
(1) Compute the minimal polynomial $m(x)$ of the Krylov sequence $\left(A^{\prime} \mathbf{b}\right)_{i \geq 0}$

$$
m(x)=m_{d} x^{d}+\cdots+m_{1} x+m_{0}
$$

Wiedemann's Algorithm

- Problem: given an input invertible matrix $A \in \mathbb{F}^{n \times n}$ and a vector $\mathbf{b} \in \mathbb{F}^{n}$, find the solution $\mathbf{y} \in \mathbb{F}^{n}$ to

$$
A \mathbf{y}=\mathbf{b}
$$

- A's characteristic polynomial can be used to compute the inverse!
- If we pay closer attention, any annihilating polynomial of the Krylov sequence $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$ works!

Can use the minimal polynomial of $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$

- Wiedemann's Algorithm: on input $A \in \mathbb{F}^{n \times n}$ invertible and $\mathbf{b} \in \mathbb{F}^{n}$
(1) Compute the minimal polynomial $m(x)$ of the Krylov sequence $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$

$$
m(x)=m_{d} x^{d}+\cdots+m_{1} x+m_{0}
$$

(2) compute $\left.h(x)=-\frac{m(x)-m_{0}}{m_{0} \cdot x}\right\}$ well-defined m. $\neq 0$
(3) compute $\mathbf{y}=h(A) \cdot \mathbf{b}$ using Horner's rule and black ber eveludion

Wiedemann's Algorithm

- Problem: given an input invertible matrix $A \in \mathbb{F}^{n \times n}$ and a vector $\mathbf{b} \in \mathbb{F}^{n}$, find the solution $\mathbf{y} \in \mathbb{F}^{n}$ to

$$
A \mathbf{y}=\mathbf{b}
$$

- A's characteristic polynomial can be used to compute the inverse!
- If we pay closer attention, any annihilating polynomial of the Krylov sequence $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$ works!

Can use the minimal polynomial of $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$

- Wiedemann's Algorithm: on input $A \in \mathbb{F}^{n \times n}$ invertible and $\mathbf{b} \in \mathbb{F}^{n}$
(1) Compute the minimal polynomial $m(x)$ of the Krylov sequence $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$

$$
m(x)=m_{d} x^{d}+\cdots+m_{1} x+m_{0}
$$

(2) compute $h(x)=-\frac{m(x)-m_{0}}{m_{0} \cdot x}$
(3) compute $\mathbf{y}=h(A) \cdot \mathbf{b}$ using Horner's rule
(9) return \mathbf{y}

$$
\begin{gathered}
m(x)=x_{0}^{d}+m_{d, 1} x^{d-1} r+m_{1} x+m_{0} \\
b, A b, A^{2} b, \ldots, A^{d} b \\
0=A^{d} b+m_{d-1} A^{d-1} b+\cdots+m_{1} A b+m_{0} \cdot b \\
-m_{0} b=A\left(\frac{\left.A^{d-1} b+m_{d-1} A^{d-2} b+\cdots+m_{1} b\right)}{x^{d-1}+m_{d-1} x^{d-2} r+m_{2} x+m_{1}}\right. \\
=\frac{m(x)-m_{0}}{x} \\
A^{-1} b=\frac{1}{-m_{0}} \cdot \underbrace{h(A) \cdot b}_{\frac{\left(A^{d-1} b+m_{d-1} \cdot A^{d-2} b+\cdots+m_{1} b\right)}{m_{(x)-m_{0}}^{-m_{0} x}}=h(x)}
\end{gathered}
$$

Wiedemann's Algorithm: Correctness

- A is invertible, then $p_{A}(0)=(-1)^{n} \operatorname{det}(A) \neq 0$

Constant term of characteristic polynomial

Wiedemann's Algorithm: Correctness

- A is invertible, then $p_{A}(0)=(-1)^{n} \operatorname{det}(A) \neq 0$
- Minimal polynomial $m(x)$ divides $p_{A}(x)$, so $m_{0} \neq 0$

