Lecture 16: Reynolds Operator & Finite Generation of Invariant Rings

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

March 10, 2021

Overview

- Finite Generation of Invariant Rings for Finite Groups
- Reynolds Operator & Finite Generation
- Cayley's Ω -process and Reynolds Operator for SL(n)

(D) (B) (E) (E) (E) (D) (O)

- Conclusion
- Acknowledgements

Finite Generation Problem

- Let G be a nice¹ group and V be a \mathbb{C} -vector space
- G acts *linearly* on V if

$$g \circ (\alpha u + \beta v) = \alpha (g \circ u) + \beta (g \circ v)$$

$$(gh) \circ v = g \circ (h \circ v)$$

¹Today: finite groups and SL(n). More generally *linearly_reductive* $z \to z \to z$

Finite Generation Problem

- Let G be a nice¹ group and V be a \mathbb{C} -vector space
- G acts *linearly* on V if

$$g \circ (\alpha u + \beta v) = \alpha (g \circ u) + \beta (g \circ v)$$

1 $G = S_n, V = \mathbb{C}^n$ **2** $G = \mathbb{SL}(2), V = \mathbb{C}^{d+1}$

permuting coordinates linear transformations of curves

¹Today: finite groups and SL(n). More generally *linearly*-reductive **a** $(a, b) \in \mathbb{R}$

$\chi = \mathcal{L}^{N}$ **Finite Generation Problem**

- Let G be a nice¹ group and V be a \mathbb{C} -vector space C[XII-I, XN]
- G acts *linearly* on V if

$$g \circ (\alpha u + \beta v) = \alpha (g \circ u) + \beta (g \circ v)$$

TIN

- []

- Examples:
 - $G = S_n, V = \mathbb{C}^n$ permuting coordinates **2** $G = \mathbb{SL}(2), V = \mathbb{C}^{d+1}$ linear transformations of curves
- Invariant polynomials form a *subring* of $\mathbb{C}[V]$, denoted $\mathbb{C}[V]^G$
- Question from last lecture:

Given a nice group G acting linearly on a vector space V, is $\mathbb{C}[V]^G$ *finitely generated* as a C-algebra?

 $\mathbb{C}[\{1,\dots,n\}^{t}] = \mathbb{C}[V]^{G}$

¹Today: finite groups and SL(n). More generally *linearly*-reductive $a \to a \to a$ 200

Finite Generation Problem

- Let G be a nice¹ group and V be a \mathbb{C} -vector space
- G acts *linearly* on V if

$$g \circ (\alpha u + \beta v) = \alpha (g \circ u) + \beta (g \circ v)$$

• Examples:

Image: G = S_n, V = \mathbb{C}^n permuting coordinatesImage: G = SL(2), V = \mathbb{C}^{d+1} linear transformations of curves

- Invariant polynomials form a *subring* of $\mathbb{C}[V]$, denoted $\mathbb{C}[V]^G$
- Question from last lecture:

Given a nice group G acting linearly on a vector space V, is $\mathbb{C}[V]^G$ finitely generated as a \mathbb{C} -algebra?

• Last lecture, we saw this was the case for first example. Is this a general phenomenon? $G = G \cup (3)$ V = C

• Hilbert (twice) <u>1890</u>, 1893: YES! 🦯 🧏 🕺

¹Today: finite groups and SL(n). More generally *linearly*-reductive $z \mapsto z \mapsto z \to \infty$

Ring of Invariant Polynomials

- G acts linearly on V = C^N, let C[x] = C[x₁,...,x_N] be the polynomial ring over V
- Invariant polynomials form a subring of $\mathbb{C}[\mathbf{x}]$, denoted $\mathbb{C}[\mathbf{x}]^G$

1 D > (B > (2 > (2 > (2 > 2) 0.0)

Ring of Invariant Polynomials

- G acts linearly on V = C^N, let C[x] = C[x₁,...,x_N] be the polynomial ring over V
- Invariant polynomials form a *subring* of $\mathbb{C}[\mathbf{x}]$, denoted $\mathbb{C}[\mathbf{x}]^G$
- For the ring of symmetric polynomials, we know that

$$\mathbb{C}[x_1,\ldots,x_n]^{S_n}=\mathbb{C}[e_1,e_2,\ldots,e_n]$$

where

$$e_d(x_1,\ldots,x_n) = \sum_{\substack{S\subset[n]\|S|=d}}\prod_{i\in S}x_i$$

- Every symmetric polynomial is itself a <u>polynomial function</u> of the elementary symmetric polynomials
- Elementary symmetric polynomials are a *fundamental system of invariants*

Proof of Invariant Ring of Symmetric Polynomials

Proof of Invariant Ring of Symmetric Polynomials

• Proof due to van der Waerden

using monomial ordering!

- Use degree lexicographic order
- Every symmetric polynomial p(x) has a non-zero leading term

$$x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}$$

with
$$a_1 \geq a_2 \geq \cdots \geq a_n$$

Then

$$p(x) - LC(p) \cdot e_1^{a_1 - a_2} \cdot e_2^{a_2 - a_3} \cdots e_{n-1}^{a_{n-1} - a_n} \cdot e_n^{a_n}$$

has *smaller* leading monomial!

division algorithm!

- Procedure must terminate because of well-ordering of monomial ordering!
- Can we generalize this to work for every finite group?

