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Group Actions

@ Let G be a nice! group and V be a C-vector space
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!The definition of nice is a bit technical, so we will stick-to finite groups and SIL(n)
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Group Actions
o Let G be a nice! group and V be a C-vector space

o G acts linearly on V' if
go(au+pv)=algou)+pS(gov)

@ Examples:
Q@ G=5,v=C" permuting coordinates
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Group Actions
@ Let G be a nice! group and V be a C-vector space

o G acts linearly on V if

go(au+tpv)=algou)+pB(gov)

@ Examples:
QO G=5,,v=C" permuting coordinates
Q@ G=A,Vv=C" permuting coordinates
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Group Actions
o Let G be a nice! group and V be a C-vector space

o G acts linearly on V' if

go(au+pv)=algou)+pB(gov)

@ Examples:

QO G=5,,v=C" permuting coordinates
Q@ G=A,Vv=C" permuting coordinates
© G =SL(2), V=Cdt! linear transformations of curves
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Group Actions
o Let G be a nice! group and V be a C-vector space

o G acts linearly on V' if

go(au+pv)=algou)+pB(gov)

@ Examples:

QO G=5,v=C" permuting coordinates
Q@ G=A,Vv=C" permuting coordinates
© G =SL(2), V=Cdt! linear transformations of curves
Q G =SL(n), V = Mat(n) left multiplication
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Group Actions
@ Let G be a nice! group and V be a C-vector space

o G acts linearly on V if

go(au+tpv)=algou)+pB(gov)

@ Examples:
QO G=5,v=C" permuting coordinates
Q@ G=A,Vv=C" permuting coordinates
© G =SL(2), V=Cdt! linear transformations of curves
@ G =SL(n), V = Mat(n) left multiplication
Q@ G =GL(n), V = Mat(n) conjugation
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Group Actions
@ Let G be a nice! group and V be a C-vector space

o G acts linearly on V if

go(au+tpv)=algou)+pB(gov)

@ Examples:

QO G=5,,v=C" permuting coordinates
Q@ G=A,Vv=C" permuting coordinates
© G =SL(2), V=Cdt! linear transformations of curves
@ G =SL(n), V = Mat(n) left multiplication
Q@ G =GL(n), V = Mat(n) conjugation

Q@ G =ST(n) x ST(n), V = Mat(n row/column scaling
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Group Actions
o Let G be a nice! group and V be a C-vector space

o G acts linearly on V' if

go(au+pv)=algou)+pB(gov)

@ Examples:

QO G=5,,v=C" permuting coordinates
Q@ G=A,Vv=C" permuting coordinates
© G =SL(2), V=Cdt! linear transformations of curves
@ G =SL(n), V = Mat(n) left multiplication
Q@ G =GL(n), V = Mat(n) conjugation
Q@ G =ST(n) x ST(n), V = Mat(n) row/column scaling
Q@ G=5, V= c() graph isomorphism
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Invariant Functions

@ In this setup, important to study functions which are invariant under
the group action, that is:

f(v)="f(gov) forall ge G, veV
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@ In this setup, important to study functions which are invariant under
the group action, that is:

f(v)="f(gov) forall ge G, veV
@ Algebraically, would like to understand polynomial invariant functions

Q@ G=5,v=C" permuting coordinates
Symmetric polynomials.
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Invariant Functions

@ In this setup, important to study functions which are invariant under
the group action, that is:

f(v)="f(gov) forall ge G, veV

@ Algebraically, would like to understand polynomial invariant functions

Q@ G=5,v=C" permuting coordinates
Symmetric polynomials.
Q@ G=A,Vv=C" permuting coordinates
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Symmetric polynomials (and more)
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Invariant Functions

@ In this setup, important to study functions which are invariant under
the group action, that is:

f(v)="f(gov) forall ge G, veV
@ Algebraically, would like to understand polynomial invariant functions

Q@ G=5,v=C" permuting coordinates
Symmetric polynomials.
Q@ G=A,Vv=C permuting coordinates
Symmetric polynomials (and more)
Q@ G=SL(2), v=Cd linear transformations of curves

Discriminants, Catalecticants (and more)
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Examples, Continued
Q@ G =SL(n), V = Mat(n) left multiplication

Determinant

c(e+<g-A) = det(y) -def(4)
= det(A)