Thus, we can always compute $h(x)=-\frac{m(x)-m_{0}}{m_{0} x}$

Wiedemann's Algorithm: Correctness

- A is invertible, then $p_{A}(0)=(-1)^{n} \operatorname{det}(A) \neq 0$
- Minimal polynomial $m(x)$ divides $p_{A}(x)$, so $m_{0} \neq 0$

Thus, we can always compute $h(x)=-\frac{m(x)-m_{0}}{m_{0} x}$

- $m(x)$ is minimal polynomial then

$$
A^{d} \mathbf{b}+m_{d-1} A^{d-1} \mathbf{b}+\cdots+m_{1} A \mathbf{b}+m_{0} \mathbf{b}=\mathbf{0}
$$

Wiedemann's Algorithm: Correctness

- A is invertible, then $p_{A}(0)=(-1)^{n} \operatorname{det}(A) \neq 0$
- Minimal polynomial $m(x)$ divides $p_{A}(x)$, so $m_{0} \neq 0$

Thus, we can always compute $h(x)=-\frac{m(x)-m_{0}}{m_{0} x}$

- $m(x)$ is minimal polynomial then

$$
A^{d} \mathbf{b}+m_{d-1} A^{d-1} \mathbf{b}+\cdots+m_{1} A \mathbf{b}+m_{0} \mathbf{b}=\mathbf{0}
$$

- Rearranging, we get

$$
h(A) \cdot \mathbf{b}=A^{-1} \mathbf{b}
$$

Wiedemann's Algorithm: Runtime Analysis

- For Wiedemann's algorithm, all we need to do is:
(1) Compute minimal polynomial of $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$
(2) Compute $h(x)$ from the minimal polynomial
(3) Use Horner's rule and matrix-vector multiplication to compute $h(A) \mathbf{b}$

Wiedemann's Algorithm: Runtime Analysis

- For Wiedemann's algorithm, all we need to do is:
(1) Compute minimal polynomial of $A^{i} \mathbf{b}$
(2) Compute $h(x)$ from the minimal polynomial
(3) Use Horner's rule and matrix-vector multiplication to compute $h(A) \mathbf{b}$
- Running time of each step:
(1) Next part of lecture
(2) $O(n)$ time
(3) This takes d matrix-vector multiplications and $O(d)$ vector additions, so running time $O(d \cdot c(A)+d n)$

Since $d \leq n$, the above is in the worst case $O\left(n \cdot c(A)+n^{2}\right)$
$d:=$ degree of minimal plynmial
of $\left(A^{\prime} b\right)_{i \geqslant 0}$.

Wiedemann's Algorithm: Runtime Analysis

- For Wiedemann's algorithm, all we need to do is:
(1) Compute minimal polynomial of $A^{i} \mathbf{b}$
(2) Compute $h(x)$ from the minimal polynomial
(3) Use Horner's rule and matrix-vector multiplication to compute $h(A) \mathbf{b}$
- Running time of each step:
(1) Next part of lecture
(2) $O(n)$ time
(3) This takes d matrix-vector multiplications and $O(d)$ vector additions, so running time $O(d \cdot c(A)+d n)$

Since $d \leq n$, the above is in the worst case $O\left(n \cdot c(A)+n^{2}\right)$

- Much better than n^{ω} for all the cases that we discussed!