• If G is a finite group acting linearly on $V = \mathbb{C}^N$, let $\rho : \mathbb{C}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]^G$

$$\rho(p) = \frac{1}{|G|} \cdot \sum_{\substack{g \in G}} \frac{g \circ p}{(1)(2)(3)}$$

$$G = S_3 \quad \bigvee = \mathbb{C}^3 \qquad (\pounds Z)(3) \\ (13)(2) \\ (13)(2) \\ (132) \\$$

$$\rho(p) = \frac{1}{6} \left(\chi_{1} + \chi_{2} + \chi_{3} + \chi_{2} + \chi_{3} + \chi_{4} \right)$$

= $\frac{1}{3} e_{1} \left(\chi_{11} \chi_{21} \chi_{3} \right)$

 $P(p) = \frac{1}{|G|} \sum_{g \in G} g^{\circ}P$ $\frac{p}{p} = \frac{\ell}{|G|} \sum_{g \in G} \frac{h \circ (g \circ p)}{(hg) \circ p}$ G->G pormutation g hog invariant! $hg_1 = hg_2 \iff g_1 = g_2$ $\frac{-1}{|G|} = \frac{1}{2} = \frac$

• If G is a finite group acting linearly on $V = \mathbb{C}^N$, let $\rho : \mathbb{C}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]^G$

$$\rho(p) = \frac{1}{|G|} \cdot \sum_{g \in G} g \circ p$$

• Properties of
$$\rho$$
:
• $\rho : \mathbb{C}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]^G$ is a linear operator
• $\rho(p \cdot q) = p \cdot \rho(q)$ for any $\underline{p} \in \mathbb{C}[\mathbf{x}]^G$ and $\underline{q} \in \mathbb{C}[\mathbf{x}]$
• $deg(\rho(p)) = deg(p)$ whenever $\rho(p) \neq 0$
($\rho(p+q) = \frac{1}{|G|} \sum_{g \in G} g(p+q) = \rho(p) + \rho(q)$
• $\rho(p+q) = \frac{1}{|G|} \sum_{g \in G} g(p+q) = \rho(p) + \rho(q)$
• $\rho(p+q) = \frac{1}{|G|} \sum_{g \in G} g(p+q) = \rho(p) + \rho(q)$
• $\rho(p+q) = \frac{1}{|G|} \sum_{g \in G} g(p+q) = \rho(p) + \rho(q)$
• $\rho(p+q) = \frac{1}{|G|} \sum_{g \in G} g(p+q) = \rho(p) + \rho(q)$
• $\rho(p+q) = \frac{1}{|G|} \sum_{g \in G} g(p+q) = \rho(p) + \rho(q)$
• $\rho(p+q) = \frac{1}{|G|} \sum_{g \in G} g(p+q) = \rho(p) + \rho(q)$
• $\rho(p+q) = \frac{1}{|G|} \sum_{g \in G} g(p+q) = \rho(p) + \rho(q)$
• $\rho(p+q) = \frac{1}{|G|} \sum_{g \in G} g(p) + \rho(q)$
• $\rho(p) = \frac{1}{|G|} \sum_{g \in G} g(p) + \rho(q)$
• $\rho(p) = \frac{1}{|G|} \sum_{g \in G} g(p) + \rho(q)$
• $\rho(p) = \frac{1}{|G|} \sum_{g \in G} g(p) + \rho(q)$
• $\rho(p) = \frac{1}{|G|} \sum_{g \in G} g(p) + \rho(q)$
• $\rho(p) = \frac{1}{|G|} \sum_{g \in G} g(p) + \rho(q)$
• $\rho(p) = \frac{1}{|G|} \sum_{g \in G} g(p)$
• $\rho(p) = \frac{1}{|G|} \sum_{g \in G}$

• If G is a finite group acting linearly on $V = \mathbb{C}^N$, let $\rho : \mathbb{C}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]^G$

$$\rho(p) = \frac{1}{|G|} \cdot \sum_{g \in G} g \circ p$$

- Properties of *ρ*:
 - ρ: C[x] → C[x]^G is a linear operator

 ρ(p ⋅ q) = p ⋅ ρ(q) for any p ∈ C[x]^G and q ∈ C[x]

 deg(ρ(p)) = deg(p) whenever ρ(p) ≠ 0

 Now, we can use ρ to reduce finite generation as C-algebra to finite generation of ideals!

• If G is a finite group acting linearly on $V = \mathbb{C}^N$, let $\rho : \mathbb{C}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]^G$

$$\rho(p) = \frac{1}{|G|} \cdot \sum_{g \in G} g \circ p$$

- Properties of ρ :
 - ρ: C[x] → C[x]^G is a linear operator

 ρ(p ⋅ q) = p ⋅ ρ(q) for any p ∈ C[x]^G and q ∈ C[x]

 deg(ρ(p)) = deg(p) whenever ρ(p) ≠ 0
- Now, we can use ρ to reduce finite generation as $\mathbb{C}\text{-algebra}$ to finite generation of ideals!
- Note that our ring C[x] is graded by degree, and so is our ring of invariants!

$$\mathbb{C}\left[\overline{x}\right] = \mathbb{C} \oplus \mathbb{C}\left[\overline{x}\right]_{L} \oplus \mathbb{C}\left[\overline{x}\right]_{2} \oplus \cdots$$

• If G is a finite group acting linearly on $V = \mathbb{C}^N$, let $\rho : \mathbb{C}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]^G$

$$\rho(p) = \frac{1}{|G|} \cdot \sum_{g \in G} g \circ p$$

- Properties of *ρ*:
 - ρ: C[x] → C[x]^G is a linear operator

 ρ(p ⋅ q) = p ⋅ ρ(q) for any p ∈ C[x]^G and q ∈ C[x]

 deg(ρ(p)) = deg(p) whenever ρ(p) ≠ 0
- Now, we can use ρ to reduce finite generation as C-algebra to finite generation of ideals!
- Note that our ring $\mathbb{C}[\mathbf{x}]$ is graded by degree, and so is our ring of invariants!
- Plus, note that our invariants can always be taken to be homogeneous polynomials (otherwise we can take homogeneous components).

