Lecture 15: Introduction to Invariant Theory

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

March 8, 2021

Overview

- Group Actions on Vector Spaces
- Ring of Invariant Polynomials
- Fundamental Theorems
- Conclusion
- Acknowledgements

Group Actions

- Let G be a nice ${ }^{1}$ group and V be a \mathbb{C}-vector space

$$
S L(n)=\left\{A \in \mathbb{C}^{n \times n} \mid \operatorname{det}(A)=1\right\}
$$

${ }^{1}$ The definition of nice is a bit technical, so we will stick to finite groups and $\mathbb{S} \mathbb{L}(n) \times c$

Group Actions

- Let G be a nice ${ }^{1}$ group and V be a \mathbb{C}-vector space
- G acts linearly on V if

$$
\begin{aligned}
& g \circ(\alpha u+\beta v)=\alpha(g \circ u)+\beta(g \circ v) \\
& (g h) \circ v=g \circ(h \circ v)
\end{aligned}
$$

${ }^{1}$ The definition of nice is a bit technical, so we will stick to finite groups and $\mathbb{S} \mathbb{H}(n)$ acc

Group Actions

- Let G be a nice ${ }^{1}$ group and V be a \mathbb{C}-vector space
- G acts linearly on V if

$$
g \circ(\alpha u+\beta v)=\alpha(g \circ u)+\beta(g \circ v)
$$

- Examples:
(1) $G=S_{n}, V=\mathbb{C}^{n}$ permuting coordinates

$$
\begin{aligned}
& \left.\sigma:[n] \longrightarrow[n] \quad \begin{array}{c}
\text { bijection } \\
v_{n}
\end{array}\right) \\
& \sigma=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots=3 \\
\sigma=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \quad v=\left(\begin{array}{c}
v_{\sigma(1)} \\
v_{\sigma(2)} \\
\vdots \\
v_{\sigma(n)}
\end{array}\right) \\
\sigma(1)=2 \quad \sigma(2)=3
\end{array}\right. \\
& \left.\hline \begin{array}{l}
a \\
c
\end{array}\right) \quad \sigma v=\left(\begin{array}{l}
b \\
c \\
a
\end{array}\right)
\end{aligned}
$$

${ }^{1}$ The definition of nice is a bit technical, so we will stick to finite groups and $\mathbb{S} \mathbb{H}(n)$ ac

$$
\begin{aligned}
\sigma(& \left.\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)+\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right)= \\
\left(\begin{array}{l}
\text { "1 sum } \\
\alpha+a \\
\beta \\
\beta+b \\
\gamma+c
\end{array}\right)+\left(\begin{array}{l}
\beta \\
c \\
a
\end{array}\right) & \xrightarrow{\text { graup }}\left(\begin{array}{l}
\beta+b \\
\gamma+c \\
\alpha+a
\end{array}\right)
\end{aligned}
$$

Group Actions

- Let G be a nice ${ }^{1}$ group and V be a \mathbb{C}-vector space
- G acts linearly on V if

$$
g \circ(\alpha u+\beta v)=\alpha(g \circ u)+\beta(g \circ v)
$$

- Examples:
(1) $G=S_{n}, V=\mathbb{C}^{n}$
permuting coordinates
(2) $G=A_{n}, V=\mathbb{C}^{n}$ permuting coordinates

${ }^{1}$ The definition of nice is a bit technical, so we will stick to finite groups and $\mathbb{S H}(n)$ ace

Group Actions

- Let G be a nice ${ }^{1}$ group and V be a \mathbb{C}-vector space
- G acts linearly on V if

$$
g \circ(\alpha u+\beta v)=\alpha(g \circ u)+\beta(g \circ v)
$$

- Examples:
(1) $G=S_{n}, V=\mathbb{C}^{n}$
(2) $G=A_{n}, V=\mathbb{C}^{n}$
permuting coordinates
permuting coordinates linear transformations of curves
bivariate homogeneous polynomials of degree d

$$
\begin{aligned}
P(x, y) & =a_{d} x^{d}+a_{d-1} x^{d-1} y+\cdots+a_{0} y^{d} \\
& \longleftrightarrow\left(a_{d}, a_{d-1}, \cdots, a_{0}\right)
\end{aligned}
$$

${ }^{1}$ The definition of nice is a bit technical, so we will stick to finite groups and $\mathbb{S} \mathbb{H}(n)$ ac

$$
\left.\begin{array}{rl}
\underline{a}^{\prime}= & \frac{a \cdot \alpha^{2}+b \alpha \gamma+\gamma^{2} \cdot c}{\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in S L(2)\binom{\text { linem eonpinetion }}{b}} \\
& p(x, y)=a x^{2}+b x y+c y^{2} \\
(a, b, c) \in \mathbb{1}^{3}
\end{array}\right] \begin{aligned}
&\left(\begin{array}{ll}
\alpha & \beta \\
\sigma & \delta
\end{array}\right)\binom{x}{y}=\binom{\alpha x+\beta y}{\gamma x+\delta y} \\
& q(x, y)=p(\alpha x+\beta y, \gamma x+\delta y) \\
&=a(\alpha x+\beta y)^{2}+b(\alpha x+\beta y)(\gamma x+\delta y)+ \\
& c(\delta x+\delta y)^{2}=a^{\prime} x^{2}+b^{\prime} x y+c^{\prime} y^{2}
\end{aligned}
$$