Wiedemann's Algorithm: Runtime Analysis

- For Wiedemann's algorithm, all we need to do is:
(1) Compute minimal polynomial of $A^{i} \mathbf{b}$
(2) Compute $h(x)$ from the minimal polynomial
(3) Use Horner's rule and matrix-vector multiplication to compute $h(A) \mathbf{b}$
- Running time of each step:
(1) Next part of lecture
(2) $O(n)$ time
(3) This takes d matrix-vector multiplications and $O(d)$ vector additions, so running time $O(d \cdot c(A)+d n)$

Since $d \leq n$, the above is in the worst case $O\left(n \cdot c(A)+n^{2}\right)$

- Much better than n^{ω} for all the cases that we discussed!
- Well, only if we can compute the minimal polynomial really fast...
- Administrivia
- Black-Box Linear Algebra
- Wiedemann's Algorithm
- Computing Minimal Polynomials of Krylov Sequences
- Conclusion

Minimal Polynomials of Krylov Subspaces

- Last lecture: minimal polynomials of sequences of field elements
$\left(a_{i}\right)_{i \geqslant 0} \quad a_{i} \in \mathbb{F}$
${ }^{1}$ If \mathbb{F} has enough elements.

Minimal Polynomials of Krylov Subspaces

- Last lecture: minimal polynomials of sequences of field elements
- Krylov subspaces are sequences in \mathbb{F}^{n}. How to compute minimal polynomials in this case?
${ }^{1}$ If \mathbb{F} has enough elements.

Minimal Polynomials of Krylov Subspaces

- Last lecture: minimal polynomials of sequences of field elements
- Krylov subspaces are sequences in \mathbb{F}^{n}. How to compute minimal polynomials in this case?
- Idea: convert sequences in \mathbb{F}^{n} to sequences over \mathbb{F} !

Minimal Polynomials of Krylov Subspaces

- Last lecture: minimal polynomials of sequences of field elements
- Krylov subspaces are sequences in \mathbb{F}^{n}. How to compute minimal polynomials in this case?
- Idea: convert sequences in \mathbb{F}^{n} to sequences over \mathbb{F} !
- Key Lemma: Given a random $\mathbf{u} \in \mathbb{F}^{n}$, the sequences

$$
\left(A^{i} \mathbf{b}\right)_{i \geq 0}, \quad \text { and } \quad\left(\mathbf{u}^{T} A^{i} \mathbf{b}\right)_{i \geq 0}
$$

have the same minimal polynomial with high probability! ${ }^{1}$
$u^{\top} A^{\prime} b \in \mathbb{F}$

Minimal Polynomials of Krylov Subspaces

- Last lecture: minimal polynomials of sequences of field elements
- Krylov subspaces are sequences in \mathbb{F}^{n}. How to compute minimal polynomials in this case?
- Idea: convert sequences in \mathbb{F}^{n} to sequences over \mathbb{F} !
- Key Lemma: Given a random $\mathbf{u} \in \mathbb{F}^{n}$, the sequences

$$
\left(A^{i} \mathbf{b}\right)_{i \geq 0}, \quad \text { and } \quad\left(\mathbf{u}^{T} A^{i} \mathbf{b}\right)_{i \geq 0}
$$

have the same minimal polynomial with high probability! ${ }^{1}$

- Algorithm: input $A \in \mathbb{F}^{n \times n}, \mathbf{b} \in \mathbb{F}^{n}$
(1) If $\mathbf{b}=\mathbf{0}$, return 1

Minimal Polynomials of Krylov Subspaces

- Last lecture: minimal polynomials of sequences of field elements
- Krylov subspaces are sequences in \mathbb{F}^{n}. How to compute minimal polynomials in this case?
- Idea: convert sequences in \mathbb{F}^{n} to sequences over \mathbb{F} !
- Key Lemma: Given a random $\mathbf{u} \in \mathbb{F}^{n}$, the sequences

$$
\left(A^{i} \mathbf{b}\right)_{i \geq 0}, \quad \text { and } \quad\left(\mathbf{u}^{T} A^{i} \mathbf{b}\right)_{i \geq 0}
$$

have the same minimal polynomial with high probability! ${ }^{1}$

- Algorithm: input $A \in \mathbb{F}^{n \times n}, \mathbf{b} \in \mathbb{F}^{n}$
(1) If $\mathbf{b}=\mathbf{0}$, return 1
(2) $\mathbf{u} \in U^{n}$ uniformly at random, $U \subset \mathbb{F}$ is a large enough finite set