• Let $\mathbb{C}[\mathbf{x}] = \mathbb{C}[\mathbf{x}]_0 \oplus \mathbb{C}[\mathbf{x}]_1 \oplus \mathbb{C}[\mathbf{x}]_2 \oplus \cdots$ be grading by degree

イロン 不通 とくさと くきとうき うのくび

- Let $\mathbb{C}[\textbf{x}]=\mathbb{C}[\textbf{x}]_0\oplus\mathbb{C}[\textbf{x}]_1\oplus\mathbb{C}[\textbf{x}]_2\oplus\cdots$ be grading by degree
- Similarly $\mathbb{C}[\textbf{x}]^{\textit{G}} = \mathbb{C}[\textbf{x}]_{0}^{\textit{G}} \oplus \mathbb{C}[\textbf{x}]_{1}^{\textit{G}} \oplus \mathbb{C}[\textbf{x}]_{2}^{\textit{G}} \oplus \cdots$
- Let $J \subset \mathbb{C}[\mathbf{x}]$ be the *ideal* generated by

$$\mathbb{C}[\mathbf{x}]_{1}^{G} \oplus \mathbb{C}[\mathbf{x}]_{2}^{G} \oplus \cdots$$
homogeneous non-constant
invariant polynomials

$$\Gamma = i \text{ deal } \mathcal{G} \quad (\mathbb{T}\overline{\mathbf{x}}) \quad \text{generated}$$
by homogeneous non-constant
invariants

- Let $\mathbb{C}[\mathbf{x}] = \mathbb{C}[\mathbf{x}]_0 \oplus \mathbb{C}[\mathbf{x}]_1 \oplus \mathbb{C}[\mathbf{x}]_2 \oplus \cdots$ be grading by degree
- Similarly $\mathbb{C}[\mathbf{x}]^{\mathcal{G}} = \mathbb{C}[\mathbf{x}]_0^{\mathcal{G}} \oplus \mathbb{C}[\mathbf{x}]_1^{\mathcal{G}} \oplus \mathbb{C}[\mathbf{x}]_2^{\mathcal{G}} \oplus \cdots$
- Let $J \subset \mathbb{C}[\mathbf{x}]$ be the *ideal* generated by

$$\longrightarrow \mathbb{C}[\mathbf{x}]_1^G \oplus \mathbb{C}[\mathbf{x}]_2^G \oplus \cdots$$

• By Hilbert Basis Theorem (HBT), we know that J is finitely generated. $J = (a_1, \dots, a_t)$

Moreover, we can take ai's to be invariants (from proof of HBT) $f_i = \begin{bmatrix} b_{i1} \\ h_{i1} \\ h_{i2} \\ h_{i1} \\ h_{i1} \\ h_{i2} \\ h_{i2} \\ h_{i2} \\ h_{i1} \\ h_{i2} \\ h_{i1} \\ h_{i1} \\ h_{i2} \\ h$

- Let $\mathbb{C}[\mathbf{x}] = \mathbb{C}[\mathbf{x}]_0 \oplus \mathbb{C}[\mathbf{x}]_1 \oplus \mathbb{C}[\mathbf{x}]_2 \oplus \cdots$ be grading by degree
- Similarly $\mathbb{C}[\mathbf{x}]^{\mathcal{G}} = \mathbb{C}[\mathbf{x}]_0^{\mathcal{G}} \oplus \mathbb{C}[\mathbf{x}]_1^{\mathcal{G}} \oplus \mathbb{C}[\mathbf{x}]_2^{\mathcal{G}} \oplus \cdots$
- Let $J \subset \mathbb{C}[\mathbf{x}]$ be the *ideal* generated by

$$\mathbb{C}[\mathbf{x}]_1^G \oplus \mathbb{C}[\mathbf{x}]_2^G \oplus \cdots$$

• By Hilbert Basis Theorem (HBT), we know that *J* is finitely generated.

$$J=(a_1,\ldots,a_t)$$

Moreover, we can take a_i 's to be invariants (from proof of HBT)

• We can assume *a_i*'s are homogeneous (otherwise take their homogeneous components as generators)

- Let $\mathbb{C}[\mathbf{x}] = \mathbb{C}[\mathbf{x}]_0 \oplus \mathbb{C}[\mathbf{x}]_1 \oplus \mathbb{C}[\mathbf{x}]_2 \oplus \cdots$ be grading by degree
- Similarly $\mathbb{C}[\mathbf{x}]^{\mathcal{G}} = \mathbb{C}[\mathbf{x}]_0^{\mathcal{G}} \oplus \mathbb{C}[\mathbf{x}]_1^{\mathcal{G}} \oplus \mathbb{C}[\mathbf{x}]_2^{\mathcal{G}} \oplus \cdots$
- Let $J \subset \mathbb{C}[\mathbf{x}]$ be the *ideal* generated by

$$\mathbb{C}[\mathbf{x}]_1^G \oplus \mathbb{C}[\mathbf{x}]_2^G \oplus \cdots$$

• By Hilbert Basis Theorem (HBT), we know that *J* is finitely generated.

$$J=(a_1,\ldots,a_t)$$

Moreover, we can take a_i 's to be invariants (from proof of HBT)

- We can assume a_i's are homogeneous (otherwise take their homogeneous components as generators)
- We will now show that $\mathbb{C}[\mathbf{x}]^{\mathcal{G}} = \mathbb{C}[a_1, \dots, a_t]$

• Proof that $\mathbb{C}[\mathbf{x}]^{\mathcal{G}} = \mathbb{C}[a_1, \dots, a_t]$ is by induction on degree.