Examples, Continued

Q@ G =SL(n), V = Mat(n) left multiplication
Determinant
@ G =GL(n), V = Mat(n) conjugation
Trace polynomials.
st Aol
A= 3



Examples, Continued

Q@ G =SL(n), V = Mat(n) left multiplication
Determinant
@ G =GL(n), V = Mat(n) conjugation
Trace polynomials.
@ G =ST(n) x ST(n), V = Mat(n) row/column scaling
( e ( ¢, “Matching/Permutation monomials.
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Examples, Continued

@ G =SL(n), V = Mat(n) left multiplication
Determinant
@ G =GL(n), V = Mat(n) conjugation
Trace polynomials.
@ G =ST(n) x ST(n), V = Mat(n) row/column scaling
Matching/Permutation monomials.
Q@ G=5, V= c(®) graph isomorphism

Open.
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Ring of Invariant Polynomials

@ G acts linearly on V = CV, let C[x] = C[xi, ..., xyn] be the
polynomial ring over V

o Invariant polynomials form a subring of C[x], denoted C[x]®
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Ring of Invariant Polynomials

@ G acts linearly on V = CV, let C[x] = C[xi, ..., xyn] be the
polynomial ring over V
e Invariant polynomials form a subring of C[x], denoted C[x]®

@ For the ring of symmetric polynomials, we know that

(C[Xla cee 7Xn]sn = (C[ela €2,..., en]
where
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Ring of Invariant Polynomials

@ G acts linearly on V = CV, let C[x] = C[xi, ..., xyn] be the
polynomial ring over V

e Invariant polynomials form a subring of C[x], denoted C[x]®

@ For the ring of symmetric polynomials, we know that
Clx1, ..., xa)>" = Clen, &2, .. ., &)

where
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SC[n]i€S
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@ Every symmetric polynomial is itself a polynomial function of the
elementary symmetric polynomials




Ring of Invariant Polynomials

@ G acts linearly on V = CV, let C[x] = C[xi, ..., xyn] be the
polynomial ring over V

e Invariant polynomials form a subring of C[x], denoted C[x]®

@ For the ring of symmetric polynomials, we know that

Clx1, ..., xa]>" = Cley, e, . . . , €n]
where
ed(xl, e ,Xn) = Z HX,‘
SC[n]i€S
|S|=d

@ Every symmetric polynomial is itself a polynomial function of the
elementary symmetric polynomials

@ Elementary symmetric polynomials are a fundamental system of
invariants
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Proof of Invariant Ring of Symmetric Polynomials

@ Proof due to van der Waerden using monomial ordering!
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@ Use degree lexicographic order
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Proof of Invariant Ring of Symmetric Polynomials

@ Proof due to van der Waerden using monomial ordering!
@ Use degree lexicographic order
e Every symmetric polynomial p(x) has a non-zero leading term
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Proof of Invariant Ring of Symmetric Polynomials

@ Proof due to van der Waerden using monomial ordering!
@ Use degree lexicographic order
e Every symmetric polynomial p(x) has a non-zero leading term
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Proof of Invariant Ring of Symmetric Polynomials

@ Proof due to van der Waerden using monomial ordering!
o Use degree lexicographic order

o Every symmetric/pkolynomial p(x) has a non-zero leading term
(YT JC .

32.
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with a1 > a, > --- > a,
@ Then
p(x) — LC(p) - !~ - e~ .. ekt ™ e

has smaller leading monomial! division algorithm!

@ Procedure must terminate because of well-ordering of monomial
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ordering!
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Other Fundamental Invariants

@ It turns out that the fundamental system of invariants may not be

unique (an are generally far from being unique)

@ The power sum polynomials pg(x) = xf + --- + x? are also a

fundamental system of invariants!
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Other Fundamental Invariants

@ It turns out that the fundamental system of invariants may not be
unique (an are generally far from being unique)

@ The power sum polynomials pg(x) = xf + --- + x? are also a
fundamental system of invariants!

@ The Schur polynomials are also a fundamental system of invariants!



Other Fundamental Invariants

@ It turns out that the fundamental system of invariants may not be
unique (an are generally far from being unique)

@ The power sum polynomials pg(x) = xf + --- + x? are also a
fundamental system of invariants!

