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The Exponent of Linear Algebra

Last class we saw how to multiply matrices faster than the naive
algorithm

We also learned about ωmult := ω

Saw some history on improving on this exponent.

Today: how fundamental is the exponent of matrix multiplication?

We can similarly define ωP for a problem P

ωdeterminant , ωinverse , ωlinear system, ωcharacteristic polynomial

As we will see today (and in homework):

ω = ωinverse = ωdeterminant

More generally, all of these ωP ’s are related to ω!

Matrix multiplication exponent fundamental to linear algebra!
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Matrix inverse vs matrix multiplication

Matrix inverse is at least as hard as matrix multiplication

How to prove this? reductions!

If we can invert matrices quickly, then we can multiply two matrices
quickly.

Suppose we had an algorithm for inverting matrices

Consider

A =

I A 0
0 I B
0 0 I


Then

A−1 =

I −A AB
0 I −B
0 0 I


So if we could invert in time T , then we can multiply two matrices in
time O(T ).
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Matrix Multiplication vs Matrix Inversion

Matrix multiplication is at least as hard as matrix inversion

“If we can multiply two matrices fast, we can also invert them fast.”

Suppose we have an algorithm that performs matrix multiplication.

Let n = 2k , divide matrix M into blocks of size n/2

M =

(
A B
C D

)
The inverse of M in block form is given by:

M−1 =

(
I −A−1BS−1
0 S−1

)
·
(

A−1 0
−CA−1 I

)
Assuming A and S := D − CA−1B are invertible

How do we compute this?

Similar to how we would invert regular matrices! Just pay attention
to non-commutativity.
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Computing Inverse of Block Matrices
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Runtime Analysis

The inverse of M in block form is given by:

M−1 =

(
I −A−1BS−1
0 S−1

)
·
(

A−1 0
−CA−1 I

)
Assuming A and S := D − CA−1B are invertible.

To invert M, we needed to:

Invert A

Compute S := D − CA−1B
Invert S
perform constant number of multiplications above

Recurrence relation:

I (n) ≤ 2 · I (n/2) + C · (n/2)ω
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Solving Recurrence

Recurrence relation:

I (n) ≤ 2 · I (n/2) + C · (n/2)ω

We know that 2 ≤ ω < 3 ω is a constant

Recurrence relation:

I (2k) ≤ 2 · I (2k−1) + C · 2ω(k−1)

Thus

I (n) = I (2k) ≤ 2k · I (1) + C ·
k−1∑
j=0

2ωj

≤ C ′ ·
(

2k +
2ωk − 1

2ω − 1

)
≤ C ′′ · 2ωk = C ′′nω
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Determinant vs Matrix Multiplication

One can similarly prove that ωdeterminant ≤ ω
This is your homework! :)
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Algebraic Circuits - base ring R

Models the amount of operations needed to compute polynomial

Algebraic Circuit: directed acyclic graph Φ with

input gates labelled by variables x1, . . . , xn or elements of R

other gates labelled +,×,÷
÷ gate takes two inputs, which are labelled numerator/denominator
gates compute polynomial (rational function) in natural way

circuit size: number of edges in the circuit, denoted by S(Φ)
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Partial Derivatives

if f (x1, . . . , xn) ∈ F[x1, . . . , xn] the partial derivatives

∂1f , ∂2f , . . . , ∂nf

are such that

∂ix
d
j =

{
dxd−1j , if i = j

0, otherwise

and
∂i f

is computed as above considering all other variables “constant”

Example: f (x1, x2) = x21x2 − x1x
3
2

∂1f = 2x1x2 − x32 ∂2f = x21 − 3x1x
2
2

How fast can we compute partial derivatives?
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Computing Partial Derivatives

If f can be computed using L operations +,−,×, then we can
compute ALL partial derivatives simultaneously

∂1f , . . . , ∂nf

performing 4L operations!

This is very remarkable, since partial derivatives ubiquitous in
computational tasks!

1 gradient descent methods
2 Newton iteration

Algorithm we will see today discovered independently in Machine
Learning - known as backpropagation
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Computing Partial Derivatives

We are going to use the chain rule:

∂i f (g1, g2, . . . , gm) =
m∑
j=1

(∂j f )(g1, g2, . . . , gm) · ∂igj

But wait, doesn’t the chain rule makes us compute 2m partial
derivatives?

Main intuitions:
1 if each function we have has m being constant (depend on constant #

of variables), then chain rule is cheap!

2 many of the partial derivatives along the computation will either be
zero or have already been computed!

