Lecture 16: Reynolds Operator \& Finite Generation of Invariant Rings

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

March 10, 2021

Overview

- Finite Generation of Invariant Rings for Finite Groups
- Reynolds Operator \& Finite Generation
- Cayley's Ω-process and Reynolds Operator for $\mathbb{S L}(n)$
- Conclusion
- Acknowledgements

Invariant Theory

- Emmy Noether
- Dame Franciskirwan
- Linda Ness

Finite Generation Problem

- Let G be a nice ${ }^{1}$ group and V be a \mathbb{C}-vector space
- G acts linearly on V if

$$
\begin{aligned}
& g \circ(\alpha u+\beta v)=\alpha(g \circ u)+\beta(g \circ v) \\
& (g h) \circ v=g \circ(n \circ v)
\end{aligned}
$$

${ }^{1}$ Today: finite groups and $\mathbb{S L}(n)$. More generally linearly=reductive

Finite Generation Problem

- Let G be a nice ${ }^{1}$ group and V be a \mathbb{C}-vector space
- G acts linearly on V if

$$
g \circ(\alpha u+\beta v)=\alpha(g \circ u)+\beta(g \circ v)
$$

- Examples:
(1) $G=S_{n}, V=\mathbb{C}^{n}$
(2) $G=\operatorname{SL}(2), V=\mathbb{C}^{d+1}$
permuting coordinates linear transformations of curves

Finite Generation Problem

$V=\mathbb{C}$
$\mathbb{C}[v]$

- Let G be a nice ${ }^{1}$ group and V be a \mathbb{C}-vector space
- G acts linearly on V if

$$
g \circ(\alpha u+\beta v)=\alpha(g \circ u)+\beta(g \circ v)
$$

- Examples:
(1) $G=S_{n}, V=\mathbb{C}^{n}$
permuting coordinates
(2) $G=\operatorname{SL}(2), V=\mathbb{C}^{d+1} \quad$ linear transformations of curves
- Invariant polynomials form a subring of $\mathbb{C}[V]$, denoted $\mathbb{C}[V]^{G}$
- Question from last lecture:

Given a nice group G acting linearly on a vector space V, is $\mathbb{C}[V]^{G}$ finitely generated as a \mathbb{C}-algebra?
$\mathbb{C}\left[f_{1}, \ldots, f_{t}\right]=\mathbb{C}[V]^{G}$
${ }^{1}$ Today: finite groups and $\mathbb{S L}(n)$. More generally linearly=reductive

Finite Generation Problem

- Let G be a nice ${ }^{1}$ group and V be a \mathbb{C}-vector space
- G acts linearly on V if

$$
g \circ(\alpha u+\beta v)=\alpha(g \circ u)+\beta(g \circ v)
$$

- Examples:
(1) $G=S_{n}, V=\mathbb{C}^{n}$
permuting coordinates
(2) $G=\operatorname{SL}(2), V=\mathbb{C}^{d+1}$ linear transformations of curves
- Invariant polynomials form a subring of $\mathbb{C}[V]$, denoted $\mathbb{C}[V]^{G}$
- Question from last lecture:

Given a nice group G acting linearly on a vector space V, is $\mathbb{C}[V]^{G}$ finitely generated as a \mathbb{C}-algebra?

- Last lecture, we saw this was the case for first example. Is this a general phenomenon?
- Hilbert (twice) 1890, 1893: YES!
${ }^{1}$ Today: finite groups and $\mathbb{S L}(n)$. More generally linearly=reductive

Ring of Invariant Polynomials

- G acts linearly on $V=\mathbb{C}^{N}$, let $\mathbb{C}[\mathbf{x}]=\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ be the polynomial ring over \mathbb{V}
- Invariant polynomials form a subring of $\mathbb{C}[\mathbf{x}]$, denoted $\mathbb{C}[\mathbf{x}]^{G}$

Ring of Invariant Polynomials

- G acts linearly on $V=\mathbb{C}^{N}$, let $\mathbb{C}[\mathbf{x}]=\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ be the polynomial ring over \mathbb{V}
- Invariant polynomials form a subring of $\mathbb{C}[\mathbf{x}]$, denoted $\mathbb{C}[\mathbf{x}]^{G}$
- For the ring of symmetric polynomials, we know that

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}=\mathbb{C}\left[e_{1}, e_{2}, \ldots, e_{n}\right]
$$

where

$$
e_{d}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{S \subset[n] \\|S|=d}} \prod_{i \in S} x_{i}
$$

- Every symmetric polynomial is itself a polynomial function of the elementary symmetric polynomials
- Elementary symmetric polynomials are a fundamental system of invariants

Proof of Invariant Ring of Symmetric Polynomials

- Proof due to van der Waerden using monomial ordering!
- Use degree lexicographic order
- Every symmetric polynomial $p(x)$ has a non-zero leading term

```
- nonzers
- homogeneous
```

$$
x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}
$$

with $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$
(Then

$$
p(x)-L C(p) \cdot e_{1}^{a_{1}-a_{2}} \cdot e_{2}^{a_{2}-a_{3}} \cdots e_{n-1}^{a_{n-1}-a_{n}} \cdot e_{n}^{a_{n}}
$$

has smaller leading monomial!
division algorithm!
-Procedure must terminate because of well-ordering of monomial ordering!

