Lecture 2: Algebraic Models of Computation

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

January 12, 2021

Overview

- Algebraic Models of Computation
- Operations in Algebraic Circuits
- Conclusion
- Acknowledgements

Dense Representation

- Setting: polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$
- Dense representation: $p\left(x_{1}, \ldots, x_{n}\right)$ of degree d in $R\left[x_{1}, \ldots, x_{n}\right]$ is represented as a list of all monomials of degree $\leq d$ and their coefficients in p.

Dense Representation

- Setting: polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$
- Dense representation: $p\left(x_{1}, \ldots, x_{n}\right)$ of degree d in $R\left[x_{1}, \ldots, x_{n}\right]$ is represented as a list of all monomials of degree $\leq d$ and their coefficients in p.
- Examples:
- $p(x, y)=x y$ polynomial of degree 2 over $\mathbb{Q}[x, y]$

$$
\overline{p(x, y)} \rightarrow\left[2,\left(0, x^{2}\right),(1, x y),\left(0, y^{2}\right),(0, x),(0, y),(0,1)\right]
$$

degree

$$
p(x, y)=0 \cdot x^{2}+1 \cdot x y+0 \cdot y^{2}+0 \cdot x+0 \cdot y+0 \cdot 1
$$

Dense Representation

- Setting: polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$
- Dense representation: $p\left(x_{1}, \ldots, x_{n}\right)$ of degree d in $R\left[x_{1}, \ldots, x_{n}\right]$ is represented as a list of all monomials of degree $\leq d$ and their coefficients in p.
- Examples:
- $p(x, y)=x y$ polynomial of degree 2 over $\mathbb{Q}[x, y]$

$$
p(x, y) \rightarrow\left[2,\left(0, x^{2}\right),(1, x y),\left(0, y^{2}\right),(0, x),(0, y),(0,1)\right]
$$

- $q(x, y)=x y-3 x+1$ polynomial of degree 2 over $\mathbb{Q}[x, y]$

$$
q(x, y) \rightarrow\left[2,\left(0, x^{2}\right),(1, x y),\left(0, y^{2}\right),(-3, x),(0, y),(1,1)\right]
$$

Dense Representation

- Setting: polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$
- Dense representation: $p\left(x_{1}, \ldots, x_{n}\right)$ of degree d in $R\left[x_{1}, \ldots, x_{n}\right]$ is represented as a list of all monomials of degree $\leq d$ and their coefficients in p.
- Examples:
- $p(x, y)=x y$ polynomial of degree 2 over $\mathbb{Q}[x, y]$

$$
p(x, y) \rightarrow\left[2,\left(0, x^{2}\right),(1, x y),\left(0, y^{2}\right),(0, x),(0, y),(0,1)\right]
$$

- $q(x, y)=x y-3 x+1$ polynomial of degree 2 over $\mathbb{Q}[x, y]$

$$
q(x, y) \rightarrow\left[2,\left(0, x^{2}\right),(1, x y),\left(0, y^{2}\right),(-3, x),(0, y),(1,1)\right]
$$

- Very wasteful for multivariate polynomials, or polynomials with high degree. Needs to store all $\binom{n+d}{d}$ coefficients!
\# monomials n vars
dey $\leq d$.

Dense Representation

- Setting: polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$
- Dense representation: $p\left(x_{1}, \ldots, x_{n}\right)$ of degree d in $R\left[x_{1}, \ldots, x_{n}\right]$ is represented as a list of all monomials of degree $\leq d$ and their coefficients in p.
- Examples:
- $p(x, y)=x y$ polynomial of degree 2 over $\mathbb{Q}[x, y]$

$$
p(x, y) \rightarrow\left[2,\left(0, x^{2}\right),(1, x y),\left(0, y^{2}\right),(0, x),(0, y),(0,1)\right]
$$

- $q(x, y)=x y-3 x+1$ polynomial of degree 2 over $\mathbb{Q}[x, y]$

$$
\begin{gathered}
q(x, y) \rightarrow\left[2,\left(0, x^{2}\right),(1, x y),\left(0, y^{2}\right),(-3, x),(0, y),(1,1)\right] \\
\left(0_{\imath}(2,0)\right),(1,(1,1))
\end{gathered}
$$

- Very wasteful for multivariate polynomials, or polynomials with high degree. Needs to store all $\binom{n+d}{d}$ coefficients!
- In this class, we will represent a monomial $x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}$ either by writing the monomial explicitly, or by its exponent vector

$$
\underline{x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}} \leftrightarrow \underline{\left(e_{1}, \ldots, e_{n}\right)}
$$

Sparse Representation

- Setting: polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$
- Sparse representation: $p\left(x_{1}, \ldots, x_{n}\right)$ in $R\left[x_{1}, \ldots, x_{n}\right]$ is represented as a list of all non-zero monomials and their coefficients in p.

