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Dense Representation
Setting: polynomial ring R[x1, . . . , xn]
Dense representation: p(x1, . . . , xn) of degree d in R[x1, . . . , xn] is
represented as a list of all monomials of degree ≤ d and their
coefficients in p.
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Dense Representation
Setting: polynomial ring R[x1, . . . , xn]
Dense representation: p(x1, . . . , xn) of degree d in R[x1, . . . , xn] is
represented as a list of all monomials of degree ≤ d and their
coefficients in p.
Examples:

p(x , y) = xy polynomial of degree 2 over Q[x , y ]

p(x , y) → [2, (0, x2), (1, xy), (0, y2), (0, x), (0, y), (0, 1)]
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Dense Representation
Setting: polynomial ring R[x1, . . . , xn]
Dense representation: p(x1, . . . , xn) of degree d in R[x1, . . . , xn] is
represented as a list of all monomials of degree ≤ d and their
coefficients in p.
Examples:

p(x , y) = xy polynomial of degree 2 over Q[x , y ]

p(x , y) → [2, (0, x2), (1, xy), (0, y2), (0, x), (0, y), (0, 1)]

q(x , y) = xy − 3x + 1 polynomial of degree 2 over Q[x , y ]

q(x , y) → [2, (0, x2), (1, xy), (0, y2), (−3, x), (0, y), (1, 1)]
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Dense Representation
Setting: polynomial ring R[x1, . . . , xn]
Dense representation: p(x1, . . . , xn) of degree d in R[x1, . . . , xn] is
represented as a list of all monomials of degree ≤ d and their
coefficients in p.
Examples:

p(x , y) = xy polynomial of degree 2 over Q[x , y ]

p(x , y) → [2, (0, x2), (1, xy), (0, y2), (0, x), (0, y), (0, 1)]

q(x , y) = xy − 3x + 1 polynomial of degree 2 over Q[x , y ]

q(x , y) → [2, (0, x2), (1, xy), (0, y2), (−3, x), (0, y), (1, 1)]

Very wasteful for multivariate polynomials, or polynomials with high
degree. Needs to store all

�n+d
d

�
coefficients!
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Dense Representation
Setting: polynomial ring R[x1, . . . , xn]
Dense representation: p(x1, . . . , xn) of degree d in R[x1, . . . , xn] is
represented as a list of all monomials of degree ≤ d and their
coefficients in p.
Examples:

p(x , y) = xy polynomial of degree 2 over Q[x , y ]

p(x , y) → [2, (0, x2), (1, xy), (0, y2), (0, x), (0, y), (0, 1)]

q(x , y) = xy − 3x + 1 polynomial of degree 2 over Q[x , y ]

q(x , y) → [2, (0, x2), (1, xy), (0, y2), (−3, x), (0, y), (1, 1)]

Very wasteful for multivariate polynomials, or polynomials with high
degree. Needs to store all

�n+d
d

�
coefficients!

In this class, we will represent a monomial xe11 xe22 · · · xenn either by
writing the monomial explicitly, or by its exponent vector

xe11 xe22 · · · xenn ↔ (e1, . . . , en)
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Sparse Representation

Setting: polynomial ring R[x1, . . . , xn]

Sparse representation: p(x1, . . . , xn) in R[x1, . . . , xn] is represented as
a list of all non-zero monomials and their coefficients in p.

8 / 32



Sparse Representation

Setting: polynomial ring R[x1, . . . , xn]

Sparse representation: p(x1, . . . , xn) in R[x1, . . . , xn] is represented as
a list of all non-zero monomials and their coefficients in p.

Examples:
1 q(x , y) = xy − 3x + 1 polynomial of degree 2 over Q[x , y ]

q(x , y) → [(1, xy), (−3, x), (1, 1)]
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Sparse Representation

Setting: polynomial ring R[x1, . . . , xn]

Sparse representation: p(x1, . . . , xn) in R[x1, . . . , xn] is represented as
a list of all non-zero monomials and their coefficients in p.

Examples:
1 q(x , y) = xy − 3x + 1 polynomial of degree 2 over Q[x , y ]

q(x , y) → [(1, xy), (−3, x), (1, 1)]

2 p(x1, . . . , xn) =
n�

i=1

(xi + 1)

Too many coefficients even for some “simple polynomials.”
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Sparse Representation

Setting: polynomial ring R[x1, . . . , xn]

Sparse representation: p(x1, . . . , xn) in R[x1, . . . , xn] is represented as
a list of all non-zero monomials and their coefficients in p.

Examples:
1 q(x , y) = xy − 3x + 1 polynomial of degree 2 over Q[x , y ]

q(x , y) → [(1, xy), (−3, x), (1, 1)]

2 p(x1, . . . , xn) =
n�

i=1

(xi + 1)

Too many coefficients even for some “simple polynomials.”