Proof of Invariant Ring of Symmetric Polynomials

- Proof due to van der Waerden using monomial ordering!
- Use degree lexicographic order
- Every symmetric polynomial $p(x)$ has a non-zero leading term

$$
x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}
$$

with $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$

- Then

$$
p(x)-L C(p) \cdot e_{1}^{a_{1}-a_{2}} \cdot e_{2}^{a_{2}-a_{3}} \cdots e_{n-1}^{a_{n-1}-a_{n}} \cdot e_{n}^{a_{n}}
$$

has smaller leading monomial!
division algorithm!

- Procedure must terminate because of well-ordering of monomial ordering!
- Can we generalize this to work for every finite group?

Averaging Operator

- If G is a finite group acting linearly on $V=\mathbb{C}^{N}$, let $\rho: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$

$$
\begin{align*}
& \rho(p)=\frac{1}{|G|} \cdot \sum_{g \in G} \frac{g \circ p}{(1)(2)(3)} \begin{array}{l}
(12)(3) \\
\left.G=S_{3} \quad V=\mathbb{C}^{3} \quad \begin{array}{ll}
(13)(2) \\
P\left(x_{1}, x_{2}, x_{3}\right)=x_{1} & \left(\begin{array}{ll}
1 & 2
\end{array}\right) \\
1 & 3 \\
1 & 2
\end{array}\right) \\
(1)(23)
\end{array} \\
& \rho(P)=\frac{1}{6}\left(x_{1}+x_{2}+x_{3}+x_{2}+x_{3}+x_{1}\right) \tag{12}\\
& =\frac{1}{3} e_{1}\left(x_{1}, x_{2}, x_{3}\right)
\end{align*}
$$

$$
\begin{aligned}
& \rho(p)=\frac{1}{|G|} \sum_{g \in G} g \circ p \\
& \underline{h \circ \rho(p)}=\frac{l}{|G|} \sum_{g \in G} \frac{h \circ(g \circ p)}{(h g) \cdot p} \\
& \begin{array}{l}
f: G \rightarrow G \text { permutation invariant! } \\
g \mapsto \text { ing }
\end{array} \\
& h g_{1}=h g_{2} \Leftrightarrow g_{1}=g_{2} \quad \downarrow \\
& =\frac{1}{|G|} \sum_{\nu \in G} \nu \circ p=\rho(p)
\end{aligned}
$$

Averaging Operator

- If G is a finite group acting linearly on $V=\mathbb{C}^{N}$, let $\rho: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$

$$
\rho(p)=\frac{1}{|G|} \cdot \sum_{g \in G} g \circ p
$$

- Properties of ρ :

$$
\begin{aligned}
& \longrightarrow \text { (1) } \rho: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G} \text { is a linear operator } \\
& \text { projection } \\
& \longrightarrow \text { (2) } \rho(p \cdot q)=p \cdot \rho(q) \text { for any } p \in \mathbb{C}[\mathbf{x}]^{G} \text { and } q \in \mathbb{C}[\mathbf{x}] \\
& \longrightarrow 3 \operatorname{deg}(\rho(p))=\operatorname{deg}(p) \text { whenever } \rho(p) \neq 0 \\
& \rho(p+p)=\frac{1}{|G|} \sum_{g \in G} \underline{g(p+q)}=p(p)+\rho(q) \\
& g \circ p+g \circ q
\end{aligned}
$$

Whenever P
is homogeneov poly nomial non-homageneous $\operatorname{deg}(\rho(p)) \leqq \operatorname{deg}(p)$.

Averaging Operator

- If G is a finite group acting linearly on $V=\mathbb{C}^{N}$, let $\rho: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$

$$
\rho(p)=\frac{1}{|G|} \cdot \sum_{g \in G} g \circ p
$$

- Properties of ρ :
(1) $\rho: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$ is a linear operator
(2) $\rho(p \cdot q)=p \cdot \rho(q)$ for any $p \in \mathbb{C}[\mathbf{x}]^{G}$ and $q \in \mathbb{C}[\mathbf{x}]$
(3) $\operatorname{deg}(\rho(p))=\operatorname{deg}(p)$ whenever $\rho(p) \neq 0$
- Now, we can use ρ to reduce finite generation as \mathbb{C}-algebra to finite generation of ideals!

Averaging Operator

- If G is a finite group acting linearly on $V=\mathbb{C}^{N}$, let $\rho: \mathbb{C}[\mathrm{x}] \rightarrow \mathbb{C}[\mathrm{x}]^{G}$

$$
\rho(p)=\frac{1}{|G|} \cdot \sum_{g \in G} g \circ p
$$

- Properties of ρ :
(1) $\rho: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$ is a linear operator
projection
(2) $\rho(p \cdot q)=p \cdot \rho(q)$ for any $p \in \mathbb{C}[\mathbf{x}]^{G}$ and $q \in \mathbb{C}[\mathbf{x}]$
(3) $\operatorname{deg}(\rho(p))=\operatorname{deg}(p)$ whenever $\rho(p) \neq 0$
- Now, we can use ρ to reduce finite generation as \mathbb{C}-algebra to finite generation of ideals!
- Note that our ring $\mathbb{C}[\mathbf{x}]$ is graded by degree, and so is our ring of invariants!

$$
\mathbb{C}[\bar{x}]=\mathbb{C} \oplus \underbrace{\mathbb{C}[\bar{x}]_{1}}_{a x+b y} \oplus \frac{\mathbb{C}[\bar{x}]_{2}}{a x^{2}+b x y+c y^{2}}
$$