Sparse Representation

- Setting: polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$
- Sparse representation: $p\left(x_{1}, \ldots, x_{n}\right)$ in $R\left[x_{1}, \ldots, x_{n}\right]$ is represented as a list of all non-zero monomials and their coefficients in p.
- Examples:
(1) $q(x, y)=x y-3 x+1$ polynomial of degree 2 over $\mathbb{Q}[x, y]$

$$
q(x, y) \rightarrow \underset{\uparrow}{[(1, x y)},(-3, x),(1,1)]
$$

Sparse Representation

- Setting: polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$
- Sparse representation: $p\left(x_{1}, \ldots, x_{n}\right)$ in $R\left[x_{1}, \ldots, x_{n}\right]$ is represented as a list of all non-zero monomials and their coefficients in p.
- Examples:
(1) $q(x, y)=x y-3 x+1$ polynomial of degree 2 over $\mathbb{Q}[x, y]$

$$
q(x, y) \rightarrow[(1, x y),(-3, x),(1,1)]
$$

($p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n}\left(x_{i}+1\right) \leftarrow 2^{n}$ entries
Too many coefficients even for some "simple polynomials."

$$
\begin{aligned}
& s \subset[n]:=\{1,2, \ldots, n\} \quad 2^{n} \\
& \left(1, x_{s}:=\prod_{i \in s} x_{i}\right)
\end{aligned}
$$

Sparse Representation

- Setting: polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$
- Sparse representation: $p\left(x_{1}, \ldots, x_{n}\right)$ in $R\left[x_{1}, \ldots, x_{n}\right]$ is represented as a list of all non-zero monomials and their coefficients in p.
- Examples:
(1) $q(x, y)=x y-3 x+1$ polynomial of degree 2 over $\mathbb{Q}[x, y]$

$$
q(x, y) \rightarrow[(1, x y),(-3, x),(1,1)]
$$

(2) $p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n}\left(x_{i}+1\right)$

Too many coefficients even for some "simple polynomials."
(3) $\operatorname{Det}(X)=\sum_{\sigma \in S_{n}}(-1)^{\sigma} \prod_{i \in[n]} X_{i \sigma(i)} \quad n!$

Too many coefficients too, and determinant also "simple polynomial."

Sparse Representation

- Setting: polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$
- Sparse representation: $p\left(x_{1}, \ldots, x_{n}\right)$ in $R\left[x_{1}, \ldots, x_{n}\right]$ is represented as a list of all non-zero monomials and their coefficients in p.
- Examples:
(1) $q(x, y)=x y-3 x+1$ polynomial of degree 2 over $\mathbb{Q}[x, y]$

$$
q(x, y) \rightarrow[(1, x y),(-3, x),(1,1)]
$$

$\left\{\right.$ (2) $p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n}\left(x_{i}+1\right)$
Too many coefficients even for some "simple polynomials."
(3) $\operatorname{Det}(X)=\sum_{\sigma \in S_{n}}(-1)^{\sigma} \prod_{i \in[n]} X_{i \sigma(i)}$

Too many coefficients too, and determinant also "simple polynomial."

- Why do we think that the polynomials from examples \# 2 \& 3 are "simple?"

Algebraic Circuits - base ring R

- Models the amount of operations needed to compute polynomial

Algebraic Circuits - base ring R

- Models the amount of operations needed to compute polynomial
- Algebraic Circuit: directed acyclic graph Φ with
- input gates labelled by variables x_{1}, \ldots, x_{n} or elements of R

Algebraic Circuits - base ring R

- Models the amount of operations needed to compute polynomial
- Algebraic Circuit: directed acyclic graph Φ with
- input gates labelled by variables x_{1}, \ldots, x_{n} or elements of R
- other gates labelled,$+ \times, \div$
- \div gate takes two inputs, which are labelled numerator/denominator

$$
\alpha u+\beta v
$$

$$
\frac{v}{v}
$$

Algebraic Circuits - base ring R

- Models the amount of operations needed to compute polynomial
- Algebraic Circuit: directed acyclic graph Φ with
- input gates labelled by variables x_{1}, \ldots, x_{n} or elements of R
- other gates labelled,$+ \times, \div$
- \div gate takes two inputs, which are labelled numerator/denominator
- gates compute polynomial (rational function) in natural way

Algebraic Circuits - base ring R

- Models the amount of operations needed to compute polynomial
- Algebraic Circuit: directed acyclic graph Φ with
- input gates labelled by variables x_{1}, \ldots, x_{n} or elements of R
- other gates labelled,$+ \times, \div$
- \div gate takes two inputs, which are labelled numerator/denominator
- gates compute polynomial (rational function) in natural way
- formal degree of a gate: the degree of a gate is defined inductively
- if input gate: degree is 0 if gate is element of the field, 1 if it is a variable
- $u=w+v$ then $\operatorname{deg}(u)=\max (\operatorname{deg}(w), \operatorname{deg}(v))$
- $u=w \times v$ then $\operatorname{deg}(u)=\operatorname{deg}(w)+\operatorname{deg}(v)$

