
Lecture 22: Black-Box Linear Algebra & Wiedemann’s
Algorithm for Linear System Solving

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

April 4, 2021

1 / 65

Overview

Administrivia

Black-Box Linear Algebra

Wiedemann’s Algorithm

Computing Minimal Polynomials of Krylov Sequences

Conclusion

2 / 65

Rate this course!

Please log in to

https://evaluate.uwaterloo.ca/

Today is the last day to provide us (and the school) with your evaluation
and feedback on the course!

This would really help me figuring out what worked and what didn’t
for the course

And let the school know if I was a good boy this term!

Teaching this course is also a learning experience for me :)

3 / 65

Administrivia

Black-Box Linear Algebra

Wiedemann’s Algorithm

Computing Minimal Polynomials of Krylov Sequences

Conclusion

4 / 65

Generic Approach to Linear Algebra

Problem: given an input matrix A ∈ Fn×m and a vector b ∈ Fn, find
a (all) solution(s) y ∈ Fm to

Ay = b

Naive solution: Gaussian elimination

Running time: O(max{m, n}3)

If A is a square and invertible matrix (for simplicity), above problem
amounts to inverting A

Can invert matrices O(nω) time!

Can we do better?

5 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Generic Approach to Linear Algebra

Problem: given an input matrix A ∈ Fn×m and a vector b ∈ Fn, find
a (all) solution(s) y ∈ Fm to

Ay = b

Naive solution: Gaussian elimination

Running time: O(max{m, n}3)

If A is a square and invertible matrix (for simplicity), above problem
amounts to inverting A

Can invert matrices O(nω) time!

Can we do better?

6 / 65

Generic Approach to Linear Algebra

Problem: given an input matrix A ∈ Fn×m and a vector b ∈ Fn, find
a (all) solution(s) y ∈ Fm to

Ay = b

Naive solution: Gaussian elimination

Running time: O(max{m, n}3)

If A is a square and invertible matrix (for simplicity), above problem
amounts to inverting A

Can invert matrices O(nω) time!

Can we do better?

7 / 65

Generic Approach to Linear Algebra

Problem: given an input matrix A ∈ Fn×m and a vector b ∈ Fn, find
a (all) solution(s) y ∈ Fm to

Ay = b

Naive solution: Gaussian elimination

Running time: O(max{m, n}3)

If A is a square and invertible matrix (for simplicity), above problem
amounts to inverting A

Can invert matrices O(nω) time!

Can we do better?

8 / 65

Generic Approach to Linear Algebra

Problem: given an input matrix A ∈ Fn×m and a vector b ∈ Fn, find
a (all) solution(s) y ∈ Fm to

Ay = b

Naive solution: Gaussian elimination

Running time: O(max{m, n}3)

If A is a square and invertible matrix (for simplicity), above problem
amounts to inverting A

Can invert matrices O(nω) time!

Can we do better?

9 / 65

Black-Box Model

An ubiquitous problem in scientific computing is to solve system of
linear equations Ay = b

1 linear programming
2 optimization
3 polynomial multiplication
4 factoring
5 polynomial interpolation (DFT)
6 computing GCD of polynomials (Resultants)
7 many more

Often times, the input matrix A has very special structure, can exploit
this structure to obtain faster algorithms

Often times, given a vector c, we can evaluate Ac much faster than
the naive O(n2) algorithm. Can use it to get faster algorithms for
linear system solving.

We have already done that many times!

10 / 65

Black-Box Model

An ubiquitous problem in scientific computing is to solve system of
linear equations Ay = b

1 linear programming
2 optimization
3 polynomial multiplication
4 factoring
5 polynomial interpolation (DFT)
6 computing GCD of polynomials (Resultants)
7 many more

Often times, the input matrix A has very special structure, can exploit
this structure to obtain faster algorithms

Often times, given a vector c, we can evaluate Ac much faster than
the naive O(n2) algorithm. Can use it to get faster algorithms for
linear system solving.

We have already done that many times!

11 / 65

Black-Box Model

An ubiquitous problem in scientific computing is to solve system of
linear equations Ay = b

1 linear programming
2 optimization
3 polynomial multiplication
4 factoring
5 polynomial interpolation (DFT)
6 computing GCD of polynomials (Resultants)
7 many more

Often times, the input matrix A has very special structure, can exploit
this structure to obtain faster algorithms

Often times, given a vector c, we can evaluate Ac much faster than
the naive O(n2) algorithm. Can use it to get faster algorithms for
linear system solving.

We have already done that many times!