Averaging Operator

- If G is a finite group acting linearly on $V=\mathbb{C}^{N}$, let $\rho: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$

$$
\rho(p)=\frac{1}{|G|} \cdot \sum_{g \in G} g \circ p
$$

- Properties of ρ :
(1) $\rho: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$ is a linear operator projection
(2) $\rho(p \cdot q)=p \cdot \rho(q)$ for any $p \in \mathbb{C}[\mathbf{x}]^{G}$ and $q \in \mathbb{C}[\mathbf{x}]$
(3) $\operatorname{deg}(\rho(p))=\operatorname{deg}(p)$ whenever $\rho(p) \neq 0$
- Now, we can use ρ to reduce finite generation as \mathbb{C}-algebra to finite generation of ideals!
- Note that our ring $\mathbb{C}[\mathbf{x}]$ is graded by degree, and so is our ring of invariants!
- Plus, note that our invariants can always be taken to be homogeneous polynomials (otherwise we can take homogeneous components).

Finite Generation

- Let $\mathbb{C}[\mathbf{x}]=\mathbb{C}[\mathbf{x}]_{0} \oplus \mathbb{C}[\mathbf{x}]_{1} \oplus \mathbb{C}[\mathbf{x}]_{2} \oplus \cdots$ be grading by degree ©

Finite Generation

- Let $\mathbb{C}[\mathbf{x}]=\mathbb{C}[\mathbf{x}]_{0} \oplus \mathbb{C}[\mathbf{x}]_{1} \oplus \mathbb{C}[\mathbf{x}]_{2} \oplus \cdots$ be grading by degree
- Similarly $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}[x]_{0}^{G} \oplus \mathbb{C}[\mathbf{x}]_{1}^{G} \oplus \mathbb{C}[\mathbf{x}]_{2}^{G} \oplus \cdots$
- Let $J \subset \mathbb{C}[\mathbf{x}]$ be the ideal generated by

$$
\mathbb{C}[\mathbf{x}]_{1}^{G} \oplus \mathbb{C}[x]_{2}^{G} \oplus \cdots
$$

homogeneous non-coustont invariant polynomials
$J=$ ideal of $\mathbb{C}[\bar{x}]$ generated by homogeneous nou-constant invariants

Finite Generation

- Let $\mathbb{C}[\mathbf{x}]=\mathbb{C}[\mathbf{x}]_{0} \oplus \mathbb{C}[\mathbf{x}]_{1} \oplus \mathbb{C}[\mathbf{x}]_{2} \oplus \cdots$ be grading by degree
- Similarly $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}[\mathbf{x}]_{0}^{G} \oplus \mathbb{C}[\mathbf{x}]_{1}^{G} \oplus \mathbb{C}[\mathbf{x}]_{2}^{G} \oplus \cdots$
- Let $J \subset \mathbb{C}[\mathbf{x}]$ be the ideal generated by

$$
\longrightarrow \mathbb{C}[\mathbf{x}]_{1}^{G} \oplus \mathbb{C}[\mathbf{x}]_{2}^{G} \oplus \cdots
$$

- By Hilbert Basis Theorem (HBT), we know that J is finitely generated.

$$
J=\left(a_{1}, \ldots, a_{t}\right)
$$

Moreover, we can take a_{i} 's to be invariants (from proof of HBT)

$$
f_{i}=\underbrace{b_{i 1}} h_{i 1}+\underbrace{h_{i 2}}_{h_{\text {sinsgeneros }}} h_{i 2}+\underbrace{b_{i l}}_{\text {nou - constat inveriands }} h_{i \ell}
$$

Finite Generation

- Let $\mathbb{C}[\mathbf{x}]=\mathbb{C}[\mathbf{x}]_{0} \oplus \mathbb{C}[\mathbf{x}]_{1} \oplus \mathbb{C}[\mathbf{x}]_{2} \oplus \cdots$ be grading by degree
- Similarly $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}[\mathbf{x}]_{0}^{G} \oplus \mathbb{C}[\mathbf{x}]_{1}^{G} \oplus \mathbb{C}[\mathbf{x}]_{2}^{G} \oplus \cdots$
- Let $J \subset \mathbb{C}[\mathbf{x}]$ be the ideal generated by

$$
\mathbb{C}[\mathbf{x}]_{1}^{G} \oplus \mathbb{C}[\mathbf{x}]_{2}^{G} \oplus \cdots
$$

- By Hilbert Basis Theorem (HBT), we know that J is finitely generated.

$$
J=\left(a_{1}, \ldots, a_{t}\right)
$$

Moreover, we can take a_{i} 's to be invariants (from proof of HBT)

- We can assume a_{i} 's are homogeneous (otherwise take their homogeneous components as generators)

Finite Generation

- Let $\mathbb{C}[\mathbf{x}]=\mathbb{C}[\mathbf{x}]_{0} \oplus \mathbb{C}[\mathbf{x}]_{1} \oplus \mathbb{C}[\mathbf{x}]_{2} \oplus \cdots$ be grading by degree
- Similarly $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}[\mathbf{x}]_{0}^{G} \oplus \mathbb{C}[\mathbf{x}]_{1}^{G} \oplus \mathbb{C}[\mathbf{x}]_{2}^{G} \oplus \cdots$
- Let $J \subset \mathbb{C}[\mathbf{x}]$ be the ideal generated by

$$
\mathbb{C}[\mathbf{x}]_{1}^{G} \oplus \mathbb{C}[\mathbf{x}]_{2}^{G} \oplus \cdots
$$

- By Hilbert Basis Theorem (HBT), we know that J is finitely generated.

$$
J=\left(\underline{a_{1}, \ldots, a_{t}}\right)
$$

Moreover, we can take a_{i} 's to be invariants (from proof of HBT)

- We can assume a_{i} 's are homogeneous (otherwise take their homogeneous components as generators)
- We will now show that $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}\left[a_{1}, \ldots, a_{t}\right]$

Finite Generation

- Proof that $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}\left[a_{1}, \ldots, a_{t}\right]$ is by induction on degree.

