Lecture 14: Gröbner Bases and Buchberger's Algorithm

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com
March 1, 2021

Overview

- Problems with Division Algorithm \& Hilbert Basis Theorem
- Gröbner Basis
- Buchberger's Algorithm
- Conclusion
- Acknowledgements

Issues with Division Algorithm

- What properties would we want from a division algorithm?
(1) remainder should be uniquely determined
(2) ordering shouldn't really matter (especially since we are trying to use it to solve ideal membership problem)
(3) univariate division algorithm solves ideal membership problem - so our division algorithm should also solve it

Issues with Division Algorithm

- What properties would we want from a division algorithm?
(1) remainder should be uniquely determined
(2) ordering shouldn't really matter (especially since we are trying to use it to solve ideal membership problem)
(3) univariate division algorithm solves ideal membership problem - so our division algorithm should also solve it
- Our division algorithm only gives sufficient condition for ideal membership problem: if G has zero remainder when divided by $\left(F_{1}, \ldots, F_{s}\right)$ then we know $G \in\left(F_{1}, \ldots, F_{s}\right)$

Issues with Division Algorithm

- What properties would we want from a division algorithm?
(1) remainder should be uniquely determined
(2) ordering shouldn't really matter (especially since we are trying to use it to solve ideal membership problem)
(3) univariate division algorithm solves ideal membership problem - so our division algorithm should also solve it
- Our division algorithm only gives sufficient condition for ideal membership problem: if G has zero remainder when divided by $\left(F_{1}, \ldots, F_{s}\right)$ then we know $G \in\left(F_{1}, \ldots, F_{s}\right)$
- The main problem is due to the fact that for some generators of an ideal, we are missing important leading monomials

Issues with Division Algorithm

- What properties would we want from a division algorithm?
(1) remainder should be uniquely determined
(2) ordering shouldn't really matter (especially since we are trying to use it to solve ideal membership problem)
(3) univariate division algorithm solves ideal membership problem - so our division algorithm should also solve it
- Our division algorithm only gives sufficient condition for ideal membership problem: if G has zero remainder when divided by $\left(F_{1}, \ldots, F_{s}\right)$ then we know $G \in\left(F_{1}, \ldots, F_{s}\right)$
- The main problem is due to the fact that for some generators of an ideal, we are missing important leading monomials
- Example: $f_{1}=x^{3}-2 x y$ and $f_{2}=x^{2} y-2 y^{2}+x$ and $x^{2} \in\left(f_{1}, f_{2}\right)$

$$
\begin{aligned}
-f_{1} y+f_{2} \cdot x & =x^{3} / y-2 x y^{2}+x^{2}-x^{3} y+2 / y^{2} \\
& =x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& C_{1} f_{1}=x^{3}-2 x y \\
& f_{2}=x^{2} y-2 y^{2}+x \\
& g=x^{2} \\
& \text { lex } \\
& \begin{array}{ll}
q_{1} & 0 \\
q_{2} & 0
\end{array} \\
& x^{3}-2 x y \\
& g=p_{1} \cdot 0+p_{2} \cdot 0+x^{2} \\
& =f_{2} \cdot 0+f_{1} \cdot 0+x^{2}
\end{aligned}
$$

Issues with Division Algorithm

- What properties would we want from a division algorithm?
(1) remainder should be uniquely determined
(2) ordering shouldn't really matter (especially since we are trying to use it to solve ideal membership problem)
(3) univariate division algorithm solves ideal membership problem - so our division algorithm should also solve it
- Our division algorithm only gives sufficient condition for ideal membership problem: if G has zero remainder when divided by $\left(F_{1}, \ldots, F_{s}\right)$ then we know $G \in\left(F_{1}, \ldots, F_{s}\right)$
- The main problem is due to the fact that for some generators of an ideal, we are missing important leading monomials
- Example: $f_{1}=x^{3}-2 x y$ and $f_{2}=x^{2} y-2 y^{2}+x$ and $x^{2} \in\left(f_{1}, f_{2}\right)$
- The "fix" for this division algorithm is to find a good basis for the ideal generated by F_{1}, \ldots, F_{s} - the so-called Gröbner basis

Issues with Division Algorithm

- What properties would we want from a division algorithm?
(1) remainder should be uniquely determined
(2) ordering shouldn't really matter (especially since we are trying to use it to solve ideal membership problem)
(3) univariate division algorithm solves ideal membership problem - so our division algorithm should also solve it
- Our division algorithm only gives sufficient condition for ideal membership problem: if G has zero remainder when divided by $\left(F_{1}, \ldots, F_{s}\right)$ then we know $G \in\left(F_{1}, \ldots, F_{s}\right)$
- The main problem is due to the fact that for some generators of an ideal, we are missing important leading monomials
- Example: $f_{1}=x^{3}-2 x y$ and $f_{2}=x^{2} y-2 y^{2}+x$ and $x^{2} \in\left(f_{1}, f_{2}\right)$
- The "fix" for this division algorithm is to find a good basis for the ideal generated by F_{1}, \ldots, F_{s} - the so-called Gröbner basis
- Property: a Gröbner basis is one which contains all the important leading monomials

Ideal of Leading Terms \& Hilbert Basis Theorem

- Given ideal $I \subseteq \mathbb{F}[x]$ and a monomial ordering $>$, let: $\bar{x}=\left(x_{12, \ldots} x_{n}\right)$
- $L T(I)$ be the set of all leading terms of nonzero elements of I $L M(I)$ be the monomial ideal generated by $\operatorname{LT}(I)$
Mote: no leading moumial left behind

$$
\begin{aligned}
& \operatorname{LT}(I):=\{\operatorname{LT}(f) \mid f \in I\} \\
& \operatorname{LM}(I):=(\operatorname{LT}(I))
\end{aligned}
$$

Ideal of Leading Terms \& Hilbert Basis Theorem

- Given ideal $I \subseteq \mathbb{F}[\mathbf{x}]$ and a monomial ordering $>$, let:
(1) $L T(I)$ be the set of all leading terms of nonzero elements of I
(2) $L M(I)$ be the monomial ideal generated by $L T(I)$
- By Dickson's lemma, we know that $L M(I)$ is finitely generated

Ideal of Leading Terms \& Hilbert Basis Theorem

- Given ideal $I \subseteq \mathbb{F}[\mathbf{x}]$ and a monomial ordering $>$, let:
(1) $L T(I)$ be the set of all leading terms of nonzero elements of I (2) $L M(I)$ be the monomial ideal generated by $L T(I)$
- By Dickson's lemma, we know that $L M(I)$ is finitely generated
- By previous slide, we also know that given a generating set for I, it could be the case that the leading terms of the generators are strictly contained in $L T(I)$

$$
\begin{gathered}
f_{1}=x^{3}-2 x y \quad f_{2}=x^{2} y-2 y^{2}+x \\
\frac{L M\left(\left(f_{1}, f_{2}\right)\right)}{x^{2}}
\end{gathered}>\frac{\left(L T\left(f_{1}\right), L T\left(f_{2}\right)\right)}{\left(x^{3}, x^{2} y\right)} \quad x^{2} \in\left(f_{1}, f_{2}\right)
$$

Ideal of Leading Terms \& Hilbert Basis Theorem

- Given ideal $I \subseteq \mathbb{F}[\mathbf{x}]$ and a monomial ordering $>$, let:
(1) $L T(I)$ be the set of all leading terms of nonzero elements of I
(2) $L M(I)$ be the monomial ideal generated by $L T(I)$
- By Dickson's lemma, we know that $L M(I)$ is finitely generated
- By previous slide, we also know that given a generating set for I, it could be the case that the leading terms of the generators are strictly contained in LT (I)
- Now we are ready to prove Hilbert's basis theorem:
- Let $I \subseteq \mathbb{F}[\mathbf{x}]$ be an ideal

Hilbert Basis theorem: if $\left[x_{1}, \ldots, x_{n}\right]$ all ideals are finitely generated!