12 / 65

Black-Box Model

An ubiquitous problem in scientific computing is to solve system of
linear equations Ay = b

1 linear programming
2 optimization
3 polynomial multiplication
4 factoring
5 polynomial interpolation (DFT)
6 computing GCD of polynomials (Resultants)
7 many more

Often times, the input matrix A has very special structure, can exploit
this structure to obtain faster algorithms

Often times, given a vector c, we can evaluate Ac much faster than
the naive O(n2) algorithm. Can use it to get faster algorithms for
linear system solving.

We have already done that many times!

13 / 65

Black-Box Model: Example

Often times, the input matrix A ∈ Fn×n has very special structure,
can exploit this structure to obtain faster algorithms

Discrete Fourier Transform: n = 2k , z = e2πi/n.

A = V (1, z , z2, . . . , zn−1)

We know that
A−1 = V (1, z−1, z−2, . . . , z1−n)

Know that y = A−1b, so

cost to solve the system = cost to multiply DFT matrix by vector
A−1b

Saw that this cost is O(n log n), which is much faster than O(nω)

14 / 65

Black-Box Model: Example

Often times, the input matrix A ∈ Fn×n has very special structure,
can exploit this structure to obtain faster algorithms

Discrete Fourier Transform: n = 2k , z = e2πi/n.

A = V (1, z , z2, . . . , zn−1)

We know that
A−1 = V (1, z−1, z−2, . . . , z1−n)

Know that y = A−1b, so

cost to solve the system = cost to multiply DFT matrix by vector
A−1b

Saw that this cost is O(n log n), which is much faster than O(nω)

15 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Black-Box Model: Example

Often times, the input matrix A ∈ Fn×n has very special structure,
can exploit this structure to obtain faster algorithms

Discrete Fourier Transform: n = 2k , z = e2πi/n.

A = V (1, z , z2, . . . , zn−1)

We know that
A−1 = V (1, z−1, z−2, . . . , z1−n)

Know that y = A−1b, so

cost to solve the system = cost to multiply DFT matrix by vector
A−1b

Saw that this cost is O(n log n), which is much faster than O(nω)

16 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Black-Box Model: Example

Often times, the input matrix A ∈ Fn×n has very special structure,
can exploit this structure to obtain faster algorithms

Discrete Fourier Transform: n = 2k , z = e2πi/n.

A = V (1, z , z2, . . . , zn−1)

We know that
A−1 = V (1, z−1, z−2, . . . , z1−n)

Know that y = A−1b, so

cost to solve the system = cost to multiply DFT matrix by vector
A−1b

Saw that this cost is O(n log n), which is much faster than O(nω)

17 / 65

Black-Box Model: Example

Often times, the input matrix A ∈ Fn×n has very special structure,
can exploit this structure to obtain faster algorithms

Discrete Fourier Transform: n = 2k , z = e2πi/n.

A = V (1, z , z2, . . . , zn−1)

We know that
A−1 = V (1, z−1, z−2, . . . , z1−n)

Know that y = A−1b, so

cost to solve the system = cost to multiply DFT matrix by vector
A−1b

Saw that this cost is O(n log n), which is much faster than O(nω)

18 / 65

Rafael Oliveira

Cost of Evaluation

Often times, given a vector b, we can evaluate Ab much faster than
the naive O(n2) algorithm. Can use it to get faster algorithms

Let c(A) be the cost of multiplying A by any vector b, and M(n) the
cost of multiplying two degree n polynomials

Class of matrices c(A)

general 2n2 − 2
Sylvester Matrix O(M(n))
DFT O(n log n)
Vandermonde matrix O(M(n) log n)
Berlekamp matrix over Fq O(M(n) log q)
Sparse matrix with s non-zero entries 2s
Toeplitz matrix O(M(n))

And these matrices appear quite often in practical applications!

19 / 65

Cost of Evaluation

Often times, given a vector b, we can evaluate Ab much faster than
the naive O(n2) algorithm. Can use it to get faster algorithms

Let c(A) be the cost of multiplying A by any vector b, and M(n) the
cost of multiplying two degree n polynomials

Class of matrices c(A)

general 2n2 − 2
Sylvester Matrix O(M(n))
DFT O(n log n)
Vandermonde matrix O(M(n) log n)
Berlekamp matrix over Fq O(M(n) log q)
Sparse matrix with s non-zero entries 2s
Toeplitz matrix O(M(n))

And these matrices appear quite often in practical applications!