Finite Generation

- Proof that $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}\left[a_{1}, \ldots, a_{t}\right]$ is by induction on degree.
- Claim is true for $d=0$ (base case). Suppose claim is true for all polynomials of degree $<d$ in $\mathbb{C}[\mathrm{x}]^{G}$, where we now have $d>0$.

Finite Generation

- Proof that $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}\left[a_{1}, \ldots, a_{t}\right]$ is by induction on degree.
- Claim is true for $d=0$ (base case). Suppose claim is true for all polynomials of degree $<d$ in $\mathbb{C}[\mathrm{x}]^{G}$, where we now have $d>0$.
- If $p \in \mathbb{C}[\mathbf{x}]_{d}^{G}$, since we know that $p \in J$ by definition of J, we have
invariant
homogeneous of degrees d

$$
p=\underset{a_{i} \text { 's } a_{\text {invarisunts }}^{b_{1}}+\cdots+a_{t} b_{t} \rightarrow \mathbb{C}[\bar{x}]}{\rightarrow} \in \mathbb{C}
$$

$$
\mathbb{C}\left[a_{1}, \ldots, a_{t}\right]
$$

Finite Generation

- Proof that $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}\left[a_{1}, \ldots, a_{t}\right]$ is by induction on degree.
- Claim is true for $d=0$ (base case). Suppose claim is true for all polynomials of degree $<d$ in $\mathbb{C}[\mathrm{x}]^{G}$, where we now have $d>0$.
- If $p \in \mathbb{C}[\mathbf{x}]_{d}^{G}$, since we know that $p \in J$ by definition of J, we have

$$
p=a_{1} b_{1}+\cdots+a_{t} b_{t} \quad \operatorname{deg}\left(a_{i} b_{i}\right)
$$

- Applying the averaging operator on both sides, we have:

$$
\begin{aligned}
& i \rho_{a i b:} \neq 0 \\
& \rho\left(a_{i} b_{i}\right)=a_{i} \cdot \rho\left(b_{i}\right)
\end{aligned}
$$

$\rho\left(b_{i}\right)^{\prime} s$ are invariants!

$$
\begin{aligned}
& \text { or } \left.^{\prime}\right)^{\prime} s \text { are invariants! } \\
& d=\operatorname{deg}(p)=\operatorname{deg}\left(a_{i} b_{i}\right) \geqslant \operatorname{deg}\left(a_{i}\right)
\end{aligned}+\operatorname{deg}\left(p^{\left(b_{i}\right)}\right)
$$

Finite Generation

- Proof that $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}\left[a_{1}, \ldots, a_{t}\right]$ is by induction on degree.
- Claim is true for $d=0$ (base case). Suppose claim is true for all polynomials of degree $<d$ in $\mathbb{C}[\mathbf{x}]^{G}$, where we now have $d>0$.
- If $p \in \mathbb{C}[\mathbf{x}]_{d}^{G}$, since we know that $p \in J$ by definition of J, we have

$$
p=a_{1} b_{1}+\cdots+a_{t} b_{t}
$$

- Applying the averaging operator on both sides, we have:

$$
\begin{aligned}
p=\rho(p) & =\rho\left(a_{1} b_{1}+\cdots+a_{t} b_{t}\right) \\
& =\rho\left(a_{1} b_{1}\right)+\cdots+\rho\left(a_{t} b_{t}\right) \\
& =a_{1} \cdot \rho\left(b_{1}\right)+\cdots+a_{t} \cdot \rho\left(b_{t}\right)
\end{aligned}
$$

- By induction, and the fact that $\operatorname{deg}\left(\rho\left(b_{i}\right)\right)<d$, we have that

$$
\in \mathbb{C}\left[a_{1},, a_{t}\right] p \in \mathbb{C}\left[a_{1}, \ldots, a_{t}\right]
$$

- Finite Generation of Invariant Rings for Finite Groups
- Reynolds Operator \& Finite Generation
- Cayley's Ω-process and Reynolds Operator for $\mathbb{S L}(n)$
- Conclusion
- Acknowledgements

Hilbert's Idea

- Let G be our group acting on \mathbb{C}^{N}, and $\mathbb{C}[\mathbf{x}]$ our coordinate ring.
- If we had a procedure which projected any polynomial from $\mathbb{C}[\mathbf{x}]$ onto the ring of invariants $\mathbb{C}[x]^{G}$, we could try to do something similar to Hilbert Basis Theorem!
${ }^{2}$ For a proof of this, see Derksen \& Kemper Chapter 2