Ideal of Leading Terms \& Hilbert Basis Theorem

- Given ideal $I \subseteq \mathbb{F}[\mathbf{x}]$ and a monomial ordering $>$, let:
(1) $L T(I)$ be the set of all leading terms of nonzero elements of I
(2) $L M(I)$ be the monomial ideal generated by $L T(I)$
- By Dickson's lemma, we know that $L M(I)$ is finitely generated
- By previous slide, we also know that given a generating set for I, it could be the case that the leading terms of the generators are strictly contained in $L T(I)$
- Now we are ready to prove Hilbert's basis theorem:
- Let $I \subseteq \mathbb{F}[\mathbf{x}]$ be an ideal
- By Dickson's lemma, $L M(I)$ is finitely generated

Ideal of Leading Terms \& Hilbert Basis Theorem

- Given ideal $I \subseteq \mathbb{F}[\mathbf{x}]$ and a monomial ordering $>$, let:
(1) $L T(I)$ be the set of all leading terms of nonzero elements of I
(2) $L M(I)$ be the monomial ideal generated by $L T(I)$
- By Dickson's lemma, we know that $L M(I)$ is finitely generated
- By previous slide, we also know that given a generating set for I, it could be the case that the leading terms of the generators are strictly contained in $L T(I)$
- Now we are ready to prove Hilbert's basis theorem:
- Let $I \subseteq \mathbb{F}[\mathbf{x}]$ be an ideal
- By Dickson's lemma, $L M(I)$ is finitely generated
- Let $g_{1}, \ldots, g_{s} \in \underline{I}$ such that $L M(I)=\left(\underline{L M\left(g_{1}\right)}, \ldots, \underline{L M\left(g_{s}\right)}\right)$
$\left(g_{1}, \ldots, g s\right) \subset I$

Ideal of Leading Terms \& Hilbert Basis Theorem

- Given ideal $I \subseteq \mathbb{F}[\mathbf{x}]$ and a monomial ordering $>$, let:
(1) $L T(I)$ be the set of all leading terms of nonzero elements of I
(2) $L M(I)$ be the monomial ideal generated by $L T(I)$
- By Dickson's lemma, we know that $L M(I)$ is finitely generated
- By previous slide, we also know that given a generating set for I, it could be the case that the leading terms of the generators are strictly contained in $L T(I)$
- Now we are ready to prove Hilbert's basis theorem:
- Let $I \subseteq \mathbb{F}[\mathbf{x}]$ be an ideal
- By Dickson's lemma, $L M(I)$ is finitely generated
- Let $g_{1}, \ldots, g_{s} \in I$ such that $L M(I)=\left(L M\left(g_{1}\right), \ldots, L M\left(g_{s}\right)\right)$
- The division algorithm from last lecture shows that $I \subseteq\left(g_{1}, \ldots, g_{s}\right)$

Note that for any $f \in I$ we have that

$$
L M(f) \in L M(I)=\left(L M\left(g_{1}\right), \ldots, L M\left(g_{s}\right)\right)
$$

- So long as f is nonzero and in I we will be able to divide, and remainder will be zero. Since the division algorithm always terminates, we will end up with remainder zero!

$$
\begin{aligned}
& f \in I \quad\left(g_{1}, \ldots, g_{s}\right) \\
& \Rightarrow L T(f) \in(\underline{L M(g r)}, \ldots, L n(g s))(*) \\
& \Longrightarrow \exists h_{1}, \ldots, h_{s} \text { set. } \\
& \text { algorithm } \\
& \rightarrow f-h_{1} g_{1}-h_{2} g_{2}-\cdots-h_{0} g_{0} \in I \\
& \text { and } L T\left(f-h_{1} g_{1}-h_{2} g_{2}-\cdots-h_{\Delta} g_{0}\right) \\
& \ll L(\rho)
\end{aligned}
$$

$\Rightarrow($ by $(x))$ we will never ald to remainder \Rightarrow when division algorithm terminates must have O remainder.

- Problems with Division Algorithm \& Hilbert Basis Theorem
- Gröbner Basis
- Buchberger's Algorithm
- Conclusion
- Acknowledgements

Gröbner Basis

- From the proof of Hilbert Basis Theorem, we saw the existence of a very special generating set of our ideal.
- The main property of the special generating set was that the leading monomials of generating set generate the ideal LM (I)
n leading monomial left behind
${ }^{1}$ This was also independently discovered by Hironaka, who termed these bases "standard bases" and used them for ideals in power series rings a .a. . . .

Gröbner Basis

- From the proof of Hilbert Basis Theorem, we saw the existence of a very special generating set of our ideal.
- The main property of the special generating set was that the leading monomials of generating set generate the ideal LM(I)
- Definition: A Gröbner basis of an ideal is a generating set which has the property above. ${ }^{1}$
${ }^{1}$ This was also independently discovered by Hironaka, who termed these bases "standard bases" and used them for ideals in power series rings

Gröbner Basis

- From the proof of Hilbert Basis Theorem, we saw the existence of a very special generating set of our ideal.
- The main property of the special generating set was that the leading monomials of generating set generate the ideal LM(I)
- Definition: A Gröbner basis of an ideal is a generating set which has the property above. ${ }^{1}$
- A first property of Groebner Bases is uniqueness of remainder in the division algorithm. More precisely: if $G=\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gorebner basis for I, then given $f \in \mathbb{F}[\mathbf{x}]$ there is a unique $r \in \mathbb{F}[\mathbf{x}]$ with the following properties:
(1) no term of r is divisible by any $L M\left(g_{i}\right)$
(2) there is $g \in I$ such that $f=g+r$

[^0]
Gröbner Basis

- From the proof of Hilbert Basis Theorem, we saw the existence of a very special generating set of our ideal.
- The main property of the special generating set was that the leading monomials of generating set generate the ideal LM(I)
- Definition: A Gröbner basis of an ideal is a generating set which has the property above. ${ }^{1}$
- A first property of Groebner Bases is uniqueness of remainder in the division algorithm. More precisely: if $G=\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gorebner basis for I, then given $f \in \mathbb{F}[\mathbf{x}]$ there is a unique $r \in \mathbb{F}[\mathbf{x}]$ with the following properties:
(1) no term of r is divisible by any $L M\left(g_{i}\right)$
(2) there is $g \in I$ such that $f=g+r$
- Division algorithm gives existence of r

