Lecture 2: Algebraic Models of Computation

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

January 12, 2021

Overview

- Algebraic Models of Computation
- Operations in Algebraic Circuits

- Conclusion
- Acknowledgements

- Setting: polynomial ring $R[x_1, \ldots, x_n]$
- Dense representation: p(x₁,...,x_n) of degree d in R[x₁,...,x_n] is represented as a list of all monomials of degree ≤ d and their coefficients in p.

- Setting: polynomial ring $R[x_1, \ldots, x_n]$
- Dense representation: p(x₁,...,x_n) of degree d in R[x₁,...,x_n] is represented as a list of all monomials of degree ≤ d and their coefficients in p.
- Examples:

•
$$p(x, y) = xy$$
 polynomial of degree 2 over $\mathbb{Q}[x, y]$
 $p(x, y) \to [2, (0, x^2), (1, xy), (0, y^2), (0, x), (0, y), (0, 1)]$
 f
 $degree$
 $p(x, y) = O \cdot \chi^2 + I \cdot xy + O \cdot y^2 + O \cdot \chi + O \cdot y + O \cdot I$

- Setting: polynomial ring $R[x_1, \ldots, x_n]$
- Dense representation: p(x₁,...,x_n) of degree d in R[x₁,...,x_n] is represented as a list of all monomials of degree ≤ d and their coefficients in p.
- Examples:

- Setting: polynomial ring $R[x_1, \ldots, x_n]$
- Dense representation: p(x₁,...,x_n) of degree d in R[x₁,...,x_n] is represented as a list of all monomials of degree ≤ d and their coefficients in p.
- Examples:

 Very wasteful for multivariate polynomials, or polynomials with high degree. Needs to store all ^{n+d}/_d coefficients!

.

- Setting: polynomial ring $R[x_1, \ldots, x_n]$
- Dense representation: p(x₁,...,x_n) of degree d in R[x₁,...,x_n] is represented as a list of all monomials of degree ≤ d and their coefficients in p.
- Examples:
 - p(x, y) = xy polynomial of degree 2 over $\mathbb{Q}[x, y]$

 $p(x, y) \rightarrow [2, (0, x^2), (1, xy), (0, y^2), (0, x), (0, y), (0, 1)]$

- q(x, y) = xy 3x + 1 polynomial of degree 2 over $\mathbb{Q}[x, y]$ $q(x, y) \rightarrow [2, (0, x^2), (1, xy), (0, y^2), (-3, x), (0, y), (1, 1)]$ $(D_{l}(t, 0)) ((1, 1))$
- Very wasteful for multivariate polynomials, or polynomials with high degree. Needs to store all ^{n+d}/_d coefficients!
- In this class, we will represent a monomial x₁^{e₁}x₂^{e₂</sub> ··· x_n^{e_n} either by writing the monomial explicitly, or by its *exponent vector*}

$$x_1^{e_1} x_2^{e_2} \cdots x_n^{e_n} \leftrightarrow (e_1, \dots, e_n)$$

- Setting: polynomial ring $R[x_1, \ldots, x_n]$
- Sparse representation: $p(x_1, ..., x_n)$ in $R[x_1, ..., x_n]$ is represented as a list of all *non-zero* monomials and *their coefficients* in *p*.

- Setting: polynomial ring $R[x_1, \ldots, x_n]$
- Sparse representation: $p(x_1, ..., x_n)$ in $R[x_1, ..., x_n]$ is represented as a list of all *non-zero* monomials and *their coefficients* in *p*.
- Examples:

• q(x,y) = xy - 3x + 1 polynomial of degree 2 over $\mathbb{Q}[x,y]$

$$q(x,y) \rightarrow [(1,xy), (-3,x), (1,1)]$$

- Setting: polynomial ring $R[x_1, \ldots, x_n]$
- Sparse representation: $p(x_1, ..., x_n)$ in $R[x_1, ..., x_n]$ is represented as a list of all *non-zero* monomials and *their coefficients* in *p*.
- Examples:

•
$$q(x,y) = xy - 3x + 1$$
 polynomial of degree 2 over $\mathbb{Q}[x,y]$

$$q(x, y) \rightarrow [(1, xy), (-3, x), (1, 1)]$$

•
$$p(x_1, ..., x_n) = \prod_{i=1}^n (x_i + 1) \leftarrow 2^n$$
 entries
Too many coefficients even for some "simple polynomials."
 $S \subset [n] := \{s_1, z_1, ..., n\} \quad Z^n$
 $(1, x_5) := \prod_{i=1}^n x_i$

- Setting: polynomial ring $R[x_1, \ldots, x_n]$
- Sparse representation: $p(x_1, ..., x_n)$ in $R[x_1, ..., x_n]$ is represented as a list of all *non-zero* monomials and *their coefficients* in *p*.
- Examples:

•
$$q(x,y) = xy - 3x + 1$$
 polynomial of degree 2 over $\mathbb{Q}[x,y]$

$$q(x, y) \rightarrow [(1, xy), (-3, x), (1, 1)]$$

- Setting: polynomial ring $R[x_1, \ldots, x_n]$
- Sparse representation: $p(x_1, ..., x_n)$ in $R[x_1, ..., x_n]$ is represented as a list of all *non-zero* monomials and *their coefficients* in *p*.
- Examples:

•
$$q(x,y) = xy - 3x + 1$$
 polynomial of degree 2 over $\mathbb{Q}[x,y]$

$$q(x, y) \rightarrow [(1, xy), (-3, x), (1, 1)]$$

$$\begin{cases} 2 \quad p(x_1, \dots, x_n) = \prod_{i=1}^n (x_i + 1) \\ \text{Too many coefficients even for some "simple polynomials."} \\ 3 \quad \text{Det}(X) = \sum_{\sigma \in S_n} (-1)^{\sigma} \prod_{i \in [n]} X_{i\sigma(i)} \\ \end{cases}$$

Too many coefficients too, and determinant also "simple polynomial."