- Proof that $\mathbb{C}[\mathbf{x}]^G = \mathbb{C}[a_1, \ldots, a_t]$ is by induction on degree.
- Claim is true for d = 0 (base case). Suppose claim is true for all polynomials of degree < d in C[x]^G, where we now have d > 0.

- Proof that $\mathbb{C}[\mathbf{x}]^G = \mathbb{C}[a_1, \dots, a_t]$ is by induction on degree.
- Claim is true for d = 0 (base case). Suppose claim is true for all polynomials of degree < d in C[x]^G, where we now have d > 0.
- If $p \in \mathbb{C}[\mathbf{x}]_d^G$, since we know that $p \in J$ by definition of J, we have

- Proof that $\mathbb{C}[\mathbf{x}]^G = \mathbb{C}[a_1, \dots, a_t]$ is by induction on degree.
- Claim is true for d = 0 (base case). Suppose claim is true for all polynomials of degree < d in C[x]^G, where we now have d > 0.
- If $p \in \mathbb{C}[\mathbf{x}]_d^G$, since we know that $p \in J$ by definition of J, we have

$$p = a_{1}b_{1} + \dots + a_{t}b_{t}$$

$$e_{g}(a_{i}b_{i}) = de_{g}(p)$$

$$= de_{g}(p)$$

$$p = \rho(p) = \rho(a_{1}b_{1} + \dots + a_{t}b_{t})$$

$$= \rho(a_{1}b_{1}) + \dots + \rho(a_{t}b_{t})$$

$$= a_{1} \cdot \rho(b_{1}) + \dots + a_{t} \cdot \rho(b_{t})$$

$$\rho(a_{i}b_{i}) = a_{i} \cdot \rho(b_{i})$$

$$\rho(a_{i}b_{i}) = a_{i} \cdot \rho(b_{i})$$

$$\rho(a_{i}b_{i}) = a_{i} \cdot \rho(b_{i})$$

$$p(a_{i}b_{i}) = a_{i} \cdot \rho(b_{i})$$

- Proof that $\mathbb{C}[\mathbf{x}]^G = \mathbb{C}[a_1, \dots, a_t]$ is by induction on degree.
- Claim is true for d = 0 (base case). Suppose claim is true for all polynomials of degree < d in C[x]^G, where we now have d > 0.
- If $p \in \mathbb{C}[\mathbf{x}]_d^G$, since we know that $p \in J$ by definition of J, we have

$$p = a_1 b_1 + \cdots + a_t b_t$$

• Applying the averaging operator on both sides, we have:

$$p = \rho(p) = \rho(a_1b_1 + \dots + a_tb_t)$$

= $\rho(a_1b_1) + \dots + \rho(a_tb_t)$
= $a_1 \cdot \rho(b_1) + \dots + a_t \cdot \rho(b_t)$

• By induction, and the fact that $deg(
ho(b_i)) < d$, we have that

$$P = \Theta_{i} e^{(b_{1}) + \cdots + Q_{i}} e^{(b_{i})}$$

- Finite Generation of Invariant Rings for Finite Groups
- Reynolds Operator & Finite Generation
- Cayley's Ω -process and Reynolds Operator for $\mathbb{SL}(n)$

化白豆 化氯丁 化氯丁 化氯丁二氯丁

200

- Conclusion
- Acknowledgements

- Let G be our group acting on \mathbb{C}^N , and $\mathbb{C}[\mathbf{x}]$ our coordinate ring.
- If we had a procedure which <u>projected</u> any polynomial from $\mathbb{C}[\mathbf{x}]$ onto the ring of invariants $\mathbb{C}[\mathbf{x}]^G$, we could try to do something similar to Hilbert Basis Theorem!

- Let G be our group acting on \mathbb{C}^N , and $\mathbb{C}[\mathbf{x}]$ our coordinate ring.
- If we had a procedure which <u>projected</u> any polynomial from C[x] onto the ring of invariants C[x]^G, we could try to do something similar to Hilbert Basis Theorem!
- Here are the properties we need from such map $R:\mathbb{C}[\mathbf{x}]
 ightarrow\mathbb{C}[\mathbf{x}]^G$
 - R is a linear map
 - R(p) = p for all $p \in \mathbb{C}[\mathbf{x}]^G$
 - $R(pq) = p \cdot R(q)$ for each $p \in \mathbb{C}[\mathbf{x}]^G$ and $q \in \mathbb{C}[\mathbf{x}]$
 - $\deg(R(q)) = \deg(q)$ whenever $R(q) \neq 0$

and q homogeneous

²For a proof of this, see Derksen & Kemper Chapter 2 = + (

- Let G be our group acting on \mathbb{C}^N , and $\mathbb{C}[\mathbf{x}]$ our coordinate ring.
- If we had a procedure which <u>projected</u> any polynomial from C[x] onto the ring of invariants C[x]^G, we could try to do something similar to Hilbert Basis Theorem!
- Here are the properties we need from such map $R:\mathbb{C}[\mathbf{x}]
 ightarrow\mathbb{C}[\mathbf{x}]^{G}$
 - R is a linear map