[^1]
Gröbner Basis

- From the proof of Hilbert Basis Theorem, we saw the existence of a very special generating set of our ideal.
- The main property of the special generating set was that the leading monomials of generating set generate the ideal LM(I)
- Definition: A Gröbner basis of an ideal is a generating set which has the property above. ${ }^{1}$
- A first property of Groebner Bases is uniqueness of remainder in the division algorithm. More precisely: if $G=\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gorebner basis for I, then given $f \in \mathbb{F}[\mathbf{x}]$ there is a unique $r \in \mathbb{F}[\mathbf{x}]$ with the following properties:
(1) no term of r is divisible by any $L M\left(g_{i}\right)$
(2) there is $g \in I$ such that $f=g+r$

$$
\begin{aligned}
f & =g+r \\
& =g^{\prime}+r^{\prime}
\end{aligned}
$$

- Division algorithm gives existence of r
- Uniqueness comes from fact that if r, r^{\prime} are remainders, then \Rightarrow. $r-r^{\prime} \in I \Rightarrow r=r^{\prime}$ by division algorithm

$$
\frac{r-r^{\prime}=g^{\prime}-g}{\text { are remainders, then }}
$$

${ }^{1}$ This was also independently discovered by Hironaka, who termed these bases "standard bases" and used them for ideals in power series rings

Algorithmic Questions Around Groebner Bases

- Now that we know how important Groebner bases are, two questions come to mind:
(1) When do we know that a basis is a Groebner Basis?
(2) Given an ideal, how can we construct a Groebner basis of this ideal?
(1) recognize when basis is Grö beer basis?
(2) Can we construct one?
${ }^{2}$ This name is a shortening for "syzygy polynomials" since they are syzygies over the monomial ideal.

Algorithmic Questions Around Groebner Bases

- Now that we know how important Groebner bases are, two questions come to mind:
(1) When do we know that a basis is a Groebner Basis?

Given an ideal, how can we construct a Groebner basis of this ideal?

- To deal with the first question, we have the following definition:

S-polynomial: ${ }^{2}$ given two polynomials $f, g \in \mathbb{F}[\mathbf{x}]$, let

$$
S(f, g):=\frac{\mathbf{x}^{\gamma}}{L T(f)} \cdot f-\frac{\mathbf{x}^{\gamma}}{L T(g)} \cdot g
$$

S-polynomials they "cancel" the leading terms of $f_{1} \& \quad f_{1}=x^{3}-2 x y \quad f_{2}=x^{2} y-2 y^{2}+x$

$$
\begin{aligned}
& \operatorname{LCM}\left(x^{3}, x^{2} y\right)=x^{3} y \\
& \frac{x^{3} y}{\int^{2} y f^{3}} f_{1}-\frac{x^{3} y}{x^{2} y}-f_{2}=y f_{1}-x f_{2}=x^{2} \\
& { }^{2} \text { This name is a shortening for "syzygy polynomials" since they are syzygies over }
\end{aligned}
$$

${ }^{2}$ This name is a shortening for "syzygy polynomials" since they are syzygies over the monomial ideal.

Algorithmic Questions Around Groebner Bases

- Now that we know how important Groebner bases are, two questions come to mind:
(1) When do we know that a basis is a Groebner Basis?
(2) Given an ideal, how can we construct a Groebner basis of this ideal?
- To deal with the first question, we have the following definition:

S-polynomial: ${ }^{2}$ given two polynomials $f, g \in \mathbb{F}[\mathbf{x}]$, let $\mathbf{x}^{\gamma}=\operatorname{LCM}(\operatorname{LM}(f), \operatorname{LM}(g))$. Then, the S-polynomial of f, g is

$$
S(f, g):=\frac{\mathbf{x}^{\gamma}}{L T(f)} \cdot f-\frac{\mathbf{x}^{\gamma}}{L T(g)} \cdot g
$$

- Example: $f=x^{3} y^{2}-x^{2} y^{3}$ and $g=3 x^{4} y+y^{2}$ in $\mathbb{Q}[\mathbf{x}]$ with the graded lexicographic order.

$$
\begin{aligned}
& \quad \text { graded lexicographic order. } \\
& \operatorname{LCM}\left(x^{3} y^{2}, x^{4} y\right)=x^{4} y^{2} \frac{x^{4} y^{2}}{1 \cdot x^{3} y^{2}} f-\frac{x^{4} y^{2}}{3 \cdot x^{4} y} y= \\
& =x\left(x^{2} y^{2}-x^{2} y^{3}\right)-\frac{y}{3}\left(3 x^{4} y^{0}+y^{2}\right)=-x^{3} y^{3}-\frac{y^{3}}{3}
\end{aligned}
$$

${ }^{2}$ This name is a shortening for "syzygy polynomials" since they are syzygies over the monomial ideal.

Algorithmic Questions Around Groebner Bases

- Now that we know how important Groebner bases are, two questions come to mind:
(1) When do we know that a basis is a Groebner Basis?
(2) Given an ideal, how can we construct a Groebner basis of this ideal?
- To deal with the first question, we have the following definition:

S-polynomial: ${ }^{2}$ given two polynomials $f, g \in \mathbb{F}[\mathbf{x}]$, let $\mathbf{x}^{\gamma}=\operatorname{LCM}(L M(f), L M(g))$. Then, the S-polynomial of f, g is

$$
S(f, g):=\frac{\mathbf{x}^{\gamma}}{L T(f)} \cdot f-\frac{\mathbf{x}^{\gamma}}{L T(g)} \cdot g
$$

- Example: $f=x^{3} y^{2}-x^{2} y^{3}$ and $g=3 x^{4} y+y^{2}$ in $\mathbb{Q}[\mathbf{x}]$ with the graded lexicographic order.
- S-polynomials are designed to produce cancellations of leading terms.
${ }^{2}$ This name is a shortening for "syzygy polynomials" since they are syzygies over the monomial ideal.

How Cancellation Happens: S-polynomial lemma

- Next lemma shows that every cancellation of leading terms amongst polynomials of same degree happen because of S-polynomial
- Lemma: If we have a sum $p_{1}+\cdots+p_{s}$ where $\operatorname{mdeg}\left(p_{i}\right)=\delta \in \mathbb{N}^{n}$ for all $i \in[s]$ such that $\operatorname{mdeg}\left(p_{1}+\cdots+p_{s}\right)<\delta$, then $p_{1}+\cdots+p_{s}$ is a linear combination, with coefficients in \mathbb{F}, of the S-polynomials $S\left(p_{i}, p_{j}\right)$, where $i, j \in[s]$

How Cancellation Happens: S-polynomial lemma

- Next lemma shows that every cancellation of leading terms amongst polynomials of same degree happen because of S-polynomial
- Lemma: If we have a sum $p_{1}+\cdots+p_{s}$ where $\operatorname{mdeg}\left(p_{i}\right)=\delta \in \mathbb{N}^{n}$ for all $i \in[s]$ such that $\operatorname{mdeg}\left(p_{1}+\cdots+p_{s}\right)<\delta$, then $p_{1}+\cdots+p_{s}$ is a linear combination, with coefficients in \mathbb{F}, of the S-polynomials $S\left(p_{i}, p_{j}\right)$, where $i, j \in[s]$
(1) Let $c_{i}=L C\left(p_{i}\right)$, so $c_{i} \cdot \mathbf{x}^{\delta}=L T\left(p_{i}\right)$