20 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Cost of Evaluation

Often times, given a vector b, we can evaluate Ab much faster than
the naive O(n2) algorithm. Can use it to get faster algorithms

Let c(A) be the cost of multiplying A by any vector b, and M(n) the
cost of multiplying two degree n polynomials

Class of matrices c(A)

general 2n2 − 2
Sylvester Matrix O(M(n))
DFT O(n log n)
Vandermonde matrix O(M(n) log n)
Berlekamp matrix over Fq O(M(n) log q)
Sparse matrix with s non-zero entries 2s
Toeplitz matrix O(M(n))

And these matrices appear quite often in practical applications!

21 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Administrivia

Black-Box Linear Algebra

Wiedemann’s Algorithm

Computing Minimal Polynomials of Krylov Sequences

Conclusion

22 / 65

Wiedemann’s Idea

Problem: given an input invertible matrix A ∈ Fn×n and a vector
b ∈ Fn, find the solution y ∈ Fn to

Ay = b

Cost of multiplying A by any vector: c(A)

We need to compute A−1b.

Let pA(x) be the characteristic polynomial of A

pA(x) = xn + fn−1x
n−1 + · · ·+ f1x + (−1)n det(A)

By Cayley-Hamilton, we know that pA(A) = 0

pA(A) = 0 = An + fn−1A
n−1 + · · ·+ f1A + (−1)n det(A) · I

Multiplying by b, we get:

(−1)n+1 det(A) · b = A · (An−1 + fn−1A
n−2 + · · ·+ f1I) · b

23 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Wiedemann’s Idea

Problem: given an input invertible matrix A ∈ Fn×n and a vector
b ∈ Fn, find the solution y ∈ Fn to

Ay = b

Cost of multiplying A by any vector: c(A)

We need to compute A−1b.

Let pA(x) be the characteristic polynomial of A

pA(x) = xn + fn−1x
n−1 + · · ·+ f1x + (−1)n det(A)

By Cayley-Hamilton, we know that pA(A) = 0

pA(A) = 0 = An + fn−1A
n−1 + · · ·+ f1A + (−1)n det(A) · I

Multiplying by b, we get:

(−1)n+1 det(A) · b = A · (An−1 + fn−1A
n−2 + · · ·+ f1I) · b

24 / 65

Wiedemann’s Idea

Problem: given an input invertible matrix A ∈ Fn×n and a vector
b ∈ Fn, find the solution y ∈ Fn to

Ay = b

Cost of multiplying A by any vector: c(A)

We need to compute A−1b.

Let pA(x) be the characteristic polynomial of A

pA(x) = xn + fn−1x
n−1 + · · ·+ f1x + (−1)n det(A)

By Cayley-Hamilton, we know that pA(A) = 0

pA(A) = 0 = An + fn−1A
n−1 + · · ·+ f1A + (−1)n det(A) · I

Multiplying by b, we get:

(−1)n+1 det(A) · b = A · (An−1 + fn−1A
n−2 + · · ·+ f1I) · b

25 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Wiedemann’s Idea

Problem: given an input invertible matrix A ∈ Fn×n and a vector
b ∈ Fn, find the solution y ∈ Fn to

Ay = b

Cost of multiplying A by any vector: c(A)

We need to compute A−1b.

Let pA(x) be the characteristic polynomial of A

pA(x) = xn + fn−1x
n−1 + · · ·+ f1x + (−1)n det(A)

By Cayley-Hamilton, we know that pA(A) = 0

pA(A) = 0 = An + fn−1A
n−1 + · · ·+ f1A + (−1)n det(A) · I

Multiplying by b, we get:

(−1)n+1 det(A) · b = A · (An−1 + fn−1A
n−2 + · · ·+ f1I) · b

26 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Wiedemann’s Idea

Problem: given an input invertible matrix A ∈ Fn×n and a vector
b ∈ Fn, find the solution y ∈ Fn to

Ay = b

Cost of multiplying A by any vector: c(A)

We need to compute A−1b.

Let pA(x) be the characteristic polynomial of A

pA(x) = xn + fn−1x
n−1 + · · ·+ f1x + (−1)n det(A)

By Cayley-Hamilton, we know that pA(A) = 0

pA(A) = 0 = An + fn−1A
n−1 + · · ·+ f1A + (−1)n det(A) · I

Multiplying by b, we get:

(−1)n+1 det(A) · b = A · (An−1 + fn−1A
n−2 + · · ·+ f1I) · b

27 / 65

Rafael Oliveira

Rafael Oliveira

Wiedemann’s Idea

28 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Wiedemann’s Algorithm

Problem: given an input invertible matrix A ∈ Fn×n and a vector
b ∈ Fn, find the solution y ∈ Fn to

Ay = b

A’s characteristic polynomial can be used to compute the inverse!