Group Actions

- Let G be a nice ${ }^{1}$ group and V be a \mathbb{C}-vector space
- G acts linearly on V if

$$
g \circ(\alpha u+\beta v)=\alpha(g \circ u)+\beta(g \circ v)
$$

- Examples:
(1) $G=S_{n}, V=\mathbb{C}^{n}$
permuting coordinates
(2) $G=A_{n}, V=\mathbb{C}^{n}$
permuting coordinates
(3) $G=\operatorname{SL}(2), V=\mathbb{C}^{d+1} \quad$ linear transformations of curves
(1) $G=\underline{\operatorname{SL}(n)}, V=\operatorname{Mat}(n)$ left multiplication
elementary row operations

$$
\begin{aligned}
& g \circ A=g \cdot A \\
& \left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\end{aligned}=\left(\begin{array}{cc}
a+c & b+0 l \\
c & d
\end{array}\right) .
$$

${ }^{1}$ The definition of nice is a bit technical, so we will stick to finite groups and $\mathbb{S} \mathbb{H}(n)$ ace

Group Actions

- Let G be a nice ${ }^{1}$ group and V be a \mathbb{C}-vector space
- G acts linearly on V if

$$
g \circ(\alpha u+\beta v)=\alpha(g \circ u)+\beta(g \circ v)
$$

- Examples:
(1) $G=S_{n}, V=\mathbb{C}^{n} \quad$ permuting coordinates
(2) $G=A_{n}, V=\mathbb{C}^{n} \quad$ permuting coordinates
(3) $G=\operatorname{SL}(2), V=\mathbb{C}^{d+1} \quad$ linear transformations of curves
(3) $G=\operatorname{SL}(n), V=\operatorname{Mat}(n)$
(6) $G=\mathbb{G L}(n), V=\operatorname{Mat}(n)$
$g \in G L(n) \quad A \in M_{a}+(n)$
$A \stackrel{g}{\longmapsto} g A g^{-1}$
left multiplication conjugation
 bases
\mathbb{C}^{n}

[^0]Group Actions

- Let G be a nice ${ }^{1}$ group and V be a \mathbb{C}-vector space
- G acts linearly on V if

$$
g \circ(\alpha u+\beta v)=\alpha(g \circ u)+\beta(g \circ v)
$$

- Examples:

$$
\begin{aligned}
& \text { (1) } G=S_{n}, V=\mathbb{C}^{n} \\
& \text { permuting coordinates } \\
& \text { (2) } G=A_{n}, V=\mathbb{C}^{n} \quad \text { permuting coordinates } \\
& \text { (3) } G=\mathbb{S L}(2), V=\mathbb{C}^{d+1} \quad \text { linear transformations of curves } \\
& \text { (4) } G=\mathbb{S L}(n), V=\operatorname{Mat}(n) \quad \text { left multiplication } \\
& \text { (5) } G=\mathbb{G L}(n), V=\operatorname{Mat}(n) \quad \text { conjugation } \\
& \text { (0) } G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n){ }_{n} \quad \text { row/column scaling } \\
& \text { ST }(n)=\left\{\left.\left(\begin{array}{cc}
\alpha_{i} & 0 \\
0 & 0 \\
0 & \alpha_{n}
\end{array}\right) \right\rvert\, \prod_{i=1}^{n} \alpha_{i}=1\right\} \\
& \begin{array}{l}
\text { row/column scaling } \\
\text { diagonal w/ }
\end{array} \\
& \text { determinant } 1 \\
& \left(\begin{array}{ll}
r_{1} & 0 \\
0 & r_{2}
\end{array}\right)\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{ll}
c_{1} & 0 \\
0 & c_{2}
\end{array}\right)=\left(\begin{array}{ll}
a_{11} r_{1} c_{1} & a_{12} r_{1} c_{2} \\
a_{21} r_{2} c_{1} & a_{22} \\
r_{2} c_{2}
\end{array}\right)
\end{aligned}
$$

${ }^{1}$ The definition of nice is a bit technical, so we will stick to finite groups and $\mathbb{S} \mathbb{H}(n)$ ac