Hilbert's Idea

- Let G be our group acting on \mathbb{C}^{N}, and $\mathbb{C}[\mathbf{x}]$ our coordinate ring.
- If we had a procedure which projected any polynomial from $\mathbb{C}[\mathbf{x}]$ onto the ring of invariants $\mathbb{C}[x]^{G}$, we could try to do something similar to Hilbert Basis Theorem!
- Here are the properties we need from such map $R: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$
- R is a linear map
- $R(p)=p$ for all $p \in \mathbb{C}[\mathbf{x}]^{G}$
- $R(p q)=p \cdot R(q)$ for each $p \in \mathbb{C}[\mathbf{x}]^{G}$ and $q \in \mathbb{C}[\mathbf{x}]$
- $\operatorname{deg}(R(q))=\operatorname{deg}(q)$ whenever $R(q) \neq 0$

Hilbert's Idea

- Let G be our group acting on \mathbb{C}^{N}, and $\mathbb{C}[\mathbf{x}]$ our coordinate ring.
- If we had a procedure which projected any polynomial from $\mathbb{C}[\mathbf{x}]$ onto the ring of invariants $\mathbb{C}[x]^{G}$, we could try to do something similar to Hilbert Basis Theorem!
- Here are the properties we need from such map $R: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$
- R is a linear map
- $R(p)=p$ for all $p \in \mathbb{C}[\mathbf{x}]^{G}$
- $R(p q)=p \cdot R(q)$ for each $p \in \mathbb{C}[\mathbf{x}]^{G}$ and $q \in \mathbb{C}[\mathbf{x}]$
- $\operatorname{deg}(R(q))=\operatorname{deg}(q)$ whenever $R(q) \neq 0$
- a linear map $R_{G}: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$ is a Reynolds operator if it satisfies the following properties:
(1) $R_{G}(p)=p$ for all $p \in \mathbb{C}[\mathbf{x}]^{G}$
(2) R_{G} is G-invariant, that is, $R_{G}(g \circ p)=R_{G}(p)$ for all $p \in \mathbb{C}[\mathrm{x}]$ and all $g \in G$
any Reynolds operetor has these properties

[^0]
Hilbert's Idea

- Let G be our group acting on \mathbb{C}^{N}, and $\mathbb{C}[\mathbf{x}]$ our coordinate ring.
- If we had a procedure which projected any polynomial from $\mathbb{C}[\mathbf{x}]$ onto the ring of invariants $\mathbb{C}[x]^{G}$, we could try to do something similar to Hilbert Basis Theorem!
- Here are the properties we need from such map $R: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$
- R is a linear map
- $R(p)=p$ for all $p \in \mathbb{C}[\mathbf{x}]^{G}$
- $R(p q)=p \cdot R(q)$ for each $p \in \mathbb{C}[\mathbf{x}]^{G}$ and $q \in \mathbb{C}[\mathbf{x}]$
- $\operatorname{deg}(R(q))=\operatorname{deg}(q)$ whenever $R(q) \neq 0$
- a linear map $R_{G}: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$ is a Reynolds operator if it satisfies the following properties:
(1) $R_{G}(p)=p$ for all $p \in \mathbb{C}[\mathbf{x}]^{G}$
(2) R_{G} is G-invariant, that is, $R_{G}(g \circ p)=R_{G}(p)$ for all $p \in \mathbb{C}[\mathbf{x}]$ and all $g \in G$
- One can prove (requires representation theory) that the Reynolds operator exists (and is unique) when G is reductive and that it has the properties above. ${ }^{2}$

[^1]From Reynolds Operator to Finite Generation

$$
R: \mathbb{C}[\bar{x}] \longrightarrow \mathbb{C}[\bar{x}]^{6}
$$

$J=$ ideal generated by non-comstant nomagenuous invariants

$$
\begin{aligned}
& J=\left(a_{1}, \cdots, a_{t}\right) \quad H B T \\
& \begin{aligned}
P & =a_{1} b_{1}+\cdots+a_{t} b_{t} \\
P=R(p) & =R\left(a_{1} b_{1}+\cdots+a_{t} b_{t}\right) \\
& =R\left(a_{1} b_{1}+\cdots+R\left(a_{t} b_{t}\right)\right. \\
& =a_{1} \frac{R\left(b_{1}\right)}{\left.\epsilon\left[a_{1}, \cdots, a_{t}\right]\right]_{0}}+
\end{aligned}
\end{aligned}
$$

- Finite Generation of Invariant Rings for Finite Groups
- Reynolds Operator \& Finite Generation
- Cayley's Ω-process and Reynolds Operator for $\mathbb{S L}(n)$
- Conclusion
- Acknowledgements

What if our group is not finite?

- We reduced the question of finite generation of invariants to the question of computing the Reynolds Operator of a group action

What if our group is not finite?

- We reduced the question of finite generation of invariants to the question of computing the Reynolds Operator of a group action
- How do we compute the Reynolds Operator?
- Difficult question, today we will see how to do it for $\mathbb{S L}(n)$

$$
\text { Cayley's } \Omega \text {-process }
$$

Differential Polynomials \& Cayley's Ω-process

- Given a polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, can define the ring of differential polynomials $\mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}\right]$

$$
\begin{aligned}
\partial_{i} x_{j}= \begin{cases}1 & \text { if } \quad i=j \\
0 & \text { otherwise }\end{cases} \\
\partial_{i} x_{i}^{d}=d x_{i}^{d-1}
\end{aligned} \begin{aligned}
\partial_{i} \partial_{j}: \mathbb{C}[\bar{x}] & \longrightarrow \mathbb{C}[\bar{x}] \\
x_{i}^{\prime} x_{j} & \longmapsto 1 \\
\partial_{j}^{\prime \prime} \partial_{i} & \longmapsto 0 \\
x_{i}^{2} & \longmapsto 0 \\
x_{i}^{2} x_{j} & \longmapsto 2 x_{i} \\
p & \partial_{i} \partial_{j}^{\prime} p^{\prime}
\end{aligned}
$$