If we pay closer attention, any annihilating polynomial of the Krylov
sequence (Aib)i≥0 works!

Can use the minimal polynomial of (Aib)i≥0
Wiedemann’s Algorithm: on input A ∈ Fn×n invertible and b ∈ Fn

1 Compute the minimal polynomial m(x) of the Krylov sequence (Aib)i≥0

m(x) = mdx
d + · · ·+ m1x + m0

2 compute h(x) = −m(x)−m0

m0 · x
3 compute y = h(A) · b using Horner’s rule
4 return y

29 / 65

Wiedemann’s Algorithm

Problem: given an input invertible matrix A ∈ Fn×n and a vector
b ∈ Fn, find the solution y ∈ Fn to

Ay = b

A’s characteristic polynomial can be used to compute the inverse!

If we pay closer attention, any annihilating polynomial of the Krylov
sequence (Aib)i≥0 works!

Can use the minimal polynomial of (Aib)i≥0

Wiedemann’s Algorithm: on input A ∈ Fn×n invertible and b ∈ Fn

1 Compute the minimal polynomial m(x) of the Krylov sequence (Aib)i≥0

m(x) = mdx
d + · · ·+ m1x + m0

2 compute h(x) = −m(x)−m0

m0 · x
3 compute y = h(A) · b using Horner’s rule
4 return y

30 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Wiedemann’s Algorithm

Problem: given an input invertible matrix A ∈ Fn×n and a vector
b ∈ Fn, find the solution y ∈ Fn to

Ay = b

A’s characteristic polynomial can be used to compute the inverse!

If we pay closer attention, any annihilating polynomial of the Krylov
sequence (Aib)i≥0 works!

Can use the minimal polynomial of (Aib)i≥0
Wiedemann’s Algorithm: on input A ∈ Fn×n invertible and b ∈ Fn

1 Compute the minimal polynomial m(x) of the Krylov sequence (Aib)i≥0

m(x) = mdx
d + · · ·+ m1x + m0

2 compute h(x) = −m(x)−m0

m0 · x
3 compute y = h(A) · b using Horner’s rule
4 return y

31 / 65

Wiedemann’s Algorithm

Problem: given an input invertible matrix A ∈ Fn×n and a vector
b ∈ Fn, find the solution y ∈ Fn to

Ay = b

A’s characteristic polynomial can be used to compute the inverse!

If we pay closer attention, any annihilating polynomial of the Krylov
sequence (Aib)i≥0 works!

Can use the minimal polynomial of (Aib)i≥0
Wiedemann’s Algorithm: on input A ∈ Fn×n invertible and b ∈ Fn

1 Compute the minimal polynomial m(x) of the Krylov sequence (Aib)i≥0

m(x) = mdx
d + · · ·+ m1x + m0

2 compute h(x) = −m(x)−m0

m0 · x
3 compute y = h(A) · b using Horner’s rule

4 return y

32 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Wiedemann’s Algorithm

Problem: given an input invertible matrix A ∈ Fn×n and a vector
b ∈ Fn, find the solution y ∈ Fn to

Ay = b

A’s characteristic polynomial can be used to compute the inverse!

If we pay closer attention, any annihilating polynomial of the Krylov
sequence (Aib)i≥0 works!

Can use the minimal polynomial of (Aib)i≥0
Wiedemann’s Algorithm: on input A ∈ Fn×n invertible and b ∈ Fn

1 Compute the minimal polynomial m(x) of the Krylov sequence (Aib)i≥0

m(x) = mdx
d + · · ·+ m1x + m0

2 compute h(x) = −m(x)−m0

m0 · x
3 compute y = h(A) · b using Horner’s rule
4 return y

33 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Wiedemann’s Algorithm: Correctness

A is invertible, then pA(0) = (−1)n det(A) 6= 0

Minimal polynomial m(x) divides pA(x), so m0 6= 0

Thus, we can always compute h(x) = −m(x)−m0

m0x

m(x) is minimal polynomial then

Adb + md−1A
d−1b + · · ·+ m1Ab + m0b = 0

Rearranging, we get
h(A) · b = A−1b

34 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Wiedemann’s Algorithm: Correctness

