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Dense Representation

@ Setting: polynomial ring R[xi, ..., Xp]

e Dense representation: p(xi,...,xn) of degree d in R[x1,...,Xs] is
represented as a list of all monomials of degree < d and their
coefficients in p.



Dense Representation
@ Setting: polynomial ring R[xi, ..., Xp]
e Dense representation: p(xi,...,xn) of degree d in R[x1,...,Xs] is
represented as a list of all monomials of degree < d and their

coefficients in p.
@ Examples:
e p(x,y) = xy polynomial of degree 2 over Q[x, y]

p(x,y) = [2,(0,%%),(1,xv), (0,¥?),(0,x),(0,y),(0,1)]
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Dense Representation

@ Setting: polynomial ring R[xi, ..., Xp]

e Dense representation: p(xi,...,xn) of degree d in R[x1,...,Xs] is
represented as a list of all monomials of degree < d and their
coefficients in p.

o Examples:

e p(x,y) = xy polynomial of degree 2 over Q[x, y]
p(X7Y) - [25 (07 X2)7 (l, X)/)a (07)/2), (07 X)7 (Ovy)’ (Oa 1)]
e g(x,y) =xy — 3x + 1 polynomial of degree 2 over Q[x, y]

q(x,y) = [2_a(0>X2)7 (1,xy),(0,5%), (=3,),(0,¥), (1,1)]




Dense Representation

@ Setting: polynomial ring R[xi, ..., Xp]

e Dense representation: p(xi,...,xn) of degree d in R[x1,...,Xs] is
represented as a list of all monomials of degree < d and their
coefficients in p.

@ Examples:

e p(x,y) = xy polynomial of degree 2 over Q[x, y]

p(x,y) = 12,(0,x%), (1,xv), (0, 5%),(0,x), (0,y), (0,1)]
e g(x,y) =xy — 3x + 1 polynomial of degree 2 over Q[x, y]
q(x,y) = [2,(0,x%), (1, xv), (0,5%), (=3, %), (0, y), (1,1)]

@ Very wasteful for multivariate polynomials, or polynomials with high
degree. Needs to store all ("Zd) coefficients!
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Dense Representation

@ Setting: polynomial ring R[xi, ..., Xp]

e Dense representation: p(xi,...,xn) of degree d in R[x1,...,Xs] is
represented as a list of all monomials of degree < d and their
coefficients in p.

@ Examples:

e p(x,y) = xy polynomial of degree 2 over Q[x, y]

p(X7Y) - [25 (07 X2)7 (l, X)/)a (07)/2), (07 X)a (Ovy)’ (Oa 1)]
e g(x,y) =xy — 3x + 1 polynomial of degree 2 over Q[x, y]

qa(x.y) = [2,(0,x%), (L, xy), (0,5%), (=3,x),(0,¥), (1,1)]
(®.¢)) Q)

@ Very wasteful for multivariate polynomials, or polynomials with high

degree. Needs to store all ("Jgd) coefficients!

o In this class, we will represent a monomial x;*x5% - - - xg" either by

writing the monomial explicitly, or by its exponent vector
XPEx52 X5 < (€1, ..., ep)
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Sparse Representation

@ Setting: polynomial ring R[x1, ..., Xp]

@ Sparse representation: p(xi,...,xn) in R[x1,...,xs] is represented as
a list of all non-zero monomials and their coefficients in p.

e




Sparse Representation

@ Setting: polynomial ring R[x1, ..., Xp]
@ Sparse representation: p(xi,...,xn) in R[x1,...,xs] is represented as
a list of all non-zero monomials and their coefficients in p.
@ Examples:
Q qg(x,y) = xy — 3x + 1 polynomial of degree 2 over Q[x, y]

qa(x.y) = [(1, Xy) (- 3»X)7(1»1)]
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Sparse Representation

@ Setting: polynomial ring R[x1, ..., Xp]

@ Sparse representation: p(xi,...,xn) in R[x1,...,xs] is represented as
a list of all non-zero monomials and their coefficients in p.

@ Examples:
Q qg(x,y) = xy — 3x + 1 polynomial of degree 2 over Q[x, y]

Q(X7)/) - [(]wx)/)v (_37X)7 (17 1)]

n
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@ p(xa,....xm) =[[(xi+1) & 2 entnien
i=1
Too many coefficients even for some “simple polynomials.
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Sparse Representation

@ Setting: polynomial ring R[x1, ..., Xp]
@ Sparse representation: p(xi,...,xn) in R[x1,...,xs] is represented as
a list of all non-zero monomials and their coefficients in p.
@ Examples:
Q qg(x,y) = xy — 3x + 1 polynomial of degree 2 over Q[x, y]

a(x,y) = [(1,xy), (=3,x), (1,1)]
9 p(Xla o aXn) = H(Xi + 1)
i=1
Too many coefficients even for some “simple polynomials.”
© Det(X) = Z(*l)(I H Xio(i) n!
g€S, i€[n]
Too many coefficients too, and determinant also “simple polynomial.”