Differential Polynomials \& Cayley's Ω-process

- Given a polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, can define the ring of differential polynomials $\mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}\right]$
- For each polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ we have its corresponding differential polynomial $D_{f}\left(\partial_{1}, \ldots, \partial_{n}\right)$, acts as a differential operator

$$
\begin{aligned}
x_{1}^{2} x_{2} & \longleftrightarrow \partial_{1}^{2} \partial_{2} \\
a x_{1} x_{2}+b x_{2}^{2} & \longleftrightarrow a \partial_{1} \partial_{2}+b \partial_{2}^{2}
\end{aligned}
$$

Differential Polynomials \& Cayley's Ω-process

- Given a polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, can define the ring of differential polynomials $\mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}\right]$
- For each polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ we have its corresponding differential polynomial $D_{f}\left(\partial_{1}, \ldots, \partial_{n}\right)$, acts as a differential operator
- If $f \in \mathbb{C}[\mathbf{x}]$ homogeneous, we have $D_{f} \circ f$ is a constant

$$
\begin{aligned}
\left(\partial_{1} \partial_{2}+\partial_{1}^{2}\right)\left(x_{1} x_{2}+x_{1}^{2}\right) & -2+1+0+0+2 \\
& =3
\end{aligned}
$$

Differential Polynomials \& Cayley's Ω-process

- Given a polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, can define the ring of differential polynomials $\mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}\right]$
- For each polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ we have its corresponding differential polynomial $D_{f}\left(\partial_{1}, \ldots, \partial_{n}\right)$, acts as a differential operator
- If $f \in \mathbb{C}[\mathbf{x}]$ homogeneous, we have $D_{f} \circ f$ is a constant
- Other basic properties of differential operators D_{f} :
(1) $D_{f}(p+q)=D_{f}(p)+D_{f}(q)$
(2) $D_{\alpha f}(p)=D_{f}(\alpha p)=\alpha \cdot D_{f}(p)$, for constants $\alpha \in \mathbb{C}$
(3) $D_{f+g}(p)=D_{f}(p)+D_{g}(p)$
(9) $D_{f g}(p)=D_{f} D_{g}(p)$

Differential Polynomials \& Cayley's Ω-process

- Given a polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, can define the ring of differential polynomials $\mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}\right]$
- For each polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ we have its corresponding differential polynomial $D_{f}\left(\partial_{1}, \ldots, \partial_{n}\right)$, acts as a differential operator
- If $f \in \mathbb{C}[\mathbf{x}]$ homogeneous, we have $D_{f} \circ f$ is a constant
- Other basic properties of differential operators D_{f} :
(1) $D_{f}(p+q)=D_{f}(p)+D_{f}(q)$
(2) $D_{\alpha f}(p)=D_{f}(\alpha p)=\alpha \cdot D_{f}(p)$, for constants $\alpha \in \mathbb{C}$
(3) $D_{f+g}(p)=D_{f}(p)+D_{g}(p)$
(9) $D_{f g}(p)=D_{f} D_{g}(p)$
- We are now ready to define the Ω-process:
- If Z is the symbolic $n \times n$ matrix over $\mathbb{C}[Z]$
- Let $\mathbb{C}[\partial]$ be the ring of differential polynomials

$$
z=\left(\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right)
$$

$$
\Omega:=D_{\mathrm{det}}=\operatorname{det}\left(\partial_{i j}\right)
$$

$$
\begin{aligned}
& z=\left(\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right) \\
& \partial=\left(\begin{array}{ll}
\partial_{11} & \partial_{12} \\
\partial_{22} & \partial_{22}
\end{array}\right) \\
& \rightarrow \mathbb{C}[z]=\mathbb{C}\left[z_{11}, z_{12}, z_{21}, z_{22}\right] \\
& \mathbb{C}[\partial]=\mathbb{C}\left[\partial_{11}, \partial_{12}, \partial_{21}, \partial_{22}\right] \\
& \Omega \\
& P \stackrel{\operatorname{det}(\partial) \cdot P}{\longrightarrow}(P) \\
& \mathbb{Q}(\operatorname{det}(\partial) \cdot P \\
&=\left(\partial_{11} \partial_{22}-\partial_{12} \partial_{21}\right) P
\end{aligned}
$$

From Ω-process to Reynolds

- We show how to use the Ω-process to compute the Reynolds Operator via an example:

From Ω-process to Reynolds

- We show how to use the Ω-process to compute the Reynolds Operator via an example:
- $G=\mathbb{S L}(2)$ acting on \mathbb{C}^{3} (binary quadratic forms)

$$
\begin{gathered}
a x^{2}+b x y+c y^{2} \\
\left(\begin{array}{l}
a, b, c) \\
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\binom{x}{y}= \\
\binom{\alpha x+\beta y}{\gamma x+\delta y} \\
\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \longleftrightarrow
\end{array}\right. \\
\end{gathered}
$$