A is invertible, then pA(0) = (−1)n det(A) 6= 0

Minimal polynomial m(x) divides pA(x), so m0 6= 0

Thus, we can always compute h(x) = −m(x)−m0

m0x

m(x) is minimal polynomial then

Adb + md−1A
d−1b + · · ·+ m1Ab + m0b = 0

Rearranging, we get
h(A) · b = A−1b

35 / 65

Wiedemann’s Algorithm: Correctness

A is invertible, then pA(0) = (−1)n det(A) 6= 0

Minimal polynomial m(x) divides pA(x), so m0 6= 0

Thus, we can always compute h(x) = −m(x)−m0

m0x

m(x) is minimal polynomial then

Adb + md−1A
d−1b + · · ·+ m1Ab + m0b = 0

Rearranging, we get
h(A) · b = A−1b

36 / 65

Wiedemann’s Algorithm: Correctness

A is invertible, then pA(0) = (−1)n det(A) 6= 0

Minimal polynomial m(x) divides pA(x), so m0 6= 0

Thus, we can always compute h(x) = −m(x)−m0

m0x

m(x) is minimal polynomial then

Adb + md−1A
d−1b + · · ·+ m1Ab + m0b = 0

Rearranging, we get
h(A) · b = A−1b

37 / 65

Wiedemann’s Algorithm: Runtime Analysis

For Wiedemann’s algorithm, all we need to do is:
1 Compute minimal polynomial of Aib
2 Compute h(x) from the minimal polynomial
3 Use Horner’s rule and matrix-vector multiplication to compute h(A)b

Running time of each step:
1 Next part of lecture
2 O(n) time
3 This takes d matrix-vector multiplications and O(d) vector additions,

so running time O(d · c(A) + dn)

Since d ≤ n, the above is in the worst case O(n · c(A) + n2)

Much better than nω for all the cases that we discussed!

Well, only if we can compute the minimal polynomial really fast...

38 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Wiedemann’s Algorithm: Runtime Analysis

For Wiedemann’s algorithm, all we need to do is:
1 Compute minimal polynomial of Aib
2 Compute h(x) from the minimal polynomial
3 Use Horner’s rule and matrix-vector multiplication to compute h(A)b

Running time of each step:
1 Next part of lecture
2 O(n) time
3 This takes d matrix-vector multiplications and O(d) vector additions,

so running time O(d · c(A) + dn)

Since d ≤ n, the above is in the worst case O(n · c(A) + n2)

Much better than nω for all the cases that we discussed!

Well, only if we can compute the minimal polynomial really fast...

39 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Wiedemann’s Algorithm: Runtime Analysis

For Wiedemann’s algorithm, all we need to do is:
1 Compute minimal polynomial of Aib
2 Compute h(x) from the minimal polynomial
3 Use Horner’s rule and matrix-vector multiplication to compute h(A)b

Running time of each step:
1 Next part of lecture
2 O(n) time
3 This takes d matrix-vector multiplications and O(d) vector additions,

so running time O(d · c(A) + dn)

Since d ≤ n, the above is in the worst case O(n · c(A) + n2)

Much better than nω for all the cases that we discussed!

Well, only if we can compute the minimal polynomial really fast...

40 / 65

Wiedemann’s Algorithm: Runtime Analysis

For Wiedemann’s algorithm, all we need to do is:
1 Compute minimal polynomial of Aib
2 Compute h(x) from the minimal polynomial
3 Use Horner’s rule and matrix-vector multiplication to compute h(A)b

Running time of each step:
1 Next part of lecture
2 O(n) time
3 This takes d matrix-vector multiplications and O(d) vector additions,

so running time O(d · c(A) + dn)

Since d ≤ n, the above is in the worst case O(n · c(A) + n2)

Much better than nω for all the cases that we discussed!

Well, only if we can compute the minimal polynomial really fast...

41 / 65

Administrivia

Black-Box Linear Algebra

Wiedemann’s Algorithm

Computing Minimal Polynomials of Krylov Sequences

Conclusion

42 / 65

Minimal Polynomials of Krylov Subspaces

Last lecture: minimal polynomials of sequences of field elements

Krylov subspaces are sequences in Fn. How to compute minimal
polynomials in this case?

Idea: convert sequences in Fn to sequences over F!

Key Lemma: Given a random u ∈ Fn, the sequences

(Aib)i≥0, and (uTAib)i≥0

have the same minimal polynomial with high probability!1

Algorithm: input A ∈ Fn×n, b ∈ Fn

1 If b = 0, return 1

2 u ∈ Un uniformly at random, U ⊂ F is a large enough finite set
3 Use algorithm from previous lecture to compute m(x)

minimal polynomial of uTAib.
4 If m(A)b = 0 return m(x), else return to step (2)

1If F has enough elements.
43 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Minimal Polynomials of Krylov Subspaces

Last lecture: minimal polynomials of sequences of field elements

Krylov subspaces are sequences in Fn. How to compute minimal
polynomials in this case?