•
$$R(p) = p$$
 for all $p \in \mathbb{C}[\mathbf{x}]^G$

- $R(pq) = p \cdot R(q)$ for each $p \in \mathbb{C}[\mathbf{x}]^G$ and $q \in \mathbb{C}[\mathbf{x}]$
- $\deg(R(q)) = \deg(q)$ whenever $R(q) \neq 0$
- a linear map R_G : C[x] → C[x]^G is a *Reynolds operator* if it satisfies the following properties:
 - $R_G(p) = p$ for all $p \in \mathbb{C}[\mathbf{x}]^G$
 - **2** R_G is G-invariant, that is, $R_G(g \circ p) = R_G(p)$ for all $p \in \mathbb{C}[\mathbf{x}]$ and all $g \in G$

any Reynolds operator has these properties

- Let G be our group acting on \mathbb{C}^N , and $\mathbb{C}[\mathbf{x}]$ our coordinate ring.
- If we had a procedure which <u>projected</u> any polynomial from C[x] onto the ring of invariants C[x]^G, we could try to do something similar to Hilbert Basis Theorem!
- Here are the properties we need from such map $R:\mathbb{C}[\mathbf{x}]
 ightarrow\mathbb{C}[\mathbf{x}]^{G}$
 - R is a linear map
 - R(p) = p for all $p \in \mathbb{C}[\mathbf{x}]^G$
 - $R(pq) = p \cdot R(q)$ for each $p \in \mathbb{C}[\mathbf{x}]^G$ and $q \in \mathbb{C}[\mathbf{x}]$
 - $\deg(R(q)) = \deg(q)$ whenever $R(q) \neq 0$
- a linear map R_G : C[x] → C[x]^G is a *Reynolds operator* if it satisfies the following properties:
 - $R_G(p) = p$ for all $p \in \mathbb{C}[\mathbf{x}]^G$
 - 3 R_G is G-invariant, that is, $R_G(g \circ p) = R_G(p)$ for all $p \in \mathbb{C}[\mathbf{x}]$ and all $g \in G$
- One can prove (requires representation theory) that the Reynolds operator exists (and is unique) when *G* is reductive and that it has the properties above.²

²For a proof of this, see Derksen & Kemper Chapter 2 (=)

From Reynolds Operator to Finite Generation $\mathcal{R}: \mathcal{C}[\bar{x}] \longrightarrow \mathcal{C}[\bar{x}]^{c}$ J = ideal generated by Non-constant homogeneous invariants $J = (\alpha_1, \dots, \alpha_t) \quad H BT$ P = a, bit - + at bt $P = R(p) = R(a_1b_1 + \cdots + a_tb_t)$ = $R(a_1b_1) + \cdots + R(a_tb_t)$ = a, R(b1) + - + a + R(b2) E C[011-106] 7

- Finite Generation of Invariant Rings for Finite Groups
- Reynolds Operator & Finite Generation
- Cayley's Ω -process and Reynolds Operator for SL(n)

化白豆 化氯丁 化氯丁 化氯丁二氯丁

200

- Conclusion
- Acknowledgements

What if our group is not finite?

• We reduced the question of *finite generation of invariants* to the question of computing the *Reynolds Operator* of a group action

What if our group is not finite?

• We reduced the question of *finite generation of invariants* to the question of computing the *Reynolds Operator* of a group action

(D) (B) (E) (E) (E) (D) (O)

- How do we compute the Reynolds Operator?
- Difficult question, today we will see how to do it for SL(n)
 Cayley's Ω-process

Differential Polynomials & Cayley's Ω-process

Given a polynomial ring C[x₁,..., x_n], can define the ring of differential polynomials C[∂₁,..., ∂_n]

$$\partial_i x_j = \begin{cases} j & i \neq i = j \\ 0 & otherwise \end{cases}$$

 $\partial_i x_i^d = d x_i^{d-1}$

 $\chi_{i}^{\prime} \times_{i}^{\prime} \longrightarrow \Im_{i}^{\prime} \Im_{i}^{\prime} \longrightarrow \Im_{i}^{\prime} \Im_{i}^{\prime} \longrightarrow \Im_{i}^{\prime} \Im_{i}^{\prime}$

Differential Polynomials & Cayley's Ω-process

- Given a polynomial ring C[x₁,..., x_n], can define the ring of differential polynomials C[∂₁,...,∂_n]
- For each polynomial f(x₁,..., x_n) we have its corresponding differential polynomial D_f(∂₁,..., ∂_n), acts as a differential operator

 $\chi_1^2 \chi_2 \iff \partial_1^2 \partial_2$

 $a_{x_1x_2} + b_{x_2}^2 \iff a_{i}\partial_i + b_{i}\partial_i^2$

(D) (B) (E) (E) (E) (D) (O)

Differential Polynomials & Cayley's Ω-process

- Given a polynomial ring C[x₁,..., x_n], can define the ring of differential polynomials C[∂₁,...,∂_n]
- For each polynomial f(x₁,..., x_n) we have its corresponding differential polynomial D_f(∂₁,..., ∂_n), acts as a differential operator
- If $f \in \mathbb{C}[\mathbf{x}]$ homogeneous, we have $D_f \circ f$ is a constant

2 $(\partial_1 \partial_2 + \partial_1^2) (\chi_1 \chi_2 + \chi_1^2) = \pounds + 0 + 0 + 2$