Group Actions

- Let G be a nice ${ }^{1}$ group and V be a \mathbb{C}-vector space
- G acts linearly on V if

$$
g \circ(\alpha u+\beta v)=\alpha(g \circ u)+\beta(g \circ v)
$$

- Examples:
(1) $G=S_{n}, V=\mathbb{C}^{n}$
permuting coordinates
(2) $G=A_{n}, V=\mathbb{C}^{n}$
(3) $G=\mathbb{S L}(2), V=\mathbb{C}^{d+1}$
(9) $G=\mathbb{S L}(n), V=\operatorname{Mat}(n)$
(5) $G=\mathbb{G L}(n), V=\operatorname{Mat}(n)$
(0) $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$
(1) $G=S_{n}, V=\mathbb{C}^{\binom{n}{2}}$
$A\left([n], E_{A}\right) \quad B\left([n], E_{B}\right)$
$\sigma:[n] \rightarrow[n] \quad(\sigma A)\left([n], \sigma E_{A}\right)$
linear transformations of curves
left multiplication conjugation row/column scaling graph isomorphism

Invariant Functions

- In this setup, important to study functions which are invariant under the group action, that is:

$$
f(v)=f(g \circ v) \text { for all } g \in G, v \in V
$$

$$
f: V \rightarrow \mathbb{C}
$$

Invariant Functions

- In this setup, important to study functions which are invariant under the group action, that is:

$$
f(v)=f(g \circ v) \quad \text { for all } \quad g \in G, v \in V
$$

- Algebraically, would like to understand polynomial invariant functions

Invariant Functions

$$
g \circ f=f\left(g^{-1} x\right)
$$

- In this setup, important to study functions which are invariant under the group action, that is:

$$
f(v)=f(g \circ v) \quad \text { for all } \quad g \in G, v \in V
$$

- Algebraically, would like to understand polynomial invariant functions

$$
\text { (1) } G=S_{n}, V=\mathbb{C}^{n}
$$

permuting coordinates
Symmetric polynomials.

$$
\begin{aligned}
e_{1} & =\sum_{i=1}^{n} x_{i} \text { invariant } \quad \begin{array}{c}
\sigma![n] \rightarrow[n] \\
\sigma e_{1}
\end{array}=e_{1}\left(\sigma^{-1}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)\right)
\end{aligned}
$$

Invariant Functions

- In this setup, important to study functions which are invariant under the group action, that is:

$$
f(v)=f(g \circ v) \quad \text { for all } \quad g \in G, v \in V
$$

- Algebraically, would like to understand polynomial invariant functions
(1) $G=S_{n}, V=\mathbb{C}^{n}$ permuting coordinates
Symmetric polynomials.
(2) $G=A_{n}, V=\mathbb{C}^{n}$ permuting coordinates
Symmetric polynomials (and more)

$$
\Delta=\prod_{i<j}\left(x_{i}-x_{j}\right) \quad \text { discriminant }
$$

Invariant Functions

- In this setup, important to study functions which are invariant under the group action, that is:

$$
f(v)=f(g \circ v) \quad \text { for all } \quad g \in G, v \in V
$$

- Algebraically, would like to understand polynomial invariant functions
(1) $G=S_{n}, V=\mathbb{C}^{n}$ permuting coordinates
Symmetric polynomials.
(2) $G=A_{n}, V=\mathbb{C}^{n}$ permuting coordinates
Symmetric polynomials (and more)
(3) $G=\mathbb{S L}(2), V=\mathbb{C}^{d} \quad$ linear transformations of curves

Discriminants, Catalecticants (and more)
$d=3$ (quadratic polynomial 1)
$(a, b, c) \longleftrightarrow a x^{2}+b x y+c y^{2}$

Examples, Continued
(1) $G=$

$$
\begin{aligned}
& \begin{aligned}
& \operatorname{det}(g L(n), V=\operatorname{Mat}(n) \\
& \text { Determinant } \quad \text { Ieft multiplica } \\
&=\operatorname{det}(g) \cdot \operatorname{det}(A) \\
&=\operatorname{det}(A)
\end{aligned}
\end{aligned}
$$

Examples, Continued

$$
\begin{aligned}
& \text { - } G=\operatorname{SLL}(n), V=\operatorname{Mat}(n) \\
& \text { Determinant } \\
& \text { (2) } G=\mathbb{G L}(n), V=\operatorname{Mat}(n) \\
& \text { Determinant } \\
& \text { Trace polynomials. } \\
& A \stackrel{g}{\longmapsto} \mathrm{gAg}^{-1} \\
& \operatorname{Tr}\left[A^{k}\right] \\
& \operatorname{Tr}\left[\left(g A g^{-1}\right)^{k}\right]=\operatorname{Tr}\left[g A^{k} g^{-1}\right]=\operatorname{Tr}\left[A^{k} g^{-1} g\right] \\
& =\operatorname{Tr}\left[A^{k}\right]
\end{aligned}
$$