From Ω-process to Reynolds

- We show how to use the Ω-process to compute the Reynolds Operator via an example:
- $G=\mathbb{S L}(2)$ acting on \mathbb{C}^{3} (binary quadratic forms)
- To get Reynolds operator, do as follows:
(1) Take any polynomial $p \in \mathbb{C}[\mathbf{x}]$ and the generic action of the symbolic matrix $Z=\left(Z_{i j}\right)$

$$
z \circ p
$$

From Ω-process to Reynolds

- We show how to use the Ω-process to compute the Reynolds Operator via an example:
- $G=\mathbb{S L}(2)$ acting on \mathbb{C}^{3} (binary quadratic forms)
- To get Reynolds operator, do as follows:
(1) Take any polynomial $p \in \mathbb{C}[\mathbf{x}]$ and the generic action of the symbolic matrix $Z=\left(Z_{i j}\right)$
(2) Compute $Z \circ p$

$$
z_{11} z_{12} z_{21} z_{22} \quad \text { polynomial in } \mathbb{C}[Z, \mathrm{x}]
$$

From Ω-process to Reynolds

- We show how to use the Ω-process to compute the Reynolds Operator via an example:
- $G=\mathbb{S L}(2)$ acting on \mathbb{C}^{3} (binary quadratic forms)
- To get Reynolds operator, do as follows:
(1) Take any polynomial $p \in \mathbb{C}[\mathbf{x}]$ and the generic action of the symbolic matrix $Z=\left(Z_{i j}\right)$
(2) Compute $Z \circ p$ polynomial in $\mathbb{C}[Z, \mathbf{x}]$
(3) Use Ω-process (repeatedly) to kill variables Z

From Ω-process to Reynolds

- We show how to use the Ω-process to compute the Reynolds Operator via an example:
- $G=\mathbb{S L}(2)$ acting on \mathbb{C}^{3} (binary quadratic forms)
- To get Reynolds operator, do as follows:
(1) Take any polynomial $p \in \mathbb{C}[\mathbf{x}]$ and the generic action of the symbolic matrix $Z=\left(Z_{i j}\right)$
(2) Compute $Z \circ p$ polynomial in $\mathbb{C}[Z, \mathbf{x}]$
(3) Use Ω-process (repeatedly) to kill variables Z
(c) Resulting polynomial is an invariant!

Binary Quadrics

- Let $\mathbb{S L}(2)$ act on the space of quadratic polynomials \mathbb{C}^{3}

$$
p(x)=a x^{2}+b x y+c y^{2} \leftrightarrow p:=(a, b, c)
$$

Binary Quadrics

- Let $\mathbb{S L}(2)$ act on the space of quadratic polynomials \mathbb{C}^{3}

$$
p(x)=a x^{2}+b x y+c y^{2} \leftrightarrow p:=(a, b, c)
$$

- $g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ acts on p by

$$
g^{-1} \circ p=p\left(g\binom{x}{y}\right)
$$

Binary Quadrics

- Let $\mathbb{S L}(2)$ act on the space of quadratic polynomials \mathbb{C}^{3}

$$
p(x)=a x^{2}+b x y+c y^{2} \leftrightarrow p:=(a, b, c)
$$

- $g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ acts on p by

$$
g^{-1} \circ p=p\left(g\binom{x}{y}\right)
$$

- If $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ is the image $g^{-1} \circ p$, we have

$$
\begin{aligned}
& a^{\prime}=a \alpha^{2}+b \alpha \gamma+c \gamma^{2} \\
& b^{\prime}=2 \cdot(a \alpha \beta+c \gamma \delta)+b(\alpha \delta+\beta \gamma) \\
& c^{\prime}=a \beta^{2}+b \beta \delta+c \delta^{2}
\end{aligned}
$$

Binary Quadrics

- Take monomial ac

Binary Quadrics

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\delta & \delta
\end{array}\right) \quad \mathbb{C}[\alpha, \beta, \gamma, \delta]
$$

- Take monomial ac
\uparrow variables
- Symbolic transformation takes $a c$ to $a^{\prime} c^{\prime}$

$$
a^{\prime} c^{\prime}=\underbrace{\left(a \alpha^{2}+b \alpha \gamma+c \gamma^{2}\right)\left(a \beta^{2}+b \beta \delta+c \delta^{2}\right)}_{\text {polynomial in } \mathbb{C}\left[\alpha^{\alpha} \beta, \gamma, \delta, a, b, c\right]}
$$

Binary Quadrics
$\operatorname{det}\left(\begin{array}{ll}\partial_{\alpha} & \partial_{\beta} \\ \partial_{\gamma} & \partial_{\delta}\end{array}\right)=\partial_{\alpha} \partial_{\delta}-\partial_{\beta} \partial_{\gamma}$

- Take monomial ac
- Symbolic transformation takes $a c$ to $a^{\prime} c^{\prime}$

$$
\rightarrow\left(\underline{\left(a \alpha^{2}+b \alpha \gamma+c \gamma^{2}\right.}\right)\left(a \beta^{2}+b \beta \delta+c \delta^{2}\right)
$$

- Apply the Ω-process: $\Omega=\partial_{\alpha} \partial_{\delta}-\partial_{\beta} \partial_{\gamma}$ until no more variables from symbolic transformation!