Differential Polynomials & Cayley's Ω -process

- Given a polynomial ring C[x₁,..., x_n], can define the ring of differential polynomials C[∂₁,...,∂_n]
- For each polynomial f(x₁,..., x_n) we have its corresponding differential polynomial D_f(∂₁,..., ∂_n), acts as a differential operator
- If $f \in \mathbb{C}[\mathbf{x}]$ homogeneous, we have $D_f \circ f$ is a constant
- Other basic properties of differential operators D_f :
 - **1** $D_f(p+q) = D_f(p) + D_f(q)$
 - $D_{\alpha f}(p) = D_f(\alpha p) = \alpha \cdot D_f(p), \text{ for constants } \alpha \in \mathbb{C}$
 - 3 $D_{f+g}(p) = D_f(p) + D_g(p)$
 - $D_{fg}(p) = D_f D_g(p)$ composition of differential operators

100 E (E) (E) (E) (E) (D)

Differential Polynomials & Cayley's Ω -process

- Given a polynomial ring $\mathbb{C}[x_1, \ldots, x_n]$, can define the ring of differential polynomials $\mathbb{C}[\partial_1, \ldots, \partial_n]$
- For each polynomial $f(x_1, \ldots, x_n)$ we have its corresponding differential polynomial $D_f(\partial_1, \ldots, \partial_n)$, acts as a differential operator
- If $f \in \mathbb{C}[\mathbf{x}]$ homogeneous, we have $D_f \circ f$ is a constant
- Other basic properties of differential operators D_f :

1 $D_f(p+q) = D_f(p) + D_f(q)$ 2 $D_{\alpha f}(p) = D_f(\alpha p) = \alpha \cdot D_f(p)$, for constants $\alpha \in \mathbb{C}$ $D_{f+\sigma}(p) = D_f(p) + D_{\sigma}(p)$ $D_{f_{\mathcal{P}}}(p) = D_f D_{\mathcal{P}}(p)$ composition of differential operators $\overline{\mathbf{z}} = \begin{pmatrix} \overline{\mathbf{z}}_{11} & \overline{\mathbf{z}}_{12} \\ \overline{\mathbf{z}}_{21} & \overline{\mathbf{z}}_{22} \end{pmatrix}$

We are now ready to define the Ω-process:

- If Z is the symbolic $n \times n$ matrix over $\mathbb{C}[Z]$
- Let $\mathbb{C}[\partial]$ be the ring of differential polynomials

$$\Omega := D_{\mathsf{det}} = \mathsf{det}(\partial_{ij})$$

100 E (E) (E) (E) (E) (D)

$$\begin{aligned}
\mathcal{Z} &= \begin{pmatrix} \overline{z}_{11} & \overline{z}_{12} \\ \overline{z}_{21} & \overline{z}_{22} \end{pmatrix} \\
\begin{array}{l}
\mathcal{D} &= \begin{pmatrix} \partial_{11} & \partial_{12} \\ \partial_{22} & \partial_{22} \end{pmatrix} \\
\end{array} \\
\begin{array}{l}
\mathcal{D} &= \begin{pmatrix} \partial_{11} & \partial_{12} \\ \partial_{22} & \partial_{22} \end{pmatrix} \\
\end{array} \\
\begin{array}{l}
\mathcal{D} &= \begin{pmatrix} \overline{z}_{11} & \overline{z}_{121} & \overline{z}_{211} & \overline{z}_{222} \\ \end{array} \\
\begin{array}{l}
\mathcal{D} &= \begin{pmatrix} \overline{z}_{11} & \overline{z}_{121} & \overline{z}_{211} & \overline{z}_{222} \\ \end{array} \\
\end{array} \\
\begin{array}{l}
\mathcal{D} &= \begin{pmatrix} \overline{z}_{11} & \overline{z}_{121} & \overline{z}_{211} & \overline{z}_{222} \\ \end{array} \\
\begin{array}{l}
\mathcal{D} &= \begin{pmatrix} \overline{z}_{11} & \overline{z}_{121} & \overline{z}_{111} & \overline{z}_{222} \\ \end{array} \\
\end{array} \\
\begin{array}{l}
\mathcal{D} &= \begin{pmatrix} \overline{z}_{11} & \overline{z}_{121} & \overline{z}_{111} & \overline{z}_{222} \\ \end{array} \\
\end{array} \\
\begin{array}{l}
\mathcal{D} &= \begin{pmatrix} \overline{z}_{11} & \overline{z}_{121} & \overline{z}_{111} & \overline{z}_{222} \\ \end{array} \\
\end{array} \\
\begin{array}{l}
\mathcal{D} &= \begin{pmatrix} \overline{z}_{11} & \overline{z}_{121} & \overline{z}_{111} & \overline{z}_{121} & \overline{z}_{111} \\ \end{array} \\
\end{array} \\
\begin{array}{l}
\mathcal{D} &= \begin{pmatrix} \overline{z}_{11} & \overline{z}_{121} & \overline{z}_{111} & \overline{z}_{121} & \overline{z}_{111} \\ \end{array} \\
\end{array} \\
\begin{array}{l}
\mathcal{D} &= \begin{pmatrix} \overline{z}_{11} & \overline{z}_{121} & \overline{z}_{121} & \overline{z}_{111} & \overline{z}_{121} \\ \end{array} \\
\end{array} \\
\begin{array}{l}
\mathcal{D} &= \begin{pmatrix} \overline{z}_{111} & \overline{z}_{121} & \overline{z}_{121} & \overline{z}_{111} & \overline{z}_{121} & \overline{z}_{111} \\ \end{array} \\
\end{array}$$