Sparse Representation

@ Setting: polynomial ring R[x1, ..., Xp]
@ Sparse representation: p(xi,...,xn) in R[x1,...,xs] is represented as
a list of all non-zero monomials and their coefficients in p.
@ Examples:
Q qg(x,y) = xy — 3x + 1 polynomial of degree 2 over Q[x, y]

Q(Xv)/) - [(1»XY)7 (_37X)7 (17 1)]

9 p(Xla e aXn) = H(Xi + 1)
i=1
Too many coefficients even for some “simple polynomials.”
@ Det(X) = > (-1)7 [] Xty
g€S, i€[n]
Too many coefficients too, and determinant also “simple polynomial.”
@ Why do we think that the polynomials from examples # 2 & 3 are
“simple?”



Algebraic Circuits - base ring R

@ Models the amount of operations needed to compute polynomial
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Algebraic Circuits - base ring R

@ Models the amount of operations needed to compute polynomial
o Algebraic Circuit: directed acyclic graph ® with
e input gates labelled by variables x, ..., x, or elements of R



Algebraic Circuits - base ring R

@ Models the amount of operations needed to compute polynomial
o Algebraic Circuit: directed acyclic graph ® with

e input gates labelled by variables x, ..., x, or elements of R
e other gates labelled +, x, +
e = gate takes two inputs, which are labelled numerator/denominator
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Algebraic Circuits - base ring R

@ Models the amount of operations needed to compute polynomial
o Algebraic Circuit: directed acyclic graph ® with

e input gates labelled by variables xi, ..., x, or elements of R

other gates labelled +, x, +

= gate takes two inputs, which are labelled numerator/denominator
gates compute polynomial (rational function) in natural way
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Algebraic Circuits - base ring R

@ Models the amount of operations needed to compute polynomial
o Algebraic Circuit: directed acyclic graph © with
e input gates labelled by variables x, ..., x, or elements of R
other gates labelled +, x, +
+ gate takes two inputs, which are labelled numerator/denominator
gates compute polynomial (rational function) in natural way

o formal degree of a gate: the degree of a gate is defined inductively

o if input gate: degree is O if gate is element of the field, 1 if it is a
variable

o u=w+ v then deg(u) = max(deg(w), deg(v))

o u=w X v then deg(u) = deg(w) + deg(v)
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Complexity Measures in Algebraic Circuits

@ circuit size: number of edges in the circuit, denoted by S(®)

@ cost of ring elements: in classical algebraic complexity, there is unit
cost for the use of any base ring element
@ Sometimes we will add bit complexity of base ring elements
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Complexity Measures in Algebraic Circuits

oMmn Y T‘AO--\'\' ™D
@ circuit size: number of edges in the circuit, denoted by S(®)
@ cost of ring elements: in classical algebraic complexity, there is unit
cost for the use of any base ring element
@ Sometimes we will add bit complexity of base ring elements

@ circuit depth: length of longest direct path from an input to an output
N
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Complexity Measures in Algebraic Circuits

@ circuit size: number of edges in the circuit, denoted by S(®)

@ cost of ring elements: in classical algebraic complexity, there is unit
cost for the use of any base ring element

@ Sometimes we will add bit complexity of base ring elements
@ circuit depth: length of longest direct path from an input to an output

@ constant depth circuits: for circuits of constant depth, we don't place
restriction on the fan-in of an #fige/
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Examples - Constant Depth Circuits

? ;Tﬂ — depth 2 coneuit
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@ Operations in Algebraic Circuits



Obtaining Homogeneous Components

Theorem ([Strassen 1973])

If a polynomial p(xi,...,xn) € F[xi,...,xn| can be computed by a circuit
® of size S(®), then the homogeneous components Ho[p], Hi[p], ..., H[p]

can be computed by acircuit of size o(r?-S(¢)). —
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Obtaining Homogeneous Components



Getting rid of Division

Theorem ([Strassen 1973])

If a polynomial p(xi,...,xn) € F[x1,...,x,]| of degree d can be computed
by a circuit ® of size S(®) using +, X, -+, then there is a circuit ¥ of size
poly(S(®), d, n) which computes p without using division gates.
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Getting rid of Division
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Getting rid of Division ®lemn
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Computing Determinants with Small Circuits

The polynomial Det(X) can be computed by an arithmetic circuit of
poly(n) size.
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Computing Determinants with Small Circuits



@ Conclusion



Conclusion

In today's lecture, we learned about different computational models for
symbolic computation, and basic computations in these models.

@ Dense representation

@ Sparse representation

o Algebraic circuits

@ Proved that the determinant can be computed by algebraic circuits of
polynomial size
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