How Cancellation Happens: S-polynomial lemma

- Next lemma shows that every cancellation of leading terms amongst polynomials of same degree happen because of S-polynomial
- Lemma: If we have a sum $p_{1}+\cdots+p_{s}$ where $\operatorname{mdeg}\left(p_{i}\right)=\delta \in \mathbb{N}^{n}$ for all $i \in[s]$ such that $\operatorname{mdeg}\left(p_{1}+\cdots+p_{s}\right)<\delta$, then $p_{1}+\cdots+p_{s}$ is a linear combination, with coefficients in \mathbb{F}, of the S-polynomials $S\left(p_{i}, p_{j}\right)$, where $i, j \in[s]$
(1) Let $c_{i}=L C\left(p_{i}\right)$, so $c_{i} \cdot \mathbf{x}^{\delta}=L T\left(p_{i}\right)$
(2) $\operatorname{mdeg}\left(p_{1}+\cdots+p_{s}\right)<\delta \Rightarrow c_{1}+\cdots+c_{s}=0$

$$
\left(p_{1}+\cdots+p_{s}\right)_{\delta}=c_{1} x^{\delta}+c_{2} x^{\delta}+\cdots+c_{s} x^{\delta}=0
$$

$$
\Rightarrow\left(c_{1}+c_{2}+\cdots+c_{s}=0\right)
$$

How Cancellation Happens: S-polynomial lemma

- Next lemma shows that every cancellation of leading terms amongst polynomials of same degree happen because of S-polynomial
- Lemma: If we have a sum $p_{1}+\cdots+p_{s}$ where $\operatorname{mdeg}\left(p_{i}\right)=\delta \in \mathbb{N}^{n}$ for all $i \in[s]$ such that $\operatorname{mdeg}\left(p_{1}+\cdots+p_{s}\right)<\delta$, then $p_{1}+\cdots+p_{s}$ is a linear combination, with coefficients in \mathbb{F}, of the S-polynomials $S\left(p_{i}, p_{j}\right)$, where $i, j \in[s]$
(1) Let $c_{i}=L C\left(p_{i}\right)$, so $c_{i} \cdot \mathbf{x}^{\delta}=L T\left(p_{i}\right)$
(2) $\operatorname{mdeg}\left(p_{1}+\cdots+p_{s}\right)<\delta \Rightarrow c_{1}+\cdots+c_{s}=0$
(3) Since p_{i}, p_{j} have same leading monomial $\operatorname{LCM}\left(x^{\delta}, x^{\delta}\right)=x^{\delta}$

$$
S\left(p_{i}, p_{j}\right)=\frac{x^{\delta}}{\frac{L T\left(p_{i}\right)}{c_{i} x^{\delta}}} p_{i}-\frac{x^{\delta}}{\frac{C T\left(p_{j}\right)}{C_{s} x^{\delta}}} \cdot p_{j}
$$

How Cancellation Happens: S-polynomial lemma

- Next lemma shows that every cancellation of leading terms amongst polynomials of same degree happen because of S-polynomial
- Lemma: If we have a sum $p_{1}+\cdots+p_{s}$ where $\operatorname{mdeg}\left(p_{i}\right)=\delta \in \mathbb{N}^{n}$ for all $i \in[s]$ such that $\operatorname{mdeg}\left(p_{1}+\cdots+p_{s}\right)<\delta$, then $p_{1}+\cdots+p_{s}$ is a linear combination, with coefficients in \mathbb{F}, of the S-polynomials $S\left(p_{i}, p_{j}\right)$, where $i, j \in[s]$
(1) Let $c_{i}=L C\left(p_{i}\right)$, so $c_{i} \cdot \mathbf{x}^{\delta}=L T\left(p_{i}\right)$
(2) $\operatorname{mdeg}\left(p_{1}+\cdots+p_{s}\right)<\delta \Rightarrow c_{1}+\cdots+c_{s}=0 \leftarrow$
(3) Since p_{i}, p_{j} have same leading monomial

$$
S\left(p_{i}, p_{j}\right)=\frac{1}{c_{i}} p_{i}-\frac{1}{c_{j}} p_{j}
$$

(c) Thus, by using (2)

$$
-\frac{C_{\Delta}}{C_{\Delta}}
$$

$$
\frac{\overbrace{1}+\cdots+c_{n-1}}{c_{1}}
$$

How Cancellation Happens: S-polynomial lemma

- Next lemma shows that every cancellation of leading terms amongst polynomials of same degree happen because of S-polynomial
- Lemma: If we have a sum $p_{1}+\cdots+p_{s}$ where $\operatorname{mdeg}\left(p_{i}\right)=\delta \in \mathbb{N}^{n}$ for all $i \in[s]$ such that $\operatorname{mdeg}\left(p_{1}+\cdots+p_{s}\right)<\delta$, then $p_{1}+\cdots+p_{s}$ is a linear combination, with coefficients in \mathbb{F}, of the S-polynomials $S\left(p_{i}, p_{j}\right)$, where $i, j \in[s]$
(1) Let $c_{i}=L C\left(p_{i}\right)$, so $c_{i} \cdot \mathbf{x}^{\delta}=L T\left(p_{i}\right)$
(2) $\operatorname{mdeg}\left(p_{1}+\cdots+p_{s}\right)<\delta \Rightarrow c_{1}+\cdots+c_{s}=0$
(3) Since p_{i}, p_{j} have same leading monomial

$$
S\left(p_{i}, p_{j}\right)=\frac{1}{c_{i}} p_{i}-\frac{1}{c_{j}} p_{j}
$$

(9) Thus, by using (2)

$$
\sum_{i=1}^{s-1} c_{i} \cdot \underline{S\left(p_{i}, p_{s}\right)}=p_{1}+\cdots+p_{s}
$$

(5) note that $\operatorname{mdeg}\left(S\left(p_{i}, p_{j}\right)\right)<\delta \quad m d e g r e e$

Buchberger's Criterion

- Now that we are acquainted with S-polynomials and how cancellations happen, we can state Buchberger's criterion:

Let $I \subseteq \mathbb{F}[\mathbf{x}]$ be an ideal. Then a basis $G=\left\{g_{1}, \ldots, g_{s}\right\}$ of I is a Groebner basis of I if, and only if, for all pairs $i \neq j$, the remainder on division of $S\left(g_{i}, g_{j}\right)$ by G is zero.
I $\quad\left(f_{1}, \cdot, f_{n}\right)$
$S\left(f_{i}, f_{j}\right)$ divide by $\left\langle f_{1}, \ldots, f_{0}\right\rangle$
using division algorithm
if all remainalus are zero then $\left\{\ell_{1, \ldots} f_{s}\right\}$ is Grigbther basis.