@ The Schur polynomials are also a fundamental system of invariants!

@ The complete symmetric polynomials are also a fundamental system
of invariants!
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Other Fundamental Invariants

@ It turns out that the fundamental system of invariants may not be

unique (an are generally far from being unique)

@ The power sum polynomials pg(x) = xf + --- + x? are also a

fundamental system of invariants!
@ The Schur polynomials are also a fundamental system of invariants!

@ The complete symmetric polynomials are also a fundamental system
of invariants!

@ Relations between these bases is very important in algebraic
combinatoric and representation theory!



Other Fundamental Invariants

@ It turns out that the fundamental system of invariants may not be

unique (an are generally far from being unique)

@ The power sum polynomials pg(x) = xf + --- + x? are also a

fundamental system of invariants!
@ The Schur polynomials are also a fundamental system of invariants!

@ The complete symmetric polynomials are also a fundamental system
of invariants!

@ Relations between these bases is very important in algebraic
combinatoric and representation theory!

@ More generally, fundamental systems of invariants give us great
properties and connections between many areas of mathematics!
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e G =ST(n) x ST(n), V = Mat(n) row/column scaling
Matching/Permutation monomials.



Fundamental System of Invariants — Another Example
e G =ST(n) x ST(n), V = Mat(n) row/column scaling

Matching/Permutation monomials.
@ Action is: i,l :_A_,-j Xioyi o= B(J

invariants are generated by monomials
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Fundamental System of Invariants — Another Example
e G =ST(n) x ST(n), V = Mat(n) row/column scaling

Matching/Permutation monomials.
@ Actionis: Aj = Ajj- X -y
invariants are generated by monomials

o Equations that exponents must satisfy: monomial [T, ; AZ’ is

invariant iff:
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Fundamental System of Invariants — Another Example
e G =ST(n) x ST(n), V = Mat(n) row/column scaling

Matching/Permutation monomials.
@ Actionis: Aj = Ajj- X -y
invariants are generated by monomials

@ Equations that exponents must satisfy: monomial Hi,j A,e’/ is
invariant iff:
e Permutation/matching monomials are definitely invariant
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Fundamental System of Invariants — Another Example
e G =ST(n) x ST(n), V = Mat(n) row/column scaling

Matching/Permutation monomials.
@ Actionis: Aj = Ajj- X -y
invariants are generated by monomials

o Equations that exponents must satisfy: monomial [T, ; Af’/ is
invariant iff:

Permutation/matching monomials are definitely invariant

Any invariant monomial must have degree kn for some k € Z
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Fundamental System of Invariants — Another Example
e G =ST(n) x ST(n), V = Mat(n) row/column scaling

Matching/Permutation monomials.
@ Actionis: Aj = Ajj- X -y
invariants are generated by monomials
o Equations that exponents must satisfy: monomial [T, ; Af’/ is
invariant iff:
e Permutation/matching monomials are definitely invariant
@ Any invariant monomial must have degree kn for some k € Z

@ Birkhoff-von Neumann theorem, must be in convex hull of
permutations
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Fundamental System of Invariants — Another Example

e G =ST(n) x ST(n), V = Mat(n) row/column scaling
Matching/Permutation monomials.

—_—

@ Action is: A = Aj; x,‘yj
invariants are generated by monomials
@ Equations that exponents must satisfy: monomial Hi,j A,e’/ is
invariant iff:
e Permutation/matching monomials are definitely invariant
@ Any invariant monomial must have degree kn for some k € Z
@ Birkhoff-von Neumann theorem, must be in convex hull of

permutations
@ Relation to combinatorics: if matrix A is adjacency matrix of a

bipartite graph H, then A has no perfect matching iff A vanishes on

all invariants! (/_,pm(vc* me bk

_H_AiULD < e mwt kwe = =0



Fundamental System of Invariants — Another Example
e G =ST(n) x ST(n), V = Mat(n) row/column scaling

Matching/Permutation monomials.
@ Actionis: Aj = Ajj- X -y
invariants are generated by monomials

@ Equations that exponents must satisfy: monomial HiJ A,e’/ is
invariant iff:

e Permutation/matching monomials are definitely invariant

@ Any invariant monomial must have degree kn for some k € Z

@ Birkhoff-von Neumann theorem, must be in convex hull of
permutations

@ Relation to combinatorics: if matrix A is adjacency matrix of a
bipartite graph H, then A has no perfect matching iff A vanishes on
all invariants!