3 Det(X ) =
�

σ∈Sn

(−1)σ
�

i∈[n]

Xiσ(i)

Too many coefficients too, and determinant also “simple polynomial.”
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Sparse Representation

Setting: polynomial ring R[x1, . . . , xn]

Sparse representation: p(x1, . . . , xn) in R[x1, . . . , xn] is represented as
a list of all non-zero monomials and their coefficients in p.

Examples:
1 q(x , y) = xy − 3x + 1 polynomial of degree 2 over Q[x , y ]

q(x , y) → [(1, xy), (−3, x), (1, 1)]

2 p(x1, . . . , xn) =
n�

i=1

(xi + 1)

Too many coefficients even for some “simple polynomials.”

3 Det(X ) =
�

σ∈Sn

(−1)σ
�

i∈[n]

Xiσ(i)

Too many coefficients too, and determinant also “simple polynomial.”

Why do we think that the polynomials from examples # 2 & 3 are
“simple?”
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Algebraic Circuits - base ring R

Models the amount of operations needed to compute polynomial
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Algebraic Circuits - base ring R

Models the amount of operations needed to compute polynomial

Algebraic Circuit: directed acyclic graph Φ with

input gates labelled by variables x1, . . . , xn or elements of R
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Algebraic Circuits - base ring R

Models the amount of operations needed to compute polynomial

Algebraic Circuit: directed acyclic graph Φ with

input gates labelled by variables x1, . . . , xn or elements of R
other gates labelled +,×,÷
÷ gate takes two inputs, which are labelled numerator/denominator
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Algebraic Circuits - base ring R

Models the amount of operations needed to compute polynomial

Algebraic Circuit: directed acyclic graph Φ with

input gates labelled by variables x1, . . . , xn or elements of R
other gates labelled +,×,÷
÷ gate takes two inputs, which are labelled numerator/denominator
gates compute polynomial (rational function) in natural way
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Algebraic Circuits - base ring R

Models the amount of operations needed to compute polynomial

Algebraic Circuit: directed acyclic graph Φ with

input gates labelled by variables x1, . . . , xn or elements of R
other gates labelled +,×,÷
÷ gate takes two inputs, which are labelled numerator/denominator
gates compute polynomial (rational function) in natural way

formal degree of a gate: the degree of a gate is defined inductively

if input gate: degree is 0 if gate is element of the field, 1 if it is a
variable
u = w + v then deg(u) = max(deg(w), deg(v))
u = w × v then deg(u) = deg(w) + deg(v)
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Complexity Measures in Algebraic Circuits

circuit size: number of edges in the circuit, denoted by S(Φ)
cost of ring elements: in classical algebraic complexity, there is unit
cost for the use of any base ring element

Sometimes we will add bit complexity of base ring elements
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Complexity Measures in Algebraic Circuits

circuit size: number of edges in the circuit, denoted by S(Φ)
cost of ring elements: in classical algebraic complexity, there is unit
cost for the use of any base ring element

Sometimes we will add bit complexity of base ring elements

circuit depth: length of longest direct path from an input to an output
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Complexity Measures in Algebraic Circuits

circuit size: number of edges in the circuit, denoted by S(Φ)
cost of ring elements: in classical algebraic complexity, there is unit
cost for the use of any base ring element

Sometimes we will add bit complexity of base ring elements

circuit depth: length of longest direct path from an input to an output

constant depth circuits: for circuits of constant depth, we don’t place
restriction on the fan-in of an edge.
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Examples - Constant Depth Circuits
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Obtaining Homogeneous Components

Theorem ([Strassen 1973])

If a polynomial p(x1, . . . , xn) ∈ F[x1, . . . , xn] can be computed by a circuit
Φ of size S(Φ), then the homogeneous components H0[p],H1[p], . . . ,Hr [p]
can be computed by a circuit of size O(r2 · S(Φ)).
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Obtaining Homogeneous Components
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Getting rid of Division

Theorem ([Strassen 1973])

If a polynomial p(x1, . . . , xn) ∈ F[x1, . . . , xn] of degree d can be computed
by a circuit Φ of size S(Φ) using +,×,÷, then there is a circuit Ψ of size
poly(S(Φ), d , n) which computes p without using division gates.

25 / 32



Getting rid of Division
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Getting rid of Division
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Computing Determinants with Small Circuits

Corollary

The polynomial Det(X ) can be computed by an arithmetic circuit of
poly(n) size.
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Computing Determinants with Small Circuits

29 / 32



Algebraic Models of Computation

Operations in Algebraic Circuits

Conclusion

Acknowledgements

30 / 32



Conclusion

In today’s lecture, we learned about different computational models for
symbolic computation, and basic computations in these models.

Dense representation

Sparse representation

Algebraic circuits

Proved that the determinant can be computed by algebraic circuits of
polynomial size
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