• We show how to use the Ω-process to compute the Reynolds Operator via an example:

イロン 不通 とく ヨン イヨン ニヨー のくで

- We show how to use the Ω-process to compute the Reynolds Operator via an example:
- $G = \mathbb{SL}(2)$ acting on \mathbb{C}^3 (binary quadratic forms) ax2 + bxy + cy2 (a,b,c) $\begin{pmatrix} \alpha & \beta \\ \delta & \delta \end{pmatrix} \begin{pmatrix} \gamma \\ \gamma \end{pmatrix} = \begin{pmatrix} \alpha \times + \beta \gamma \\ \delta \times + \delta \gamma \end{pmatrix}$ $(a', b', c') \iff a (\alpha \times + \beta \cdot y)^2 + b (\alpha \times + \beta \cdot y) (\beta \cdot x + 5 \cdot y)$ + $c (\beta \times + \delta \cdot y)^2 \Rightarrow a = \delta \cdot y$

- We show how to use the Ω-process to compute the Reynolds Operator via an example:
- $G = \mathbb{SL}(2)$ acting on \mathbb{C}^3 (binary quadratic forms)
- To get Reynolds operator, do as follows:

7 ° P

• Take any polynomial $p \in \mathbb{C}[\mathbf{x}]$ and the *generic* action of the symbolic matrix $Z = (Z_{ij})$

(D) (B) (E) (E) (E) (D) (O)

- We show how to use the Ω-process to compute the Reynolds Operator via an example:
- $G = \mathbb{SL}(2)$ acting on \mathbb{C}^3 (binary quadratic forms)
- To get Reynolds operator, do as follows:
 - Take any polynomial p ∈ C[x] and the generic action of the symbolic matrix Z = (Z_{ij})
 - 2 Compute $Z \circ p$

polynomial in $\mathbb{C}[Z,\mathbf{x}]$

(D) (B) (E) (E) (E) (D) (O)

211 212 721 722

- We show how to use the Ω-process to compute the Reynolds Operator via an example:
- $G = \mathbb{SL}(2)$ acting on \mathbb{C}^3 (binary quadratic forms)
- To get Reynolds operator, do as follows:
 - Take any polynomial $p \in \mathbb{C}[\mathbf{x}]$ and the *generic* action of the symbolic matrix $Z = (Z_{ij})$
 - 2 Compute $Z \circ p$

polynomial in $\mathbb{C}[Z, \mathbf{x}]$

(D) (B) (E) (E) (E) (D) (O)

(3) Use Ω -process (repeatedly) to *kill* variables Z

- We show how to use the Ω-process to compute the Reynolds Operator via an example:
- $G = \mathbb{SL}(2)$ acting on \mathbb{C}^3 (binary quadratic forms)
- To get Reynolds operator, do as follows:
 - Take any polynomial $p \in \mathbb{C}[\mathbf{x}]$ and the *generic* action of the symbolic matrix $Z = (Z_{ij})$
 - 2 Compute $Z \circ p$

polynomial in $\mathbb{C}[Z, \mathbf{x}]$

(D) (B) (E) (E) (E) (D) (O)

- **③** Use Ω-process (repeatedly) to *kill* variables Z
- 8 Resulting polynomial is an invariant!

• Let $\mathbb{SL}(2)$ act on the space of quadratic polynomials \mathbb{C}^3

$$p(x) = ax^2 + bxy + cy^2 \leftrightarrow p := (a, b, c)$$

イロト イヨト イミト イミト ニモー のくで

• Let $\mathbb{SL}(2)$ act on the space of quadratic polynomials \mathbb{C}^3

$$p(x) = ax^2 + bxy + cy^2 \leftrightarrow p := (a, b, c)$$

イロン イヨン イミン イミン しましのくび

•
$$g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
 acts on p by
$$g^{-1} \circ p = p\left(g\begin{pmatrix} x \\ y \end{pmatrix}\right)$$

• Let $\mathbb{SL}(2)$ act on the space of quadratic polynomials \mathbb{C}^3

$$p(x) = ax^2 + bxy + cy^2 \leftrightarrow p := (a, b, c)$$

•
$$g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
 acts on p by
$$g^{-1} \circ p = p \left(g \begin{pmatrix} x \end{pmatrix} \right)^{n}$$

$$g^{-1} \circ p = p\left(g\begin{pmatrix} x\\ y\end{pmatrix}\right)$$

• If (a', b', c') is the image $g^{-1} \circ p$, we have

$$\begin{aligned} \mathbf{a}' &= \mathbf{a}\alpha^2 + \mathbf{b}\alpha\gamma + \mathbf{c}\gamma^2 \\ \mathbf{b}' &= 2 \cdot (\mathbf{a}\alpha\beta + \mathbf{c}\gamma\delta) + \mathbf{b}(\alpha\delta + \beta\gamma) \\ \mathbf{c}' &= \mathbf{a}\beta^2 + \mathbf{b}\beta\delta + \mathbf{c}\delta^2 \end{aligned}$$

イロン (語) (注) (注) (注) え のなび

• Take monomial ac

化四苯化乙基 医白色的 化氯化合物

200

ж.