Minimal Polynomials of Krylov Subspaces

- Last lecture: minimal polynomials of sequences of field elements
- Krylov subspaces are sequences in \mathbb{F}^{n}. How to compute minimal polynomials in this case?
- Idea: convert sequences in \mathbb{F}^{n} to sequences over \mathbb{F} !
- Key Lemma: Given a random $\mathbf{u} \in \mathbb{F}^{n}$, the sequences

$$
\left(A^{i} \mathbf{b}\right)_{i \geq 0}, \quad \text { and } \quad\left(\mathbf{u}^{T} A^{i} \mathbf{b}\right)_{i \geq 0}
$$

have the same minimal polynomial with high probability! ${ }^{1}$

- Algorithm: input $A \in \mathbb{F}^{n \times n}, \mathbf{b} \in \mathbb{F}^{n}$
(1) If $\mathbf{b}=\mathbf{0}$, return 1
(2) $\mathbf{u} \in U^{n}$ uniformly at random, $U \subset \mathbb{F}$ is a large enough finite set
(3) Use algorithm from previous lecture to compute $m(x)$ minimal polynomial of $\left(\mathbf{u}^{\top} A^{i} \mathbf{b}\right)_{i \geqslant 0}$

Minimal Polynomials of Krylov Subspaces

- Last lecture: minimal polynomials of sequences of field elements
- Krylov subspaces are sequences in \mathbb{F}^{n}. How to compute minimal polynomials in this case?
- Idea: convert sequences in \mathbb{F}^{n} to sequences over \mathbb{F} !
- Key Lemma: Given a random $\mathbf{u} \in \mathbb{F}^{n}$, the sequences

$$
\left(A^{i} \mathbf{b}\right)_{i \geq 0}, \quad \text { and } \quad\left(\mathbf{u}^{T} A^{i} \mathbf{b}\right)_{i \geq 0}
$$

have the same minimal polynomial with high probability! ${ }^{1}$

- Algorithm: input $A \in \mathbb{F}^{n \times n}, \mathbf{b} \in \mathbb{F}^{n}$
(1) If $\mathbf{b}=\mathbf{0}$, return 1
(2) $\mathbf{u} \in U^{n}$ uniformly at random, $U \subset \mathbb{F}$ is a large enough finite set
(3) Use algorithm from previous lecture to compute $m(x)$ minimal polynomial of $\mathbf{u}^{T} A^{i} \mathbf{b}$.
(9) If $m(A) \mathbf{b}=\mathbf{0}$ return $m(x)$, else return to step (2)

${ }^{1}$ If \mathbb{F} has enough elements.

$$
\begin{aligned}
& \left(A^{i}\right)_{i \geqslant 0} \quad A \in \mathbb{F}^{n \times n} \\
& (x+1)\left(x^{2}\right)\left(y_{-1}\right)=\underbrace{p_{A}(x)}_{\text {minimal polynomial }} \quad A=\left(\begin{array}{ll}
1 & \\
& 2
\end{array}\right) \\
& \left(A^{i} \bar{O}\right)_{i>0}=(\bar{O})_{i z o} \\
& \text { minind polynmial } 1 \\
& \left(A^{i}\left(\begin{array}{l}
!
\end{array}\right)\right)_{i \geqslant 0}=\left(\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right)_{i \geqslant 0} \\
& (m(x)) \ni p_{A}(x)
\end{aligned}
$$

Example

- $\mathbb{F}=\mathbb{F}_{5}, \mathbb{Z} / 5 \mathbb{Z}$

$$
A=\left(\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 0 & 3 \\
1 & 2 & -1
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)
$$

Example

- $\mathbb{F}=\mathbb{F}_{5}$

$$
A=\left(\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 0 & 3 \\
1 & 2 & -1
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)
$$