Buchberger's Criterion

- Now that we are acquainted with S-polynomials and how cancellations happen, we can state Buchberger's criterion:

Let $I \subseteq \mathbb{F}[\mathbf{x}]$ be an ideal. Then a basis $G=\left\{g_{1}, \ldots, g_{s}\right\}$ of I is a Groebner basis of I if, and only if, for all pairs $i \neq j$, the remainder on division of $S\left(g_{i}, g_{j}\right)$ by G is zero.

- (\Rightarrow) if G is a Groebner basis, then $S\left(g_{i}, g_{j}\right) \in I \Rightarrow$ remainder of division by G is zero by previous slides.

Buchberger's Criterion

- Now that we are acquainted with S-polynomials and how cancellations happen, we can state Buchberger's criterion:

Let $I \subseteq \mathbb{F}[\mathbf{x}]$ be an ideal. Then a basis $G=\left\{g_{1}, \ldots, g_{s}\right\}$ of I is a Groebner basis of I if, and only if, for all pairs $i \neq j$, the remainder on division of $S\left(g_{i}, g_{j}\right)$ by G is zero.

- (\Rightarrow) if G is a Groebner basis, then $S\left(g_{i}, g_{j}\right) \in I \Rightarrow$ remainder of division by G is zero by previous slides.
- (\Leftarrow) need to prove that for any $\underline{f \in I}$, we have that

$$
\underline{L T(f)} \in\left(\underline{L T}\left(g_{1}\right), \ldots, L T\left(g_{s}\right)\right)=L \mu(I)
$$

Buchberger's Criterion

- Now that we are acquainted with S-polynomials and how cancellations happen, we can state Buchberger's criterion:

Let $I \subseteq \mathbb{F}[\mathbf{x}]$ be an ideal. Then a basis $G=\left\{g_{1}, \ldots, g_{s}\right\}$ of I is a Groebner basis of I if, and only if, for all pairs $i \neq j$, the remainder on division of $S\left(g_{i}, g_{j}\right)$ by G is zero.

- (\Rightarrow) if G is a Groebner basis, then $S\left(g_{i}, g_{j}\right) \in I \Rightarrow$ remainder of division by G is zero by previous slides.
- (\Leftarrow) need to prove that for any $f \in I$, we have that

$$
L T(f) \in\left(L T\left(g_{1}\right), \ldots, L T\left(g_{s}\right)\right)
$$

- $f \in I=\left(g_{1}, \ldots, g_{s}\right)$ (as G is a generating set)

$$
f=\underline{g_{1} h_{1}}+\cdots+g_{s} h_{s}
$$

where $\operatorname{mdeg}(f) \leq \max _{i}\left(\operatorname{mdeg}\left(g_{i} h_{i}\right)\right)$
in the most efficient way

Buchberger's Criterion

- Now that we are acquainted with S-polynomials and how cancellations happen, we can state Buchberger's criterion:

Let $I \subseteq \mathbb{F}[\mathbf{x}]$ be an ideal. Then a basis $G=\left\{g_{1}, \ldots, g_{s}\right\}$ of I is a Groebner basis of I if, and only if, for all pairs $i \neq j$, the remainder on division of $S\left(g_{i}, g_{j}\right)$ by G is zero.

- (\Rightarrow) if G is a Groebner basis, then $S\left(g_{i}, g_{j}\right) \in I \Rightarrow$ remainder of division by G is zero by previous slides.
- (\Leftarrow) need to prove that for any $f \in I$, we have that

$$
L T(f) \in\left(L T\left(g_{1}\right), \ldots, L T\left(g_{s}\right)\right)
$$

- $f \in I=\left(g_{1}, \ldots, g_{s}\right)$ (as G is a generating set)

$$
f=g_{1} h_{1}+\cdots g_{s} h_{s}
$$

where $\operatorname{mdeg}(f) \leq \max _{i}\left(\operatorname{mdeg}\left(g_{i} h_{i}\right)\right)$

- Strategy: let's pick most efficient representation of f

Proof of Buchberger's Criterion

- $f \in I=\left(g_{1}, \ldots, g_{s}\right)$ (as G is a generating set)

$$
f=g_{1} h_{1}+\cdots+g_{s} h_{s}
$$

where $\operatorname{mdeg}(f) \leq \max _{i}\left(\operatorname{mdeg}\left(g_{i} h_{i}\right)\right)$

- Take representation of lowest multidegree, that is, one for which

$$
\delta:=\max _{i}\left(\operatorname{mdeg}\left(g_{i} h_{i}\right)\right) \quad \text { is minimum }
$$

Proof of Buchberger's Criterion

- $f \in I=\left(g_{1}, \ldots, g_{s}\right)$ (as G is a generating set)

$$
f=g_{1} h_{1}+\cdots g_{s} h_{s}
$$

where $\operatorname{mdeg}(f) \leq \max _{i}\left(\operatorname{mdeg}\left(g_{i} h_{i}\right)\right)$

- Take representation of lowest miltidegree, that is, one for which

$$
\delta:=\max _{i}\left(\operatorname{mdeg}\left(g_{i} h_{i}\right)\right) \quad \text { is minimum }
$$

- Such minimum δ exists by the well-ordering of monomial order

Proof of Buchberger's Criterion

- $f \in I=\left(g_{1}, \ldots, g_{s}\right)$ (as G is a generating set)
$\operatorname{mdeg}(f)=x^{\gamma}$

$$
f=g_{1} h_{1}+\cdots+g_{s} h_{s}
$$

where $\operatorname{mdeg}(f) \leq \max _{i}\left(\operatorname{mdeg}\left(g_{i} h_{i}\right)\right)$

- Take representation of lowest miltidegree, that is, one for which

$$
\delta:=\max _{i}\left(\operatorname{mdeg}\left(g_{i} h_{i}\right)\right) \quad \text { is minimum }
$$

- Such minimum δ exists by the well-ordering of monomial order
- In particular, $\operatorname{mdeg}(f) \leq \delta$

Proof of Buchberger's Criterion

- $f \in I=\left(g_{1}, \ldots, g_{s}\right)$ (as G is a generating set)

$$
f=g_{1} h_{1}+\cdots g_{s} h_{s}
$$

where $\operatorname{mdeg}(f) \leq \max _{i}\left(\operatorname{mdeg}\left(g_{i} h_{i}\right)\right)$

- Take representation of lowest miltidegree, that is, one for which

$$
\delta:=\max _{i}\left(\operatorname{mdeg}\left(g_{i} h_{i}\right)\right) \quad \text { is minimum }
$$

- Such minimum δ exists by the well-ordering of monomial order
- In particular, $\operatorname{mdeg}(f) \leq \delta$
- If $\operatorname{mdeg}(f)=\delta$, then there is some $i \in[s]$ such that

Proof of Buchberger's Criterion

- $f \in I=\left(g_{1}, \ldots, g_{s}\right)$ (as G is a generating set)

$$
f=g_{1} h_{1}+\cdots g_{s} h_{s}
$$

where $\operatorname{mdeg}(f) \leq \max _{i}\left(\operatorname{mdeg}\left(g_{i} h_{i}\right)\right)$

- Take representation of lowest miltidegree, that is, one for which

$$
\delta:=\max _{i}\left(\operatorname{mdeg}\left(g_{i} h_{i}\right)\right) \quad \text { is minimum }
$$