Examples, Continued

$$
\begin{aligned}
& \text { (1) } G=\operatorname{SL}(n), V=\operatorname{Mat}(n) \\
& \text { left multiplication } \\
& \text { Determinant } \\
& \text { (2) } G=\mathbb{G} \mathbb{L}(n), V=\operatorname{Mat}(n) \\
& \text { conjugation } \\
& \text { Trace polynomials. } \\
& \text { (3) } G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n) \quad \text { row/column scaling } \\
& \left(n_{1} \overline{ }{ }^{n_{n}}\right)\left(\begin{array}{c}
c_{1} \\
\\
\\
\\
\\
{ }^{\prime} \\
c_{n}
\end{array}\right) \text { Matching/Permutation monomials. } \\
& \sigma:[n][n] \\
& \prod A_{i o c i)} \\
& \text { 2 } \\
& \sigma(123) \\
& \prod_{i=1}^{n} A_{i \sigma(i)} r_{i} c_{\sigma(i)}=\left(\prod_{i=1}^{n} A_{i \sigma(i)}\right)\left(\prod_{i=1}^{a} r_{i}\right)\left(\prod_{i=1}^{n} c_{\sigma}(i)\right)
\end{aligned}
$$

Examples, Continued

(1) $G=\mathbb{S L}(n), V=\operatorname{Mat}(n)$
left multiplication

Determinant

(2) $G=\mathbb{G L}(n), V=\operatorname{Mat}(n)$ conjugation
Trace polynomials.
(3) $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$
row/column scaling Matching/Permutation monomials.
(4) $G=S_{n}, V=\mathbb{C}\binom{n}{2}$

Open.

- Group Actions on Vector Spaces
- Ring of Invariant Polynomials
- Fundamental Theorems
- Conclusion
- Acknowledgements

Ring of Invariant Polynomials

- G acts linearly on $V=\mathbb{C}^{N}$, let $\mathbb{C}[\mathbf{x}]=\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ be the polynomial ring over \mathbb{V}
- Invariant polynomials form a subring of $\mathbb{C}[\mathbf{x}]$, denoted $\mathbb{C}[\mathbf{x}]^{G}$ α

$$
\begin{aligned}
e_{1}\left(x_{1}, \ldots, x_{n}\right) & =x_{1}+x_{2}+\cdots+x_{n} \\
e_{2}\left(x_{2}, \cdots, x_{n}\right) & =x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{1} x_{n}+x_{2} x_{3}+\cdots \\
& +x_{n-1} x_{n} \\
e_{1} e_{2} \quad & \propto e_{1}+\beta e_{2}
\end{aligned}
$$

Ring of Invariant Polynomials

- G acts linearly on $V=\mathbb{C}^{N}$, let $\mathbb{C}[\mathbf{x}]=\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ be the polynomial ring over \mathbb{V}
- Invariant polynomials form a subring of $\mathbb{C}[\mathbf{x}]$, denoted $\mathbb{C}[\mathbf{x}]^{G}$
- For the ring of symmetric polynomials, we know that

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}=\mathbb{C}\left[e_{1}, e_{2}, \ldots, e_{n}\right]
$$

where

$$
e_{d}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{S \subset[n] \\|S|=d}} \prod_{i \in S} x_{i}
$$

$P(\bar{x}) \in \mathbb{C}[\overline{\bar{x}}]$ symmetric,

$$
P(\bar{x})=q\left(e_{1}, \cdots, e_{n}\right)
$$

$$
\frac{x_{1}^{2}+x_{2}^{2}}{x_{1}^{3}+x_{2}^{2}}=\underline{\frac{\left(x_{1}+x_{2}\right)^{2}-2 x_{1} x_{2}}{e_{1}^{2}-2 e_{2}}}
$$

Ring of Invariant Polynomials

- G acts linearly on $V=\mathbb{C}^{N}$, let $\mathbb{C}[\mathbf{x}]=\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ be the polynomial ring over \mathbb{V}
- Invariant polynomials form a subring of $\mathbb{C}[\mathbf{x}]$, denoted $\mathbb{C}[\mathbf{x}]^{G}$
- For the ring of symmetric polynomials, we know that

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}=\mathbb{C}\left[e_{1}, e_{2}, \ldots, e_{n}\right]
$$

where

$$
e_{d}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{S \subset[n] \\|S|=d}} \prod_{i \in S} x_{i}
$$

- Every symmetric polynomial is itself a polynomial function of the elementary symmetric polynomials

Ring of Invariant Polynomials

- G acts linearly on $V=\mathbb{C}^{N}$, let $\mathbb{C}[\mathbf{x}]=\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ be the polynomial ring over \mathbb{V}
- Invariant polynomials form a subring of $\mathbb{C}[\mathbf{x}]$, denoted $\mathbb{C}[\mathbf{x}]^{G}$
- For the ring of symmetric polynomials, we know that

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}=\mathbb{C}\left[e_{1}, e_{2}, \ldots, e_{n}\right]
$$

where

$$
e_{d}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{S \subset[n] \\|S|=d}} \prod_{i \in S} x_{i}
$$

- Every symmetric polynomial is itself a polynomial function of the elementary symmetric polynomials
- Elementary symmetric polynomials are a fundamental system of invariants

Proof of Invariant Ring of Symmetric Polynomials

- Proof due to van der Waerden using monomial ordering!