• Why do we think that the polynomials from examples # 2 & 3 are "simple?"

• Models the *amount of operations* needed to compute polynomial

- Models the *amount of operations* needed to compute polynomial
- Algebraic Circuit: directed acyclic graph Φ with
 - input gates labelled by variables x_1, \ldots, x_n or elements of R

イロン (語) (注) (注) (注) まつの(の

- Models the *amount of operations* needed to compute polynomial
- Algebraic Circuit: directed acyclic graph Φ with
 - input gates labelled by variables x_1, \ldots, x_n or elements of R
 - \bullet other gates labelled $+,\times,\div$
 - $\bullet~\div$ gate takes two inputs, which are labelled numerator/denominator

- Models the *amount of operations* needed to compute polynomial
- Algebraic Circuit: directed acyclic graph Φ with
 - input gates labelled by variables x_1, \ldots, x_n or elements of R
 - \bullet other gates labelled $+,\times,\div$
 - $\bullet~\div$ gate takes two inputs, which are labelled numerator/denominator
 - gates compute polynomial (rational function) in natural way

지수는 지원에 지수 없는 지원이다.

- Models the *amount of operations* needed to compute polynomial
- Algebraic Circuit: directed acyclic graph Φ with
 - input gates labelled by variables x_1, \ldots, x_n or elements of R
 - other gates labelled $+,\times,\div$
 - $\bullet~\div$ gate takes two inputs, which are labelled numerator/denominator
 - gates compute polynomial (rational function) in natural way

• formal degree of a gate: the degree of a gate is defined inductively

• if input gate: degree is 0 if gate is element of the field, 1 if it is a variable

200

- u = w + v then deg(u) = max(deg(w), deg(v))
- $u = w \times v$ then $\deg(u) = \deg(w) + \deg(v)$

Complexity Measures in Algebraic Circuits

- *circuit size:* number of edges in the circuit, denoted by $\mathcal{S}(\Phi)$
- *cost of ring elements:* in classical algebraic complexity, there is unit cost for the use of any base ring element

지 다 가 지 않는 지 않는 지 않는 것

• Sometimes we will add bit complexity of base ring elements

Complexity Measures in Algebraic Circuits

- *circuit size:* number of edges in the circuit, denoted by $S(\Phi)$
- *cost of ring elements:* in classical algebraic complexity, there is unit cost for the use of any base ring element
- Sometimes we will add bit complexity of base ring elements
- circuit depth: length of longest direct path from an input to an output parallel complexity of problem

 $depth(\Phi) = 2$

化白豆 化氯丁 化氯丁 化氯丁二氯丁

Complexity Measures in Algebraic Circuits

indegnee

- *circuit size:* number of edges in the circuit, denoted by $S(\Phi)$
- *cost of ring elements:* in classical algebraic complexity, there is unit cost for the use of any base ring element
- Sometimes we will add bit complexity of base ring elements
- circuit depth: length of longest direct path from an input to an output
- *constant depth circuits:* for circuits of constant depth, we don't place restriction on the fan-in of an *cleck*!

if general Circuits assume fon-in ≤2

Examples - Constant Depth Circuits ZTT - depth z cinait $\sum \alpha_e \cdot \chi_1^{e_1} \chi_2^{e_2} \cdot \chi_n^{e_n}$ monial eR x= TTx: $T(\mathbf{a}_{i+1})$ Rincor from 2 TI lij(z,...,zn) ZTZ الن الے ا sporse polynomials (xi+1) ~=1 化白豆 化氯化 化氯化 化氯化 计算机 200

• Algebraic Models of Computation

• Operations in Algebraic Circuits

くロン (語) くほど (語) 一語 一

200

Conclusion

Acknowledgements

Obtaining Homogeneous Components

Theorem ([Strassen 1973])

If a polynomial $p(x_1, ..., x_n) \in \mathbb{F}[x_1, ..., x_n]$ can be computed by a circuit Φ of size $S(\Phi)$, then the homogeneous components $H_0[p], H_1[p], ..., H_r[p]$ can be computed by a circuit of size $O(r^2 \cdot S(\Phi))$.

Obtaining Homogeneous Components

- < ロ > < 団 > < ミ > < ミ > - モ - のへで

Getting rid of Division

Theorem ([Strassen 1973])

If a polynomial $p(x_1, ..., x_n) \in \mathbb{F}[x_1, ..., x_n]$ of degree d can be computed by a circuit Φ of size $S(\Phi)$ using $+, \times, \div$, then there is a circuit Ψ of size poly $(S(\Phi), d, n)$ which computes p without using division gates.

Getting rid of Division

Computing Determinants with Small Circuits

Corollary

The polynomial Det(X) can be computed by an arithmetic circuit of poly(n) size.

Computing Determinants with Small Circuits

- イロト イヨト イモト イモト モー のくで

• Algebraic Models of Computation

• Operations in Algebraic Circuits

くロン (語) (名) (名) (名) (名)

200

Conclusion

Acknowledgements

Conclusion

In today's lecture, we learned about different computational models for symbolic computation, and basic computations in these models.

- Dense representation
- Sparse representation
- Algebraic circuits
- Proved that the determinant can be computed by algebraic circuits of polynomial size

Acknowledgement

• Algebraic circuit part of lecture largely based on chapters 1 & 2 of survey

https://www.nowpublishers.com/article/Details/TCS-039

1 D 1 (B 1 (2) (2) (2) (2) (0)

References I

Strassen, Volker 1973.

Vermeidung von Divisionen

The Journal fur die Reine und Angewandte Mathematik