- Such minimum δ exists by the well-ordering of monomial order
- In particular, $\operatorname{mdeg}(f) \leq \delta$
- If $\operatorname{mdeg}(f)=\delta$, then there is some $i \in[s]$ such that

$$
\operatorname{mdeg}(f)=\operatorname{mdeg}\left(g_{i} h_{i}\right) \Rightarrow L M(f) \in\left(L M\left(g_{1}\right), \ldots, L M\left(g_{s}\right)\right)
$$

- So need to see what happens when $\delta>\operatorname{mdeg}(f)$

Proof of Buchberger's Criterion

- We are now in case: $\operatorname{mdeg}(f)<\delta$
- In this case we will use the fact that $S\left(g_{i}, g_{j}\right)^{G}=0^{3}$ to obtain another expression of $f \in I$ with smaller δ

$$
f^{G}=0 \quad f \text { divided by }\left\langle g_{1}, \cdots, g_{s}\right\rangle
$$

has zero remainder.
${ }^{3}$ This is a shorthand notation to say that the division by G is zero

Proof of Buchberger's Criterion

- We are now in case: $\operatorname{mdeg}(f)<\delta$
- In this case we will use the fact that $S\left(g_{i}, g_{j}\right)^{G}=0^{3}$ to obtain another expression of $f \in I$ with smaller δ
- Let's isolate part of highest multi-degree:

Proof of Buchberger's Criterion

- We are now in case: $\operatorname{mdeg}(f)<\delta$
- In this case we will use the fact that $S\left(g_{i}, g_{j}\right)^{G}=0^{3}$ to obtain another expression of $f \in I$ with smaller δ
- Let's isolate part of highest multi-degree:
- $\operatorname{mdeg}(f)<\delta \Rightarrow$ component of multi-degree δ must vanish

$$
\begin{aligned}
& f=g_{1} h_{1} t+g_{s} h_{s} \\
& m_{m \operatorname{deg}\left(g_{i} h_{i}\right)=\delta} \\
& f=\underbrace{\left[g_{1}\right)+\cdots+L \Gamma(g) L \delta\left(g_{1}\right)}_{L T\left(g_{1} h_{1}+\cdots+g_{s} h_{s}\right]_{\delta}}\left[g_{1} h_{1}+\cdots+g_{0} h_{1}\right]_{\gamma} \\
& \operatorname{LT}\left(h_{1}\right) \operatorname{LT}\left(g_{1}\right)+\cdots+\operatorname{Lr}\left(g_{1}\right) \operatorname{LT}\left(h_{s}\right) \quad<L T\left(h_{i}\right) \\
& =\frac{L T\left(h_{1}\right) g_{1}+\cdots+L T\left(h_{0}\right) \cdot g s}{\text { each polynomial has moly }=\delta}+\frac{\sum_{i=1}^{\Delta}\left(\widetilde{\left.n_{i}-L T\left(h_{i}\right)\right)} g_{i}\right.}{\text { model }<\delta}
\end{aligned}
$$

${ }^{3}$ This is a short-hand notation to say that the division by G is zero

Proof of Buchberger's Criterion

- We are now in case: $\operatorname{mdeg}(f)<\delta$
- In this case we will use the fact that $S\left(g_{i}, g_{j}\right)^{G}=0^{3}$ to obtain another expression of $f \in I$ with smaller δ
- Let's isolate part of highest multi-degree:
- $\operatorname{mdeg}(f)<\delta \Rightarrow$ component of multi-degree δ must vanish
- Now we use our lemma over $L T\left(h_{1}\right) \cdot g_{1}+\cdots+L T\left(h_{s}\right) \cdot g_{s}$ to decrease its multi-degree via S-polynomials

$$
L T\left(h_{i}\right) g_{i}=p_{i} \quad \operatorname{mdg}\left(p_{i}\right)=\delta
$$

Proof of Buchberger's Criterion

- We are now in case: $\operatorname{mdeg}(f)<\delta$
- In this case we will use the fact that $S\left(g_{i}, g_{j}\right)^{G}=0^{3}$ to obtain another expression of $f \in I$ with smaller δ
- Let's isolate part of highest multi-degree:
- $\operatorname{mdeg}(f)<\delta \Rightarrow$ component of multi-degree δ must vanish
- Now we use our lemma over $L T\left(h_{1}\right) \cdot g_{1}+\cdots+L T\left(h_{s}\right) \cdot g_{s}$ to decrease its multi-degree via S-polynomials
- Let $p_{i}=L T\left(h_{i}\right) \cdot g_{i}$. From your homework, we know

$$
S\left(p_{i}, p_{j}\right)=\mathbf{x}^{\delta-\gamma_{i j}} \cdot S\left(g_{i}, g_{j}\right)
$$

where $\gamma_{i j}=\operatorname{LCM}\left(L M\left(g_{i}\right), L M\left(g_{j}\right)\right)$

Proof of Buchberger's Criterion

- We are now in case: $\operatorname{mdeg}(f)<\delta$
- In this case we will use the fact that $S\left(g_{i}, g_{j}\right)^{G}=0^{3}$ to obtain another expression of $f \in I$ with smaller δ
- Let's isolate part of highest multi-degree:
- $\operatorname{mdeg}(f)<\delta \Rightarrow$ component of multi-degree δ must vanish
- Now we use our lemma over $L T\left(h_{1}\right) \cdot g_{1}+\cdots+L T\left(h_{s}\right) \cdot g_{s}$ to decrease its multi-degree via S-polynomials
- Let $p_{i}=L T\left(h_{i}\right) \cdot g_{i}$. From your homework, we know

$$
S\left(p_{i}, p_{j}\right)=\mathbf{x}^{\delta-\gamma_{i j}} \cdot S\left(g_{i}, g_{j}\right)
$$

where $\gamma_{i j}=\operatorname{LCM}\left(L M\left(g_{i}\right), L M\left(g_{j}\right)\right)$

- $S\left(g_{i}, g_{j}\right)^{G}=\underline{0} \Rightarrow \underline{S\left(g_{i}, g_{j}\right)}=\underline{A_{1} g_{1}}+\cdots+\underline{A_{s} g_{s}}$

$$
\operatorname{mdeg}\left(A_{i} g_{i}\right) \leq \operatorname{mdeg}\left(S\left(g_{i}, g_{j}\right)\right)
$$

${ }^{3}$ This is a short-hand notation to say that the division by G iszero

Proof of Buchberger's Criterion

- $S\left(g_{i}, g_{j}\right)^{G}=0 \Rightarrow S\left(g_{i}, g_{j}\right)=A_{1} g_{1}+\cdots+A_{s} g_{s}$

$$
\operatorname{mdeg}\left(A_{i} g_{i}\right) \leq \operatorname{mdeg}\left(S\left(g_{i}, g_{j}\right)\right)
$$

Proof of Buchberger's Criterion

- $S\left(g_{i}, g_{j}\right)^{G}=0 \Rightarrow S\left(g_{i}, g_{j}\right)=A_{1} g_{1}+\cdots+A_{s} g_{s}$

$$
\operatorname{mdeg}\left(A_{i} g_{i}\right) \leq \operatorname{mdeg}\left(S\left(g_{i}, g_{j}\right)\right)
$$