Complexity Measures in Algebraic Circuits

- circuit size: number of edges in the circuit, denoted by $\mathcal{S}(\Phi)$
- cost of ring elements: in classical algebraic complexity, there is unit cost for the use of any base ring element
- Sometimes we will add bit complexity of base ring elements

Complexity Measures in Algebraic Circuits
amount of operations

- circuit size: number of edges in the circuit, denoted by $\mathcal{S}(\Phi)$
- cost of ring elements: in classical algebraic complexity, there is unit cost for the use of any base ring element
- Sometimes we will add bit complexity of base ring elements
- circuit depth: length of longest direct path from an input to an output parallel complexity of problem

$$
\operatorname{depth}(\phi)=2 .
$$

Complexity Measures in Algebraic Circuits

- circuit size: number of edges in the circuit, denoted by $\mathcal{S}(\Phi)$
- cost of ring elements: in classical algebraic complexity, there is unit cost for the use of any base ring element
- Sometimes we will add bit complexity of base ring elements
- circuit depth: length of longest direct path from an input to an output
- constant depth circuits: for circuits of constant depth, we don't place restriction on the fan-in of an eec.
if general

circuits
assume

$$
\text { fom-in } \leq 2
$$

Examples - Constant Depth Circuits
$\frac{\sum \pi}{4} \leftarrow$ depth 2 circuit

$$
\begin{aligned}
& \sum \underbrace{}_{\underset{\in R}{ } \underset{\alpha_{i} \cdot \pi x_{i}^{e}}{\alpha_{\bar{e}}} \cdot \frac{x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}}{\text { seminal }}} \\
& \pi\left(x_{i}+1\right) \\
& \pi
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma \pi \bar{\Sigma} \bar{\pi}
\end{aligned}
$$

- Algebraic Models of Computation
- Operations in Algebraic Circuits
- Conclusion
- Acknowledgements

Obtaining Homogeneous Components
Theorem ([Strassen 1973])
If a polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ can be computed by a circuit Φ of size $\mathcal{S (\Phi)}$, then the homogeneous components $H_{0}[p], \underline{H_{1}[p]}, \ldots, \underline{H_{r}[p]}$ can be computed by a circuit of size $O\left(r^{2} \cdot \mathcal{S}(\Phi)\right)$.
Prof: induction on depth input are homogeneous v
$z_{i} \leftarrow i^{\text {th }}$ homagenous component of Pv
for e very gate $v \quad v_{0}, v_{1}, \ldots, v_{n}$

Obtaining Homogeneous Components

Getting rid of Division
Theorem ([Strassen 1973])
If a polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d can be computed by a circuit Φ of size $\mathcal{S}(\Phi)$ using,$+ \times, \div$, then there is a circuit ψ of size poly $(\mathcal{S}(\Phi), d, n)$ which computes p without using division gates.

Proof: show that Φ can be made have only one division gate, on the output gate

Getting rid of Division

size new circuit O ((S)
p output $\frac{f}{g}<$ numerator of output

$$
\begin{aligned}
& \text { Getting rid of Division }
\end{aligned}
$$

$$
\begin{aligned}
& \text { constant fem } \\
& g_{0}=1 \\
& \frac{1}{g}=\frac{l}{1-\hat{g}}=1+\hat{g}_{\geqslant 1}^{\hat{g}}+\hat{g}_{\geqslant 2}^{2}+\cdots+\hat{g}_{\geqslant d}^{d}+\underbrace{\hat{g}^{d r}}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \text { compute tron } \\
& \text { of } p
\end{aligned}
$$

Computing Determinants with Small Circuits
Corollary
The polynomial $\operatorname{Det}(X)$ can be computed by an arithmetic circuit of poly (n) size.

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \rightarrow\left(\begin{array}{cc}
a d-b c \\
0 & b-\frac{b c}{a}
\end{array}\right) \\
& a \cdot\left(d-\frac{b c}{a}\right)=a d-b c
\end{aligned}
$$

Gaussian $\sqrt{2}$ liminetion gives cut computes $\operatorname{Det}(X)$ using olivisions $O\left(n^{3}\right)$ operations \Rightarrow by s'73 Ck+a without divining.

Computing Determinants with Small Circuits

- Algebraic Models of Computation
- Operations in Algebraic Circuits
- Conclusion
- Acknowledgements

Conclusion

In today's lecture, we learned about different computational models for symbolic computation, and basic computations in these models.

- Dense representation
- Sparse representation
- Algebraic circuits
- Proved that the determinant can be computed by algebraic circuits of polynomial size

Acknowledgement

- Algebraic circuit part of lecture largely based on chapters $1 \& 2$ of survey
https://www.nowpublishers.com/article/Details/TCS-039

References I

Strassen, Volker 1973.
Vermeidung von Divisionen
The Journal fur die Reine und Angewandte Mathematik