Idea: convert sequences in Fn to sequences over F!

Key Lemma: Given a random u ∈ Fn, the sequences

(Aib)i≥0, and (uTAib)i≥0

have the same minimal polynomial with high probability!1

Algorithm: input A ∈ Fn×n, b ∈ Fn

1 If b = 0, return 1

2 u ∈ Un uniformly at random, U ⊂ F is a large enough finite set
3 Use algorithm from previous lecture to compute m(x)

minimal polynomial of uTAib.
4 If m(A)b = 0 return m(x), else return to step (2)

1If F has enough elements.
44 / 65

Minimal Polynomials of Krylov Subspaces

Last lecture: minimal polynomials of sequences of field elements

Krylov subspaces are sequences in Fn. How to compute minimal
polynomials in this case?

Idea: convert sequences in Fn to sequences over F!

Key Lemma: Given a random u ∈ Fn, the sequences

(Aib)i≥0, and (uTAib)i≥0

have the same minimal polynomial with high probability!1

Algorithm: input A ∈ Fn×n, b ∈ Fn

1 If b = 0, return 1

2 u ∈ Un uniformly at random, U ⊂ F is a large enough finite set
3 Use algorithm from previous lecture to compute m(x)

minimal polynomial of uTAib.
4 If m(A)b = 0 return m(x), else return to step (2)

1If F has enough elements.
45 / 65

Minimal Polynomials of Krylov Subspaces

Last lecture: minimal polynomials of sequences of field elements

Krylov subspaces are sequences in Fn. How to compute minimal
polynomials in this case?

Idea: convert sequences in Fn to sequences over F!

Key Lemma: Given a random u ∈ Fn, the sequences

(Aib)i≥0, and (uTAib)i≥0

have the same minimal polynomial with high probability!1

Algorithm: input A ∈ Fn×n, b ∈ Fn

1 If b = 0, return 1

2 u ∈ Un uniformly at random, U ⊂ F is a large enough finite set
3 Use algorithm from previous lecture to compute m(x)

minimal polynomial of uTAib.
4 If m(A)b = 0 return m(x), else return to step (2)

1If F has enough elements.
46 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Minimal Polynomials of Krylov Subspaces

Last lecture: minimal polynomials of sequences of field elements

Krylov subspaces are sequences in Fn. How to compute minimal
polynomials in this case?

Idea: convert sequences in Fn to sequences over F!

Key Lemma: Given a random u ∈ Fn, the sequences

(Aib)i≥0, and (uTAib)i≥0

have the same minimal polynomial with high probability!1

Algorithm: input A ∈ Fn×n, b ∈ Fn

1 If b = 0, return 1

2 u ∈ Un uniformly at random, U ⊂ F is a large enough finite set
3 Use algorithm from previous lecture to compute m(x)

minimal polynomial of uTAib.
4 If m(A)b = 0 return m(x), else return to step (2)

1If F has enough elements.
47 / 65

Minimal Polynomials of Krylov Subspaces

Last lecture: minimal polynomials of sequences of field elements

Krylov subspaces are sequences in Fn. How to compute minimal
polynomials in this case?

Idea: convert sequences in Fn to sequences over F!

Key Lemma: Given a random u ∈ Fn, the sequences

(Aib)i≥0, and (uTAib)i≥0

have the same minimal polynomial with high probability!1

Algorithm: input A ∈ Fn×n, b ∈ Fn

1 If b = 0, return 1
2 u ∈ Un uniformly at random, U ⊂ F is a large enough finite set

3 Use algorithm from previous lecture to compute m(x)

minimal polynomial of uTAib.
4 If m(A)b = 0 return m(x), else return to step (2)

1If F has enough elements.
48 / 65

Minimal Polynomials of Krylov Subspaces

Last lecture: minimal polynomials of sequences of field elements

Krylov subspaces are sequences in Fn. How to compute minimal
polynomials in this case?

Idea: convert sequences in Fn to sequences over F!

Key Lemma: Given a random u ∈ Fn, the sequences

(Aib)i≥0, and (uTAib)i≥0

have the same minimal polynomial with high probability!1

Algorithm: input A ∈ Fn×n, b ∈ Fn

1 If b = 0, return 1
2 u ∈ Un uniformly at random, U ⊂ F is a large enough finite set
3 Use algorithm from previous lecture to compute m(x)

minimal polynomial of uTAib.