- Multiplying above by $\mathbf{x}^{\delta-\gamma_{i j}}$

$$
\begin{gathered}
S\left(p_{i}, p_{j}\right)=\mathbf{x}^{\delta-\gamma_{i j}} \cdot \underline{S\left(g_{i}, g_{j}\right)}=\underline{B_{1} g_{1}+\cdots+B_{s} g_{s}} \\
B_{k}=x^{\delta-\gamma i j} \cdot A_{n}
\end{gathered}
$$

Proof of Buchberger's Criterion

- $S\left(g_{i}, g_{j}\right)^{G}=0 \Rightarrow S\left(g_{i}, g_{j}\right)=A_{1} g_{1}+\cdots+A_{s} g_{s}$

$$
\operatorname{mdeg}\left(A_{i} g_{i}\right) \leq \operatorname{mdeg}\left(S\left(g_{i}, g_{j}\right)\right)
$$

- Multiplying above by $\mathbf{x}^{\delta-\gamma_{i j}}$

$$
S\left(p_{i}, p_{j}\right)=\mathbf{x}^{\delta-\gamma_{i j}} \cdot S\left(g_{i}, g_{j}\right)=B_{1} g_{1}+\cdots+B_{s} g_{s}
$$

- When $B_{i} g_{i} \neq 0$ by the first bullet

$$
\operatorname{mdeg}\left(B_{i} g_{i}\right) \leq \operatorname{mdeg}\left(\mathbf{x}^{\delta-\gamma_{i j}} \cdot S\left(g_{i}, g_{j}\right)\right)<\delta
$$

by property of S-polynomials
$\operatorname{mdeg}\left(A i g_{i}\right)$

Proof of Buchberger's Criterion

- $S\left(g_{i}, g_{j}\right)^{G}=0 \Rightarrow S\left(g_{i}, g_{j}\right)=A_{1} g_{1}+\cdots+A_{s} g_{s}$

$$
\operatorname{mdeg}\left(A_{i} g_{i}\right) \leq \operatorname{mdeg}\left(S\left(g_{i}, g_{j}\right)\right)
$$

- Multiplying above by $\mathbf{x}^{\delta-\gamma_{i j}}$

$$
S\left(p_{i}, p_{j}\right)=\mathbf{x}^{\delta-\gamma_{i j}} \cdot S\left(g_{i}, g_{j}\right)=B_{1} g_{1}+\cdots+B_{s} g_{s}
$$

- When $B_{i} g_{i} \neq 0$ by the first bullet

$$
\operatorname{mdeg}\left(B_{i} g_{i}\right) \leq \operatorname{mdeg}\left(\mathbf{x}^{\delta-\gamma_{i j}} \cdot S\left(g_{i}, g_{j}\right)\right)<\delta
$$

by property of S-polynomials

- By our S-polynomial lemma, we have

$$
\sum_{i=1}^{s} L T\left(h_{i}\right) \cdot g_{i}=\sum_{i \neq j} a_{i j} \cdot \frac{S\left(p_{i}, p_{j}\right)}{m d y<\delta}=C_{1} g_{1}+\cdots+C_{s} g_{s}
$$

where $\operatorname{mdeg}\left(C_{i} g_{i}\right)<\delta$

Proof of Buchberger's Criterion

$$
\begin{aligned}
f= & \sum_{\text {mdug } \delta} L T\left(h_{i}\right) g_{i}+\operatorname{sum}_{\text {staff }}^{\text {modg }<\delta} \\
f= & \sum_{\text {molis }<\delta} \sum_{i} C_{i} g_{i}+\frac{\text { sem- of staff }}{\text { mdug }<\delta} \\
\text { Controdicts } & \begin{array}{l}
\sum_{i} g_{i} \\
\text { minimality of } \delta
\end{array}
\end{aligned}
$$

Example: twisted cubic

- Let $G=\left\{y-x^{2}, z-x^{3}\right\}$ with monomial order $y>z>x$
- Problems with Division Algorithm \& Hilbert Basis Theorem
- Gröbner Basis
- Buchberger's Algorithm
- Conclusion
- Acknowledgements

Buchberger's Algorithm

- From Buchberger's criterion, we can devise a natural algorithm to compute Groebner bases:
- Input: $I=\left(f_{1}, \ldots, f_{s}\right)$
- Output: Groebner basis G for I
${ }^{4}$ Or the ascending chain condition on the monomial ideal $L T(I)$, for the fancy language ones

Buchberger's Algorithm

- From Buchberger's criterion, we can devise a natural algorithm to compute Groebner bases:
- Input: $I=\left(f_{1}, \ldots, f_{s}\right)$
- Output: Groebner basis G for I
(1) Set $G=\left\{f_{1}, \ldots, f_{s}\right\}$
${ }^{4}$ Or the ascending chain condition on the monomial ideal $L T(I)$, for the fancy language ones

Buchberger's Algorithm

- From Buchberger's criterion, we can devise a natural algorithm to compute Groebner bases:
- Input: $I=\left(f_{1}, \ldots, f_{s}\right)$
- Output: Groebner basis G for I
(1) Set $G=\left\{f_{1}, \ldots, f_{s}\right\}$
(2) While there is $S_{i j}:=S\left(f_{i}, f_{j}\right)$ such that
add $S_{i j}$ to G

(3) Once all $S_{i j}^{G}=0$ then return G

[^2] language ones

Buchberger's Algorithm

- From Buchberger's criterion, we can devise a natural algorithm to compute Groebner bases:
- Input: $I=\left(f_{1}, \ldots, f_{s}\right)$
- Output: Groebner basis G for I
(1) Set $G=\left\{f_{1}, \ldots, f_{s}\right\}$
(2) While there is $S_{i j}:=S\left(f_{i}, f_{j}\right)$ such that

$$
S_{i j}^{G} \neq 0
$$

add $S_{i j}$ to G
(3) Once all $S_{i j}^{G}=0$ then return G

- Buchberger's criterion shows that this algorithm always returns a Groebner basis!

[^3] language ones

Buchberger's Algorithm

- From Buchberger's criterion, we can devise a natural algorithm to compute Groebner bases:
- Input: $I=\left(f_{1}, \ldots, f_{s}\right)$
- Output: Groebner basis G for I
(1) Set $G=\left\{f_{1}, \ldots, f_{s}\right\}$
(2) While there is $S_{i j}:=S\left(f_{i}, f_{j}\right)$ such that

$$
S^{G} \neq 0
$$

$L \mu\left(s^{G}\right) \notin$

$$
S_{i j}^{G} \neq 0 \quad\left(\operatorname{LM}\left(f_{1}\right), \ldots, \operatorname{LM}(f)\right)
$$

add $S_{i j}$ to G
(3) Once all $S_{i j}^{G}=0$ then return G

- Buchberger's criterion shows that this algorithm always returns a Groebner basis!
- Algorithm will terminate because of Dickson's lemma! ${ }^{4}$