- Take monomial ac
- Symbolic transformation takes ac to a'c'

a'c' =
$$(a\alpha^2 + b\alpha\gamma + c\gamma^2)(a\beta^2 + b\beta\delta + c\delta^2)$$

polynomial in $C[\alpha, \beta, \gamma, \delta, \alpha, b, c]$

- Take monomial *ac*
- Symbolic transformation takes ac to a'c'

$$\rightarrow$$
 $(a\alpha^2 + b\alpha\gamma + c\gamma^2)(a\beta^2 + b\beta\delta + c\delta^2)$

• Apply the Ω -process: $\Omega = \partial_{\alpha}\partial_{\delta} - \partial_{\beta}\partial_{\gamma}$ until no more variables from symbolic transformation!

$$\partial_{\alpha}\partial_{\delta}(a'c') = \partial_{\alpha}(a \alpha^{2}+b \alpha\delta+c\delta)(\frac{b\beta+2c\delta}{2})$$

$$= (2a\alpha + b_{0})(b) + 2cb)(a|^{3^{2}} + b\beta\delta + c\delta^{2})$$

$$= (b\alpha + 2c\delta)(2a\beta + b\delta)$$

$$= (b\alpha + 2c\delta)(2a\beta + b\delta)$$

$$= (b\alpha + 2c\delta)(a|c') = (2a\alpha + b\delta)(b\beta + 2c\delta) = (2a\beta + b\delta)$$

$$\mathcal{L} = \partial_{\alpha}\partial_{\delta} - \partial_{\beta}\partial_{\delta}$$

$$P= (2a\alpha + b\delta)(b\beta + 2c\delta) - (b\alpha + 2c\delta)(2a\beta + b\delta)$$

$$Apply \quad \mathcal{L} = process again (because)$$

$$wc \quad still have \quad \propto , \beta_{1}\delta_{1}\delta_{1}\delta_{1}$$

$$\partial_{\alpha}\partial_{\delta}P = \partial_{\alpha} [(2a\alpha + b\delta) \cdot 2c - (b\alpha + 2c\delta) \cdot b_{1}]$$

$$= 4ac - b^{2}$$

$$\partial_{\beta}\partial_{\delta}P = \partial_{\beta} [b(b\beta + 2c\delta) - 2c(2a\beta + b\delta)]$$

$$= b^{2} - 4ac$$

$$\mathcal{L}(P) = (4ac - b^{2}) - (b^{2} - 4ac)$$

$$= 2(4ac - b^{2}) \text{ Invariant!}$$

- < ロ> < 語> < 注> < 注> - 注 - のQで

- Finite Generation of Invariant Rings for Finite Groups
- Reynolds Operator & Finite Generation
- Cayley's Ω -process and Reynolds Operator for $\mathbb{SL}(n)$

지수는 지원에서 전화 지원에 가지 않는 것이다.

200

- Conclusion
- Acknowledgements

• Today we proved the first fundamental theorem of invariant theory If group *G* is reductive, the invariant ring is finitely generated as a C-algebra

- Today we proved the first fundamental theorem of invariant theory If group *G* is reductive, the invariant ring is finitely generated as a C-algebra
- Saw how the Reynolds Operator reduces the finite generation as an *algebra* to finite generation as an *ideal*

(D) (B) (E) (E) (E) (D) (O)

- Today we proved the first fundamental theorem of invariant theory If group *G* is reductive, the invariant ring is finitely generated as a C-algebra
- Saw how the Reynolds Operator reduces the finite generation as an *algebra* to finite generation as an *ideal*
- Learned how to compute Reynolds Operator for finite groups (averaging)
- Learned about the Ω-process, which is used to compute the Reynolds Operator for SL(n) actions

A D > A B > A B > A B > B 900

- Today we proved the first fundamental theorem of invariant theory If group *G* is reductive, the invariant ring is finitely generated as a C-algebra
- Saw how the Reynolds Operator reduces the finite generation as an *algebra* to finite generation as an *ideal*
- Learned how to compute Reynolds Operator for finite groups (averaging)
- Learned about the Ω-process, which is used to compute the Reynolds Operator for SL(n) actions
- Explicit formulas for Reynolds Operator important for *analytic* algorithms in invariant theory!
- Even though may be difficult to compute (analogous to Cramer's rule), knowing formula is important and gives us quantitative information!

- Today we proved the first fundamental theorem of invariant theory If group *G* is reductive, the invariant ring is finitely generated as a C-algebra
- Saw how the Reynolds Operator reduces the finite generation as an *algebra* to finite generation as an *ideal*
- Learned how to compute Reynolds Operator for finite groups (averaging)
- Learned about the Ω-process, which is used to compute the Reynolds Operator for SL(n) actions
- Explicit formulas for Reynolds Operator important for *analytic* algorithms in invariant theory!
- Even though may be difficult to compute (analogous to Cramer's rule), knowing formula is important and gives us quantitative information!
- Lots of open questions in this area!

Symbolic computation of invortant polynomials $\left(e_{\mathbf{z}} \right) = \rho(\chi_1 \chi_2 \cdots \chi_d)$ $= \frac{l}{\delta l!} \sum_{\sigma \in S_n} \chi_{\sigma(\iota)} \chi_{\sigma(\iota)} - \chi_{\sigma(\iota)}$ wow it must be really hard to compute elementary symmetric polynomials !

HWL

$$e_{1,...,e_{n}}$$
 ore very
 e_{ory} to compute!
 $p(x) = \frac{n}{||(t+x_{i})|}$
 $interpolation$ over t
 $e_{1,...,x_{n}}$
 $f(x) = \frac{1}{||(t+x_{i})|}$
 $e_{1,...,x_{n}}$

Acknowledgement

- Lecture based on the wonderful books:
 - Sturmfels: Algorithms in Invariant Theory
 - Derksen, Kemper: Computational Invariant Theory