4 If m(A)b = 0 return m(x), else return to step (2)

1If F has enough elements.
49 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Minimal Polynomials of Krylov Subspaces

Last lecture: minimal polynomials of sequences of field elements

Krylov subspaces are sequences in Fn. How to compute minimal
polynomials in this case?

Idea: convert sequences in Fn to sequences over F!

Key Lemma: Given a random u ∈ Fn, the sequences

(Aib)i≥0, and (uTAib)i≥0

have the same minimal polynomial with high probability!1

Algorithm: input A ∈ Fn×n, b ∈ Fn

1 If b = 0, return 1
2 u ∈ Un uniformly at random, U ⊂ F is a large enough finite set
3 Use algorithm from previous lecture to compute m(x)

minimal polynomial of uTAib.
4 If m(A)b = 0 return m(x), else return to step (2)

1If F has enough elements.
50 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Example

F = F5

A =

 1 −1 −1
−1 0 3
1 2 −1

 , b =

3
1
2



Minimal polynomial for (Aib)i≥0 is m(x) = x3 + 3x + 1

If we picked u = (1, 0, 0)T ∈ F3
5 we would get the sequence

(uTAib)i≥0 = (3, 0, 4, 2, 3, 0, · · ·)

Minimal polynomial for this sequence is m(x) = x2 + 2x + 2

NOT minimal polynomial of (Aib)i≥0, but divides it (as it must
happen)

Picking u = (1, 2, 0)T , we get minimal polynomial m(x) = x3 + 3x + 1

51 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Example

F = F5

A =

 1 −1 −1
−1 0 3
1 2 −1

 , b =

3
1
2


Minimal polynomial for (Aib)i≥0 is m(x) = x3 + 3x + 1

If we picked u = (1, 0, 0)T ∈ F3
5 we would get the sequence

(uTAib)i≥0 = (3, 0, 4, 2, 3, 0, · · ·)

Minimal polynomial for this sequence is m(x) = x2 + 2x + 2

NOT minimal polynomial of (Aib)i≥0, but divides it (as it must
happen)

Picking u = (1, 2, 0)T , we get minimal polynomial m(x) = x3 + 3x + 1

52 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Example

F = F5

A =

 1 −1 −1
−1 0 3
1 2 −1

 , b =

3
1
2


Minimal polynomial for (Aib)i≥0 is m(x) = x3 + 3x + 1

If we picked u = (1, 0, 0)T ∈ F3
5 we would get the sequence

(uTAib)i≥0 = (3, 0, 4, 2, 3, 0, · · ·)

Minimal polynomial for this sequence is m(x) = x2 + 2x + 2

NOT minimal polynomial of (Aib)i≥0, but divides it (as it must
happen)

Picking u = (1, 2, 0)T , we get minimal polynomial m(x) = x3 + 3x + 1

53 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Example

F = F5

A =

 1 −1 −1
−1 0 3
1 2 −1

 , b =

3
1
2


Minimal polynomial for (Aib)i≥0 is m(x) = x3 + 3x + 1

If we picked u = (1, 0, 0)T ∈ F3
5 we would get the sequence

(uTAib)i≥0 = (3, 0, 4, 2, 3, 0, · · ·)

Minimal polynomial for this sequence is m(x) = x2 + 2x + 2

NOT minimal polynomial of (Aib)i≥0, but divides it (as it must
happen)

Picking u = (1, 2, 0)T , we get minimal polynomial m(x) = x3 + 3x + 1

54 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Example

F = F5

A =

 1 −1 −1
−1 0 3
1 2 −1

 , b =

3
1
2


Minimal polynomial for (Aib)i≥0 is m(x) = x3 + 3x + 1

If we picked u = (1, 0, 0)T ∈ F3
5 we would get the sequence

(uTAib)i≥0 = (3, 0, 4, 2, 3, 0, · · ·)

Minimal polynomial for this sequence is m(x) = x2 + 2x + 2

NOT minimal polynomial of (Aib)i≥0, but divides it (as it must
happen)

Picking u = (1, 2, 0)T , we get minimal polynomial m(x) = x3 + 3x + 1

55 / 65

Probability of Success

Why would most u ∈ Fn work?

Assume that the degree of the minimal polynomial of (Aib)i≥0 is d

There exists a polynomial RA,b(x1, . . . , xn) of degree d such that
(uTAib)i≥0 has the same minimal polynomial as (Aib)i≥0 iff

RA,b(u) 6= 0

Proof is a bit involved

Thus, by using the Schwarz-Zippel lemma, if |U| > td , then

Pr
u∈Un

[RA,b(u) = 0] ≤ d

|U|
= 1/t

56 / 65

Probability of Success

Why would most u ∈ Fn work?