$$
\begin{aligned}
& \partial_{\alpha} \partial_{\delta}\left(a^{\prime} c^{\prime}\right)=\partial_{\alpha}\left(a \alpha^{2}+b \alpha \gamma+c \gamma^{2}\right)(b \beta+2 c \delta) \\
& =(2 a \alpha+b \gamma)(b \beta+2 c \delta) \\
& \partial_{\beta} \partial_{\gamma}\left(a^{\prime} c^{\prime}\right)=\partial_{\beta}(b \alpha+2 c \gamma)\left(a \beta^{2}+b \beta \delta+c \delta^{2}\right) \\
& =(b \alpha+2 c \gamma)(2 a \beta+b \delta) \\
& \left(\partial_{\alpha} \partial_{\delta}-\partial_{\beta} \partial_{\gamma}\right)\left(a^{\prime} c^{\prime}\right)=(2 a \alpha+b \gamma)(b \beta+2 c \delta)-(b \alpha+2 c \gamma)
\end{aligned}
$$

$$
\Omega=\partial_{\alpha} \partial_{\delta}-\partial_{\beta} \partial_{\gamma}
$$

$P=(2 a \alpha+b \gamma)(b \beta+2 c \delta)-(b \alpha+2 c \gamma)(2 a \beta+b \delta)$
Apply Ω-process again (because we still have $\alpha, \beta, \gamma, \delta)$

$$
\begin{aligned}
\partial_{\alpha} \partial_{\delta} P & =\partial_{\alpha}[(2 a \alpha+b \gamma) \cdot 2 c-(b \alpha+2 c \delta) \cdot b] \\
& =4 a c-b^{2} \\
\partial_{\beta} \partial_{\gamma} p & =\partial_{\beta}[b(b \beta+2 c \delta)-2 c(2 a \beta+b \delta)] \\
& =b^{2}-4 a c \\
\Omega(p) & =\left(4 a c-b^{2}\right)-\left(b^{2}-4 a c\right) \\
& =2\left(4 a c-b^{2}\right) \text { Invariant! }
\end{aligned}
$$

Binary Quadrics

- Finite Generation of Invariant Rings for Finite Groups
- Reynolds Operator \& Finite Generation
- Cayley's Ω-process and Reynolds Operator for $\mathbb{S L}(n)$
- Conclusion
- Acknowledgements

Conclusion

- Today we proved the first fundamental theorem of invariant theory If group G is reductive, the invariant ring is finitely generated as a \mathbb{C}-algebra

Conclusion

- Today we proved the first fundamental theorem of invariant theory If group G is reductive, the invariant ring is finitely generated as a \mathbb{C}-algebra
- Saw how the Reynolds Operator reduces the finite generation as an algebra to finite generation as an ideal

Conclusion

- Today we proved the first fundamental theorem of invariant theory If group G is reductive, the invariant ring is finitely generated as a \mathbb{C}-algebra
- Saw how the Reynolds Operator reduces the finite generation as an algebra to finite generation as an ideal
- Learned how to compute Reynolds Operator for finite groups (averaging)
- Learned about the Ω-process, which is used to compute the Reynolds Operator for $\mathbb{S L}(n)$ actions

Conclusion

- Today we proved the first fundamental theorem of invariant theory If group G is reductive, the invariant ring is finitely generated as a \mathbb{C}-algebra
- Saw how the Reynolds Operator reduces the finite generation as an algebra to finite generation as an ideal
- Learned how to compute Reynolds Operator for finite groups (averaging)
- Learned about the Ω-process, which is used to compute the Reynolds Operator for $\mathbb{S L}(n)$ actions
- Explicit formulas for Reynolds Operator important for analytic algorithms in invariant theory!
- Even though may be difficult to compute (analogous to Cramer's rule), knowing formula is important and gives us quantitative information!

Conclusion

- Today we proved the first fundamental theorem of invariant theory If group G is reductive, the invariant ring is finitely generated as a \mathbb{C}-algebra
- Saw how the Reynolds Operator reduces the finite generation as an algebra to finite generation as an ideal
- Learned how to compute Reynolds Operator for finite groups (averaging)
- Learned about the Ω-process, which is used to compute the Reynolds Operator for $\mathbb{S L}(n)$ actions
- Explicit formulas for Reynolds Operator important for analytic algorithms in invariant theory!
- Even though may be difficult to compute (analogous to Cramer's rule), knowing formula is important and gives us quantitative information!
- Lots of open questions in this area!

Symbolic compretation of invariant polynomials

$$
\begin{aligned}
e_{d} & =\rho\left(\underline{x_{1} x_{2} \cdots x_{d}}\right) \\
& =\frac{l}{n!} \sum_{\sigma \in S_{n}} x_{\sigma(1) x_{\sigma(2)} \cdots x_{\sigma d)}}
\end{aligned}
$$

wow it must be really hard to compute elementary symmetric polynomials!

WW 1
e_{1}, \ldots, e_{n} are very easy to compute!

$$
P(x)=\prod_{i=1}^{n}\left(t+x_{i}\right)
$$

interpolation over t

$$
e_{1}, \ldots, e_{n}
$$

Open: $H \subset S_{n}$ con we compute quickly a basis fer $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{\text {l+ }}$?
(${ }^{n} 2$ permit ingestion edge permutation
$S_{n} \subset S_{\binom{n}{2}}$
can yield a foot algorithm to solve oreaph isomorphism problem!

Acknowledgement

- Lecture based on the wonderful books:
- Sturmfels: Algorithms in Invariant Theory
- Derksen, Kemper: Computational Invariant Theory

[^0]: ${ }^{2}$ For a proof of this, see Derksen \& Kemper Chapter 2

[^1]: ${ }^{2}$ For a proof of this, see Derksen \& Kemper Chapter 2