3 Have to compute partial derivatives “in reverse”
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Example

Consider the following computation:

P1 = x1 + x2, P2 = x1 + x3, P3 = P1 · P2, P4 = x4 · P3

Doing the direct method - i.e. computing all partial derivatives per
operation:

Computation ∂1 ∂2 ∂3 ∂4
P1 = x1 + x2 1 1 0 0
P2 = x1 + x3 1 0 1 0
P3 = P1P2 P2 · ∂1P1 + P1 · ∂1P2 P2 · ∂2P1 P1 · ∂3P2 0
P4 = x4P3 x4 · ∂1P3 x4 · ∂2P3 x4 · ∂3P3 P3

Now let’s see how to “do it in reverse”
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Example - reverse mode

Consider the computation:

P1 = x1 + x2, P2 = x1 + x3, P3 = P1 · P2, P4 = x4 · P3

Replacing first computation with a new variable y , we get:

Q2 = x1 + x3, Q3 = y · P2, Q4 = x4 · P3

Suppose we had an algebraic circuit computing all the partial
derivatives of this circuit (including the extra variable y)

Can transform the circuit above into one that computes all partial
derivatives of P4 by using the chain rule!

Note that
Q4(x1, x2, x3, x4, y = P1) = P4
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Computing Partial Derivatives - Proof

Note that
Q4(x1, x2, x3, x4, y = P1) = P4

By chain rule, we have 1 ≤ i ≤ 4

∂iQ4 =
4∑

j=1

(∂jQ4)(x1, x2, x3, x4,P1) · (∂ixj)

+ (∂yQ4)(x1, x2, x3, x4,P1) · (∂iP1)

∂iQ4 =(∂iQ4)(x1, x2, x3, x4,P1) · 1
+ (∂yQ4)(x1, x2, x3, x4,P1) · (∂iP1)

Crucial remark: note that P1 depends on at most 2 variables!!

54 / 78

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Computing Partial Derivatives - Proof

Note that
Q4(x1, x2, x3, x4, y = P1) = P4

By chain rule, we have 1 ≤ i ≤ 4

∂iQ4 =
4∑

j=1

(∂jQ4)(x1, x2, x3, x4,P1) · (∂ixj)

+ (∂yQ4)(x1, x2, x3, x4,P1) · (∂iP1)

∂iQ4 =(∂iQ4)(x1, x2, x3, x4,P1) · 1
+ (∂yQ4)(x1, x2, x3, x4,P1) · (∂iP1)

Crucial remark: note that P1 depends on at most 2 variables!!

55 / 78

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Computing Partial Derivatives - Proof

Note that
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Computing Partial Derivatives - Proof

By chain rule, we have 1 ≤ i ≤ 4

∂iQ4 =(∂iQ4)(x1, x2, x3, x4,P1) · 1
+ (∂yQ4)(x1, x2, x3, x4,P1) · (∂iP1)

Crucial remark: note that P1 depends on at most 2 variables!

By induction, we know a circuit of size ≤ 4(L− 1) which computes
ALL the ∂iQ4

P1 is of the form
αxi + βxj , xixj , αxi + β

So we can compute P1 and ALL its derivatives with ≤ 4 operations

So circuit computing ALL ∂iP4 derivatives has size

≤ 4(L− 1) + 4 = 4L
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Computing Partial Derivatives - Picture
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Determinant of a Matrix
Given matrix M ∈ Fn×n, the determinant is

det(M)
∑
σ∈Sn

(−1)σ ·
n∏

i=1

Miσ(i)

Given matrix M ∈ Fn×n, and (i , j) ∈ [n]2, the (i , j)-minor of M,
denoted M(i ,j) is given by

Remove i th row and j th column of M

Determinant has a very special decomposition by minors: given any
row i , we have

det(M) =
n∑

j=1

(−1)i+jMi ,j · det(M(i ,j))

known as Laplace Expansion
Determinants of minors) are very much related to derivatives of the
determinant of M

det(M(i ,j)) = (−1)i+j∂i ,j det(M)
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Determinant and Inverse

The determinant is intrinsically related to the inverse of a matrix.

In particular, let N ∈ Fn×n be the adjugate matrix

Ni ,j = det(M(j ,i))

Note that
MN = det(M) · I

Entries of the adjugate (determinants of minors) are very much
related to derivatives of the determinant of M

det(M(i ,j)) = (−1)i+j∂i ,j det(M)

So, if we knew how to compute the determinant AND ALL its partial
derivatives, we could:

1 Compute the adjugate
2 Compute the inverse
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Computing the Determinant

Suppose we have an algorithm which computes the determinant in
O(nα) operations

Can compute the determinant and all its partial derivatives in O(nα)
operations!

Compute the inverse by simply dividing det(M(i ,j))/ det(M)
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Conclusion

Today we learned how fundamental matrix multiplication is in
symbolic computation and linear algebra

Learned how to compute ALL partial derivatives efficiently - roughly
the same time it takes to compute our polynomial!

Used fast computation of partial derivative to compute the
determinant
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