Assume that the degree of the minimal polynomial of (Aib)i≥0 is d

There exists a polynomial RA,b(x1, . . . , xn) of degree d such that
(uTAib)i≥0 has the same minimal polynomial as (Aib)i≥0 iff

RA,b(u) 6= 0

Proof is a bit involved

Thus, by using the Schwarz-Zippel lemma, if |U| > td , then

Pr
u∈Un

[RA,b(u) = 0] ≤ d

|U|
= 1/t

57 / 65

Rafael Oliveira

Rafael Oliveira

Probability of Success

Why would most u ∈ Fn work?

Assume that the degree of the minimal polynomial of (Aib)i≥0 is d

There exists a polynomial RA,b(x1, . . . , xn) of degree d such that
(uTAib)i≥0 has the same minimal polynomial as (Aib)i≥0 iff

RA,b(u) 6= 0

Proof is a bit involved

Thus, by using the Schwarz-Zippel lemma, if |U| > td , then

Pr
u∈Un

[RA,b(u) = 0] ≤ d

|U|
= 1/t

58 / 65

Probability of Success

Why would most u ∈ Fn work?

Assume that the degree of the minimal polynomial of (Aib)i≥0 is d

There exists a polynomial RA,b(x1, . . . , xn) of degree d such that
(uTAib)i≥0 has the same minimal polynomial as (Aib)i≥0 iff

RA,b(u) 6= 0

Proof is a bit involved

Thus, by using the Schwarz-Zippel lemma, if |U| > td , then

Pr
u∈Un

[RA,b(u) = 0] ≤ d

|U|
= 1/t

59 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Wiedemann’s Algorithm: Runtime Analysis

For Wiedemann’s algorithm, all we need to do is:
1 Compute minimal polynomial of Aib
2 Compute h(x) from the minimal polynomial
3 Use Horner’s rule and matrix-vector multiplication to compute h(A)b

Running time of each step:
1 Same number of operations as it takes to compute minimal polynomial

of (uTAib)i≥0

From last class: O(M(d) log d + d · c(A))

2 O(n) time
3 This takes d matrix-vector multiplications and O(d) vector additions,

so running time O(d · c(A) + dn)

Since d ≤ n, the above is in the worst case O(n · c(A) + n2)

Much better than nω for all the cases that we discussed!

60 / 65

Wiedemann’s Algorithm: Runtime Analysis

For Wiedemann’s algorithm, all we need to do is:
1 Compute minimal polynomial of Aib
2 Compute h(x) from the minimal polynomial
3 Use Horner’s rule and matrix-vector multiplication to compute h(A)b

Running time of each step:
1 Same number of operations as it takes to compute minimal polynomial

of (uTAib)i≥0

From last class: O(M(d) log d + d · c(A))

2 O(n) time
3 This takes d matrix-vector multiplications and O(d) vector additions,

so running time O(d · c(A) + dn)

Since d ≤ n, the above is in the worst case O(n · c(A) + n2)

Much better than nω for all the cases that we discussed!

61 / 65

Wiedemann’s Algorithm: Runtime Analysis

For Wiedemann’s algorithm, all we need to do is:
1 Compute minimal polynomial of Aib
2 Compute h(x) from the minimal polynomial
3 Use Horner’s rule and matrix-vector multiplication to compute h(A)b

Running time of each step:
1 Same number of operations as it takes to compute minimal polynomial

of (uTAib)i≥0

From last class: O(M(d) log d + d · c(A))
2 O(n) time
3 This takes d matrix-vector multiplications and O(d) vector additions,

so running time O(d · c(A) + dn)

Since d ≤ n, the above is in the worst case O(n · c(A) + n2)

Much better than nω for all the cases that we discussed!

62 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Conclusion

Today we learned about black-box model for linear algebra

Very useful for linear system solving (ubiquitous in CS and scientific
computing, ML, etc!)

Saw how to use Krylov subspaces to solve linear systems -
Wiedemann’s algorithm

Very fast algorithms for special classes of matrices of interest!

63 / 65

References I

von zur Gathen, J. and Gerhard, J. 2013.

Modern Computer Algebra

Cambridge University Press

64 / 65

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

	Administrivia
	Black-Box Linear Algebra
	Wiedemann's Algorithm
	Computing Minimal Polynomials of Krylov Sequences
	Conclusion