- Minimal polynomial for $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$ is $m(x)=x^{3}+3 x+1$

$$
\begin{aligned}
& A b=\left(\begin{array}{l}
0 \\
3 \\
3
\end{array}\right) \quad A^{2} b=A(A b)=\left(\begin{array}{c}
-1 \\
-1 \\
3
\end{array}\right) \\
& A^{3} b=A\left(A^{2} b\right)=\left(\begin{array}{c}
-3 \\
0 \\
-1
\end{array}\right) \\
& A^{3} b+3 A b+b=\left(\begin{array}{c}
-3 \\
0 \\
-1
\end{array}\right)+3\left(\begin{array}{l}
0 \\
3 \\
3
\end{array}\right)+\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Example

- $\mathbb{F}=\mathbb{F}_{5}$

$$
A=\left(\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 0 & 3 \\
1 & 2 & -1
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)
$$

- Minimal polynomial for $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$ is $m(x)=x^{3}+3 x+1$
- If we picked $\mathbf{u}=(1,0,0)^{T} \in \mathbb{F}_{5}^{3}$ we would get the sequence

$$
\left(\mathbf{u}^{T} A^{i} \mathbf{b}\right)_{i \geq 0}=\underbrace{(3,0,4,2,3,0, \cdots)}_{6 \text { values }}, \begin{gathered}
\text { ensegh } \\
\text { onitho }
\end{gathered}
$$

Example

- $\mathbb{F}=\mathbb{F}_{5}$

$$
A=\left(\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 0 & 3 \\
1 & 2 & -1
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)
$$

- Minimal polynomial for $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$ is $m(x)=x^{3}+3 x+1$
- If we picked $\mathbf{u}=(1,0,0)^{T} \in \mathbb{F}_{5}^{3}$ we would get the sequence

$$
\left(\mathbf{u}^{T} A^{i} \mathbf{b}\right)_{i \geq 0}=(3,0,4,2,3,0, \cdots)
$$

- Minimal polynomial for this sequence is $m(x)=x^{2}+2 x+2$ NOT minimal polynomial of $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$, but divides it (as it must happen)
$\begin{aligned}\left(x^{2}+2 x+2\right)(x-2) & =x^{3}-2 x^{2}+2 x^{2}-4 x+2 x-4 \\ & =x^{3}+3 x+1\end{aligned}$

$$
A^{2} b+2 A b+2 b \neq 0
$$

Example

- $\mathbb{F}=\mathbb{F}_{5}$

$$
A=\left(\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 0 & 3 \\
1 & 2 & -1
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)
$$

- Minimal polynomial for $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$ is $m(x)=x^{3}+3 x+1$
- If we picked $\mathbf{u}=(1,0,0)^{T} \in \mathbb{F}_{5}^{3}$ we would get the sequence

$$
\left(\mathbf{u}^{T} A^{i} \mathbf{b}\right)_{i \geq 0}=(3,0,4,2,3,0, \cdots)
$$

- Minimal polynomial for this sequence is $m(x)=x^{2}+2 x+2$

NOT minimal polynomial of $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$, but divides it (as it must happen)

- Picking $\mathbf{u}=(1,2,0)^{T}$, we get minimal polynomial $m(x)=x^{3}+3 x+1$

Probability of Success

- Why would most $\mathbf{u} \in \mathbb{F}^{n}$ work?
- Assume that the degree of the minimal polynomial of $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$ is d