Proof of Invariant Ring of Symmetric Polynomials

- Proof due to van der Waerden
using monomial ordering!
- Use degree lexicographic order

$$
\bar{a} y \bar{b} \text { if } \operatorname{deg}(\bar{a})>\operatorname{deg}(\overline{5})
$$

or $\quad \operatorname{deg}(\bar{a})=\operatorname{deg}(\bar{b})$

$$
\begin{gathered}
\bar{a} \varepsilon_{\text {lex }} \bar{b} \\
(2,3,1) \&\left({\underset{\gamma}{p}}^{2}, 1,3\right)
\end{gathered}
$$

Proof of Invariant Ring of Symmetric Polynomials

- Proof due to van der Waerden
using monomial ordering!
- Use degree lexicographic order
- Every symmetric polynomial $p(x)$ has a non-zero leading term

$$
x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}
$$

with $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$

$$
x_{1}^{a_{12}} x_{2}^{a_{1}} x_{3}^{a_{3}} \cdots x_{n}^{a_{n}}+x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} \cdots x_{n}^{a_{n}}
$$

Proof of Invariant Ring of Symmetric Polynomials

- Proof due to van der Waerden using monomial ordering!
- Use degree lexicographic order
- Every symmetric polynomial $p(x)$ has a non-zero leading term

$$
x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}
$$

with $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$

$$
a_{i}-a_{i t} \geqslant 0
$$

- Then

$$
\longrightarrow p(x)-L C(p)\left[e_{1}^{a_{1}-a_{2}} \cdot e_{2}^{a_{2}-a_{3}} \cdots e_{n-1}^{a_{n-1}-a_{n}} \cdot e_{n}^{a_{n}}\right.
$$

has smaller leading monomial!

$$
\begin{aligned}
& P(x)=L C(p) \cdot x_{1}^{a_{1}} x_{2}^{a_{2}^{2}} \cdot x_{n}^{a_{n}},
\end{aligned}
$$

$$
\begin{aligned}
& =x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}
\end{aligned}
$$

cancelling the leading term of $p(x)$

Proof of Invariant Ring of Symmetric Polynomials

- Proof due to van der Waerden using monomial ordering!
- Use degree lexicographic order
- Every symmetric polynomial $p(x)$ has a non-zero leading term

$$
\text { non zero } x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}
$$

with $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$

- Then

$$
p(x)-L C(p) \cdot e_{1}^{a_{1}-a_{2}} \cdot e_{2}^{a_{2}-a_{3}} \cdots e_{n-1}^{a_{n-1}-a_{n}} \cdot e_{n}^{a_{n}}
$$

has smaller leading monomial! division algorithm!

- Procedure must terminate because of well-ordering of monomial ordering!

Other Fundamental Invariants

- It turns out that the fundamental system of invariants may not be unique (an are generally far from being unique)

Other Fundamental Invariants

- It turns out that the fundamental system of invariants may not be unique (an are generally far from being unique)
- The power sum polynomials $p_{d}(x)=x_{1}^{d}+\cdots+x_{n}^{d}$ are also a fundamental system of invariants!

$$
x y=\frac{(x+y)^{2}-\left(x^{2}+y^{2}\right)}{2}
$$

Other Fundamental Invariants

- It turns out that the fundamental system of invariants may not be unique (an are generally far from being unique)
- The power sum polynomials $p_{d}(x)=x_{1}^{d}+\cdots+x_{n}^{d}$ are also a fundamental system of invariants!
- The Schur polynomials are also a fundamental system of invariants!

Other Fundamental Invariants

- It turns out that the fundamental system of invariants may not be unique (an are generally far from being unique)
- The power sum polynomials $p_{d}(x)=x_{1}^{d}+\cdots+x_{n}^{d}$ are also a fundamental system of invariants!
- The Schur polynomials are also a fundamental system of invariants!
- The complete symmetric polynomials are also a fundamental system of invariants!

$$
\begin{aligned}
& h_{d}\left(x_{1}, \ldots, x_{n}\right)= \sum_{\substack{\text { Sc [n] } \\
\operatorname{mul} \text { list } \\
|s|=0}} \prod_{i \in S} x_{i} \\
& h_{2}(x, y, z)=x^{3}+x^{2} y+x^{2} z+x y^{2}+x y z+2 z^{2} \\
& \ldots \ldots+\ldots
\end{aligned}
$$

Other Fundamental Invariants

- It turns out that the fundamental system of invariants may not be unique (an are generally far from being unique)
- The power sum polynomials $p_{d}(x)=x_{1}^{d}+\cdots+x_{n}^{d}$ are also a fundamental system of invariants!
- The Schur polynomials are also a fundamental system of invariants!
- The complete symmetric polynomials are also a fundamental system of invariants!
- Relations between these bases is very important in algebraic combinatoric and representation theory!