@ It is no coincidence that polytopes appear naturally with torus
actions. For the interested folks, see moment polytopes.
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Discriminant & Invariant Theory
o Let SIL(2) act on the space of quadratic polynomials C3

p(x) = ax® + bxy + cy® < p = (a, b, c)
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o Let SIL(2) act on the space of quadratic polynomials C3
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o p, we have
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Discriminant & Invariant Theory
o Let SIL(2) act on the space of quadratic polynomials C3
p(x) = ax® + bxy + cy® < p = (a, b, c)
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ero(e()

o If (', b, ) is the image g !

o p, we have
a = aa’® 4 bay + cv?
b'=2-(aaB + cyd) + b(ad + B7)
¢’ = aB? + bBo + 6>
@ The discriminant is an invariant!
b? — 4ac = (b')? — 4d'c

@ It captures exactly the quadratic polynomials which have a double

root! We may see why this is the case in the end of the course.
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Fundamental Problems in Invariant Theory

@ Is the invariant ring finitely generated as a C-algebra?
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Fundamental Problems in Invariant Theory

@ Is the invariant ring finitely generated as a C-algebra?

@ Can we describe the algebraic relations among the fundamental
invariants from the previous question? These algebraic relations are

called syzygies.
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Fundamental Problems in Invariant Theory

@ Is the invariant ring finitely generated as a C-algebra?

@ Can we describe the algebraic relations among the fundamental
invariants from the previous question? These algebraic relations are
called syzygies.

e Give an algorithm which writes an invariant p(x) as a polynomial in
the fundamental invariants.
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Fundamental Problems in Invariant Theory

@ Is the invariant ring finitely generated as a C-algebra?

@ Can we describe the algebraic relations among the fundamental
invariants from the previous question? These algebraic relations are
called syzygies.

e Give an algorithm which writes an invariant p(x) as a polynomial in
the fundamental invariants.

These were the problems Hilbert was trying to solve when he
developed the Hilbert Basis Theorem, Nulistellensatz and Syzygy
theorem - cornerstones of modern commutative algebra and algebraic

geometry.



Fundamental Problems in Invariant Theory

@ Is the invariant ring finitely generated as a C-algebra?

@ Can we describe the algebraic relations among the fundamental
invariants from the previous question? These algebraic relations are
called syzygies.

e Give an algorithm which writes an invariant p(x) as a polynomial in
the fundamental invariants.

These were the problems Hilbert was trying to solve when he
developed the Hilbert Basis Theorem, Nulistellensatz and Syzygy
theorem - cornerstones of modern commutative algebra and algebraic

geometry.

@ Answer to third problem can be done via Grobner basis methods



Examples of Invariants with Syzygies
@ Cyclic group of order 4:
c_l(1 0 -1 0 0 1 0 -1
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Examples of Invariants with Syzygies
@ Cyclic group of order 4:
c_J(1 0 ~1 0 0 1 0 -1
a 0 1/7\0 —-1)7\-1 0/ \1 O
@ Invariant ring equals set of polynomials p(x, y) such that

P(X7}/) = p(_Y7X)



Examples of Invariants with Syzygies

@ Cyclic group of order 4:

c_J(1 0 ~1 0 0 1 0 -1
a 0 1/7\0 -1/7\-1 0/ \1 O
@ Invariant ring equals set of polynomials p(x, y) such that
p(x,y) = p(=y, x)

@ Three fundamental invariants:

fi=x*+y? h=xy? f5=x7y —x/°



Examples of Invariants with Syzygies

@ Cyclic group of order 4:

o) (5 (G (o))
0 1)’7\0 -1)7\-10)7\1 O
@ Invariant ring equals set of polynomials p(x, y) such that
p(x,y) = p(=y,x)
@ Three fundamental invariants:
fi=x*+y? h=xy? f5=x7y —x/°

o Syzygy:
f32 _ f2f12 + 4)4:22



@ Conclusion



Conclusion

Today we learned the basics about the algebraic side of invariant
theory

Some history
Many examples of important rings of invariants

Connections to other areas of mathematics

Fundamental problems in invariant theory
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