Probability of Success

- Why would most $\mathbf{u} \in \mathbb{F}^{n}$ work?
- Assume that the degree of the minimal polynomial of $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$ is d
- There exists a polynomial $R_{A, \mathbf{b}}\left(x_{1}, \ldots, x_{n}\right)$ of degree d such that $\left(\mathbf{u}^{T} A^{i} \mathbf{b}\right)_{i \geq 0}$ has the same minimal polynomial as $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$ iff

$$
R_{A, \mathbf{b}}(\mathbf{u}) \neq 0
$$

Probability of Success

- Why would most $\mathbf{u} \in \mathbb{F}^{n}$ work?
- Assume that the degree of the minimal polynomial of $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$ is d
- There exists a polynomial $R_{A, \mathbf{b}}\left(x_{1}, \ldots, x_{n}\right)$ of degree d such that $\left(\mathbf{u}^{T} A^{i} \mathbf{b}\right)_{i \geq 0}$ has the same minimal polynomial as $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$ iff

$$
R_{A, \mathbf{b}}(\mathbf{u}) \neq 0
$$

- Proof is a bit involved

Probability of Success

- Why would most $\mathbf{u} \in \mathbb{F}^{n}$ work?
- Assume that the degree of the minimal polynomial of $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$ is d
- There exists a polynomial $R_{A, \mathbf{b}}\left(x_{1}, \ldots, x_{n}\right)$ of degree d such that $\left(\mathbf{u}^{T} A^{i} \mathbf{b}\right)_{i \geq 0}$ has the same minimal polynomial as $\left(A^{i} \mathbf{b}\right)_{i \geq 0}$ iff
u is geod

$$
R_{A, \mathbf{b}}(\mathbf{u}) \neq 0
$$

- Proof is a bit involved
- Thus, by using the Schwarz-Zippel lemma, if $|U|>t d$, then

Wiedemann's Algorithm: Runtime Analysis

- For Wiedemann's algorithm, all we need to do is:
(1) Compute minimal polynomial of $A^{i} \mathbf{b}$
(2) Compute $h(x)$ from the minimal polynomial
(3) Use Horner's rule and matrix-vector multiplication to compute $h(A) \mathbf{b}$

Wiedemann's Algorithm: Runtime Analysis

- For Wiedemann's algorithm, all we need to do is:
(1) Compute minimal polynomial of $A^{i} \mathbf{b}$
(2) Compute $h(x)$ from the minimal polynomial
(3) Use Horner's rule and matrix-vector multiplication to compute $h(A) \mathbf{b}$
- Running time of each step:
(1) Same number of operations as it takes to compute minimal polynomial of $\left(\mathbf{u}^{T} A^{i} \mathbf{b}\right)_{i \geq 0}$

From last class: $O(M(d) \log d+d \cdot c(A))$

Wiedemann's Algorithm: Runtime Analysis

- For Wiedemann's algorithm, all we need to do is:
(1) Compute minimal polynomial of $A^{i} \mathbf{b}$
(2) Compute $h(x)$ from the minimal polynomial
(3) Use Horner's rule and matrix-vector multiplication to compute $h(A) \mathbf{b}$
- Running time of each step:
(1) Same number of operations as it takes to compute minimal polynomial of $\left(\mathbf{u}^{T} A^{i} \mathbf{b}\right)_{i \geq 0}$

From last class: $O(M(d) \log d+d \cdot c(A))$
(2) $O(n)$ time
(3) This takes d matrix-vector multiplications and $O(d)$ vector additions, so running time $O(d \cdot c(A)+d n)$

Since $d \leq n$, the above is in the worst case $O\left(n \cdot c(A)+n^{2}\right)$

- Much better than n^{ω} for all the cases that we discussed!
$O\left(M(n) \log n+n \cdot c(A)+n^{2}\right)$

Conclusion

- Today we learned about black-box model for linear algebra
- Very useful for linear system solving (ubiquitous in CS and scientific computing, ML, etc!)
- Saw how to use Krylov subspaces to solve linear systems Wiedemann's algorithm
- Very fast algorithms for special classes of matrices of interest!

References I

E von zur Gathen, J. and Gerhard, J. 2013.
Modern Computer Algebra
Cambridge University Press

$$
\text { Chapter } 12
$$