Other Fundamental Invariants

- It turns out that the fundamental system of invariants may not be unique (an are generally far from being unique)
- The power sum polynomials $p_{d}(x)=x_{1}^{d}+\cdots+x_{n}^{d}$ are also a fundamental system of invariants!
- The Schur polynomials are also a fundamental system of invariants!
- The complete symmetric polynomials are also a fundamental system of invariants!
- Relations between these bases is very important in algebraic combinatoric and representation theory!
- More generally, fundamental systems of invariants give us great properties and connections between many areas of mathematics!

Fundamental System of Invariants - Another Example

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$ row/column scaling Matching/Permutation monomials.

Fundamental System of Invariants - Another Example

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$
row/column scaling
Matching/Permutation monomials.
- Action is: $A_{i j}=\underline{A_{i j}} \cdot \underline{x_{i}} \cdot \underline{y_{j}}=\mathcal{B}_{i j}$

$$
\prod_{i_{1}=1}^{n} B_{i j}^{e_{i j}}=\prod_{i_{1},=1}^{n} A_{i j}^{e_{i j}} x_{i}^{e_{i j}} y_{j}^{e_{i j}}
$$

Fundamental System of Invariants - Another Example

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$
row/column scaling
Matching/Permutation monomials.
- Action is: $A_{i j}=A_{i j} \cdot x_{i} \cdot y_{j}$
invariants are generated by monomials
- Equations that exponents must satisfy: monomial $\prod_{i, j} A_{i, j}^{e_{i, j}}$ is invariant ff:

$$
\begin{aligned}
& \prod_{i, j=1}^{n} A_{i j}^{e_{i j}}=\prod_{i=1}^{n}\left(A_{i j} x_{i} y_{j}\right)^{e_{i j}} \\
& =\left(\prod_{i+j=1}^{n} A_{i j}^{e_{i j}}\right) \prod_{i=1}^{n} x_{i} \sum_{i j=1}^{n} e_{i j} \prod_{i=1}^{n} y_{j}^{\sum_{i=1}^{n} e_{i j}} \\
& \sum_{j=1}^{n} e_{i j}=\sum_{j=1}^{n} e_{2 j}=\cdots=\sum_{j=1}^{n} e_{n j}=m=\sum_{i=1}^{n} e_{i j} \forall j
\end{aligned}
$$

$$
\Pi x_{i}^{5_{i}^{e_{i j}}}=\prod x_{i}^{m}=\underbrace{\left(\prod x_{i}\right)^{m}}_{=1}
$$

because $\operatorname{det}\left(\begin{array}{lll}x_{1} & & \\ & & \\ & x_{n}\end{array}\right)=1$ matrix exports

e_{11}	e_{12}	e_{13}	m
e_{21}	e_{22}	e_{23}	m
e_{31}	e_{32}	e_{33}	m
m	m	m	

Fundamental System of Invariants - Another Example

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n) \quad$ row/column scaling Matching/Permutation monomials.
- Action is: $A_{i j}=A_{i j} \cdot x_{i} \cdot y_{j}$

> invariants are generated by monomials

- Equations that exponents must satisfy: monomial $\prod_{i, j} A_{i, j}^{e_{i, j}}$ is invariant iff:
- Permutation/matching monomials are definitely invariant

ℓ

Fundamental System of Invariants - Another Example

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n) \quad$ row/column scaling Matching/Permutation monomials.
- Action is: $A_{i j}=A_{i j} \cdot x_{i} \cdot y_{j}$

> invariants are generated by monomials

- Equations that exponents must satisfy: monomial $\prod_{i, j} A_{i, j}^{e_{i, j}}$ is invariant of:
- Permutation/matching monomials are definitely invariant
- Any invariant monomial must have degree $k n$ for some $k \in \mathbb{Z}$

Fundamental System of Invariants - Another Example

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n) \quad$ row/column scaling Matching/Permutation monomials.
- Action is: $A_{i j}=A_{i j} \cdot x_{i} \cdot y_{j}$

> invariants are generated by monomials

- Equations that exponents must satisfy: monomial $\prod_{i, j} A_{i, j}^{e_{i, j}}$ is invariant iff:
- Permutation/matching monomials are definitely invariant
- Any invariant monomial must have degree $k n$ for some $k \in \mathbb{Z}$
- Birkhoff-von Neumann theorem, must be in convex hull of permutations

Fundamental System of Invariants - Another Example

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$
row/column scaling
Matching/Permutation monomials.
- Action is: $A_{i j}=\overline{A_{i j} \cdot x_{i} \cdot y_{j}}$
invariants are generated by monomials
- Equations that exponents must satisfy: monomial $\prod_{i, j} A_{i, j}^{e_{i, j}}$ is invariant of:
- Permutation/matching monomials are definitely invariant
- Any invariant monomial must have degree $k n$ for some $k \in \mathbb{Z}$
- Birkhoff-von Neumann theorem, must be in convex hull of permutations
- Relation to combinatorics: if matrix A is adjacency matrix of a bipartite graph H, then A has no perfect matching ff A vanishes on all invariants!

$\prod_{i \sigma(i)}<$ one must be zero

Fundamental System of Invariants - Another Example

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$
row/column scaling
Matching/Permutation monomials.
- Action is: $A_{i j}=A_{i j} \cdot x_{i} \cdot y_{j}$

> invariants are generated by monomials

- Equations that exponents must satisfy: monomial $\prod_{i, j} A_{i, j}^{e_{i, j}}$ is invariant iff:
- Permutation/matching monomials are definitely invariant
- Any invariant monomial must have degree $k n$ for some $k \in \mathbb{Z}$
- Birkhoff-von Neumann theorem, must be in convex hull of permutations
- Relation to combinatorics: if matrix A is adjacency matrix of a bipartite graph H, then A has no perfect matching iff A vanishes on all invariants!
- It is no coincidence that polytopes appear naturally with torus actions. For the interested folks, see moment polytopes.

Discriminant \& Invariant Theory

- Let $\mathbb{S L}(2)$ act on the space of quadratic polynomials \mathbb{C}^{3}

$$
p(x)=a x^{2}+b x y+c y^{2} \leftrightarrow p:=(a, b, c)
$$

Discriminant \& Invariant Theory

- Let $\mathbb{S L}(2)$ act on the space of quadratic polynomials \mathbb{C}^{3}

$$
p(x)=a x^{2}+b x y+c y^{2} \leftrightarrow p:=(a, b, c)
$$

- $g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ acts on p by

$$
\underline{g^{-1} \circ p}=p\left(g\binom{x}{y}\right)
$$

Discriminant \& Invariant Theory

- Let $\mathbb{S L}(2)$ act on the space of quadratic polynomials \mathbb{C}^{3}

$$
p(x)=a x^{2}+b x y+c y^{2} \leftrightarrow p:=(a, b, c)
$$

- $g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ acts on p by

$$
g^{-1} \circ p=p\left(g\binom{x}{y}\right)
$$

- If $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ is the image $g^{-1} \circ p$, we have

$$
\begin{aligned}
& a^{\prime}=a \alpha^{2}+b \alpha \gamma+c \gamma^{2} \\
& b^{\prime}=2 \cdot(a \alpha \beta+c \gamma \delta)+b(\alpha \delta+\beta \gamma) \\
& c^{\prime}=a \beta^{2}+b \beta \delta+c \delta^{2}
\end{aligned}
$$

Discriminant \& Invariant Theory

- Let $\mathbb{S L}(2)$ act on the space of quadratic polynomials \mathbb{C}^{3}

$$
p(x)=a x^{2}+b x y+c y^{2} \leftrightarrow p:=(a, b, c)
$$

- $g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ acts on p by

$$
g^{-1} \circ p=p\left(g\binom{x}{y}\right)
$$

- If $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ is the image $g^{-1} \circ p$, we have

$$
\begin{aligned}
& a^{\prime}=a \alpha^{2}+b \alpha \gamma+c \gamma^{2} \\
& b^{\prime}=2 \cdot(a \alpha \beta+c \gamma \delta)+b(\alpha \delta+\beta \gamma) \\
& c^{\prime}=a \beta^{2}+b \beta \delta+c \delta^{2}
\end{aligned}
$$

- The discriminant is an invariant!

$$
b^{2}-4 a c=\left(b^{\prime}\right)^{2}-4 a^{\prime} c^{\prime}
$$

Discriminant \& Invariant Theory

- Let $\mathbb{S L}(2)$ act on the space of quadratic polynomials \mathbb{C}^{3}

$$
p(x)=a x^{2}+b x y+c y^{2} \leftrightarrow p:=(a, b, c)
$$

- $g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ acts on p by

$$
g^{-1} \circ p=p\left(g\binom{x}{y}\right)
$$

- If $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ is the image $g^{-1} \circ p$, we have

$$
\begin{aligned}
& a^{\prime}=a \alpha^{2}+b \alpha \gamma+c \gamma^{2} \\
& b^{\prime}=2 \cdot(a \alpha \beta+c \gamma \delta)+b(\alpha \delta+\beta \gamma) \\
& c^{\prime}=a \beta^{2}+b \beta \delta+c \delta^{2}
\end{aligned}
$$

- The discriminant is an invariant!

$$
b^{2}-4 a c=\left(b^{\prime}\right)^{2}-4 a^{\prime} c^{\prime}
$$

- It captures exactly the quadratic polynomials which have a double root! We may see why this is the case in the end of the course.
- Group Actions on Vector Spaces
- Ring of Invariant Polynomials
- Fundamental Theorems
- Conclusion
- Acknowledgements

Fundamental Problems in Invariant Theory

- Is the invariant ring finitely generated as a \mathbb{C}-algebra?

$$
(\pi \bar{x})^{G}=[\underbrace{\left.f_{1}, \ldots, f_{t}\right]}
$$

Fundamental Problems in Invariant Theory

- Is the invariant ring finitely generated as a \mathbb{C}-algebra?
- Can we describe the algebraic relations among the fundamental invariants from the previous question? These algebraic relations are called syzygies.

$$
\begin{aligned}
& a[\bar{x}]^{A_{n}}=\mathbb{C}\left[\frac{e_{1}, \ldots, e_{n}, \Delta}{\Delta_{j}^{2}-(\cdots)}\right. \\
& \Delta_{i}^{2}\left(x_{i}-x_{j}\right) \\
& \Delta^{2} \text { symmetric } \in \mathbb{C}\left[e_{\left.1, \ldots, e_{n}\right]}\right.
\end{aligned}
$$

Fundamental Problems in Invariant Theory

- Is the invariant ring finitely generated as a \mathbb{C}-algebra?
- Can we describe the algebraic relations among the fundamental invariants from the previous question? These algebraic relations are called syzygies.
- Give an algorithm which writes an invariant $p(x)$ as a polynomial in the fundamental invariants.

$$
\begin{aligned}
& {[\bar{x}]^{G}=\mathbb{C}\left[f_{1}, \ldots, f_{t}\right]} \\
& P(\bar{x})=?\left(f, \ldots, f_{t}\right)
\end{aligned}
$$

Fundamental Problems in Invariant Theory

- Is the invariant ring finitely generated as a \mathbb{C}-algebra?
- Can we describe the algebraic relations among the fundamental invariants from the previous question? These algebraic relations are called syzygies.
- Give an algorithm which writes an invariant $p(x)$ as a polynomial in the fundamental invariants.

These were the problems Hilbert was trying to solve when he developed the Hilbert Basis Theorem, Nullstellensatz and Syzygy theorem - cornerstones of modern commutative algebra and algebraic geometry.

Fundamental Problems in Invariant Theory

- Is the invariant ring finitely generated as a \mathbb{C}-algebra?
- Can we describe the algebraic relations among the fundamental invariants from the previous question? These algebraic relations are called syzygies.
- Give an algorithm which writes an invariant $p(x)$ as a polynomial in the fundamental invariants.

These were the problems Hilbert was trying to solve when he developed the Hilbert Basis Theorem, Nullstellensatz and Syzygy theorem - cornerstones of modern commutative algebra and algebraic geometry.

- Answer to third problem can be done via Gröbner basis methods

Examples of Invariants with Syzygies

- Cyclic group of order 4:

$$
\begin{gathered}
G=\left\{\begin{array}{cc}
\left\{\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \\
\text { id } & \left.\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right\} \\
x y \\
x^{2}=y^{2}=(x y)^{2}=i d
\end{array}\right.
\end{gathered}
$$

Examples of Invariants with Syzygies

- Cyclic group of order 4:

$$
G=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right\}
$$

- Invariant ring equals set of polynomials $p(x, y)$ such that

$$
p(x, y)=p(-y, x)
$$

Examples of Invariants with Syzygies

- Cyclic group of order 4:

$$
G=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right\}
$$

- Invariant ring equals set of polynomials $p(x, y)$ such that

$$
p(x, y)=p(-y, x)
$$

- Three fundamental invariants:

$$
f_{1}=x^{2}+y^{2}, f_{2}=x^{2} y^{2}, f_{3}=x^{3} y-x y^{3}
$$

Examples of Invariants with Syzygies

- Cyclic group of order 4:

$$
G=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right\}
$$

- Invariant ring equals set of polynomials $p(x, y)$ such that

$$
p(x, y)=p(-y, x)
$$

- Three fundamental invariants:

$$
f_{1}=x^{2}+y^{2}, f_{2}=x^{2} y^{2}, f_{3}=x^{3} y-x y^{3}
$$

- Syzygy:

$$
f_{3}^{2}-f_{2} f_{1}^{2}+4 f_{2}^{2}=
$$

- Group Actions on Vector Spaces
- Ring of Invariant Polynomials
- Fundamental Theorems
- Conclusion
- Acknowledgements

Conclusion

- Today we learned the basics about the algebraic side of invariant theory
- Some history
- Many examples of important rings of invariants
- Connections to other areas of mathematics
- Fundamental problems in invariant theory

Acknowledgement

- Lecture based entirely on the wonderful book by Sturmfels: Algorithms in Invariant Theory

[^0]: ${ }^{1}$ The definition of nice is a bit technical, so we will stick to finite groups and $\mathbb{S} \mathbb{H}(n)$ ac