[^4] language ones
\[

$$
\begin{aligned}
& \left(\operatorname{LM}\left(f_{1}\right), \ldots, \operatorname{LM}\left(f_{0}\right)\right) \ngtr \operatorname{LM}\left(S^{G}\right) \\
\Rightarrow & \left(\operatorname{LM}\left(f_{1}\right), \ldots, \operatorname{LM}\left(f_{0}\right)\right) \varsubsetneqq\left(\operatorname{LM}\left(f_{1}\right), \ldots, \operatorname{LM}\left(f_{0}\right), \operatorname{Ln}\left(\xi^{s}\right)\right)
\end{aligned}
$$
\] every time. we cold a new S-polynomial we ore strictly increasing the monomial ideal

Buchberger's Algorithm

- From Buchberger's criterion, we can devise a natural algorithm to compute Groebner bases:
- Input: $I=\left(f_{1}, \ldots, f_{s}\right)$
- Output: Groebner basis G for I
(1) Set $G=\left\{f_{1}, \ldots, f_{s}\right\}$
(2) While there is $S_{i j}:=S\left(f_{i}, f_{j}\right)$ such that

$$
S_{i j}^{G} \neq 0
$$

add $S_{i j}$ to G
(3) Once all $S_{i j}^{G}=0$ then return G

- Buchberger's criterion shows that this algorithm always returns a Groebner basis!
- Algorithm will terminate because of Dickson's lemma! ${ }^{4}$
- Thus, computing Groebner basis is decidable!

[^5] language ones

Reduced Groebner Basis

- Of all Grobener bases for an ideal I, one is special. What makes it special are the following:
- $L C(p)=1$ for all $p \in G$
- For all $p \in G$, no monomial of p lies in $(L T(G) \backslash\{p\})$

$$
\begin{aligned}
& G=\left\{p_{1}, \cdots, p_{s}\right\} \quad p_{i} \longleftrightarrow \frac{p_{i}}{L C\left(p_{i}\right)} \\
& L C\left(p_{i}\right)=1 \\
& p_{i}^{G l p_{i}}
\end{aligned}
$$

Reduced Groebner Basis

- Of all Grobener bases for an ideal I, one is special. What makes it special are the following:
- $L C(p)=1$ for all $p \in G$
- For all $p \in G$, no monomial of p lies in $(L T(G) \backslash\{p\})$
- These are so-called reduced Groebner bases

Reduced Groebner Basis

- Of all Grobener bases for an ideal I, one is special. What makes it special are the following:
- $L C(p)=1$ for all $p \in G$
- For all $p \in G$, no monomial of p lies in $(L T(G) \backslash\{p\})$
- These are so-called reduced Groebner bases
- Practice problem: prove that a reduced Groebner basis is unique.

Reduced Groebner Basis

- Of all Grobener bases for an ideal I, one is special. What makes it special are the following:
- $L C(p)=1$ for all $p \in G$
- For all $p \in G$, no monomial of p lies in $(L T(G) \backslash\{p\})$
- These are so-called reduced Groebner bases
- Practice problem: prove that a reduced Groebner basis is unique.
- Why would we want uniqueness?
- used to test whether two ideals are the same ideal!
- nice "canonical" basis for the ideal (w.r.t. monomial ordering)

Applications of Groebner Bases

- Solution to Ideal Membership Problem:

Given f, I, simply compute Groebner basis G of I and

$$
f \in I \Leftrightarrow f^{G}=0
$$

Applications of Groebner Bases

- Solution to Ideal Membership Problem:

Given f, I, simply compute Groebner basis G of I and

$$
f \in I \Leftrightarrow f^{G}=0
$$

- Solving system of polynomial equations:
- Now this is just like doing Gaussian Elimination!

Applications of Groebner Bases

- Solution to Ideal Membership Problem:

Given f, I, simply compute Groebner basis G of I and

$$
f \in I \Leftrightarrow f^{G}=0
$$

- Solving system of polynomial equations:
- Now this is just like doing Gaussian Elimination!
- Compute Groebner basis using lex order $x_{1}>\ldots>x_{n}$

Applications of Groebner Bases

- Solution to Ideal Membership Problem:

Given f, I, simply compute Groebner basis G of I and

$$
f \in I \Leftrightarrow f^{G}=0
$$

- Solving system of polynomial equations:
- Now this is just like doing Gaussian Elimination!
- Compute Groebner basis using lex order $x_{1}>\ldots>x_{n}$
- Solve the system just like you would solve a linear system.

$$
x=b-t
$$

Applications of Groebner Bases

- Solution to Ideal Membership Problem:

Given f, I, simply compute Groebner basis G of I and

$$
f \in I \Leftrightarrow f^{G}=0
$$

- Solving system of polynomial equations:
- Now this is just like doing Gaussian Elimination!
- Compute Groebner basis using lex order $x_{1}>\ldots>x_{n}$
- Solve the system just like you would solve a linear system:
- Example: $I=\left(x^{2}+y^{2}+z^{2}-1, x^{2}+z^{2}-y, x-z\right)$

Applications of Groebner Bases

- Solution to Ideal Membership Problem:

Given f, I, simply compute Groebner basis G of I and

$$
f \in I \Leftrightarrow f^{G}=0
$$

- Solving system of polynomial equations:
- Now this is just like doing Gaussian Elimination!
- Compute Groebner basis using lex order $x_{1}>\ldots>x_{n}$
- Solve the system just like you would solve a linear system:
- Example: $I=\left(x^{2}+y^{2}+z^{2}-1, x^{2}+z^{2}-y, x-z\right)$
- Groebner basis for the above ideal

$$
G=\underline{\{x-z}, \underline{y-2 z^{2}}, \underbrace{\left.z^{4}+(1 / 2) z^{2}-1 / 4\right\}}_{\text {Chivariate }}
$$

Applications of Groebner Bases

- Solution to Ideal Membership Problem:

Given f, I, simply compute Groebner basis G of I and

$$
f \in I \Leftrightarrow f^{G}=0
$$

- Solving system of polynomial equations:
- Now this is just like doing Gaussian Elimination!
- Compute Groebner basis using lex order $x_{1}>\ldots>x_{n}$
- Solve the system just like you would solve a linear system:
- Example: $I=\left(x^{2}+y^{2}+z^{2}-1, x^{2}+z^{2}-y, x-z\right)$
- Groebner basis for the above ideal

$$
G=\left\{x-z, y-2 z^{2}, z^{4}+(1 / 2) z^{2}-1 / 4\right\}
$$

- z is determined by last equation
- propagate solution by "going up" the other equations!
- Problems with Division Algorithm \& Hilbert Basis Theorem
- Gröbner Basis
- Buchberger's Algorithm
- Conclusion
- Acknowledgements

Conclusion

- Today we learned about Groebner bases and their main property
- This "fixes" all the problems that we had with our division algorithm
- Proved Hilbert Basis Theorem
- Proved Buchberger's criterion, which allows us to test whether a basis is a Groebner basis
- Proved decidability of finding Groebner basis for any ideal
- Used Groebner bases to solve ideal membership problem and system of polynomial equations
- If anyone would like to present the refinement on Buchberger's
 could be great final project (references there)

Acknowledgement

- Lecture based entirely on the book by CLO: Ideals, varieties and algorithms (see course webpage for a copy - or get online version through UW library)

[^0]: ${ }^{1}$ This was also independently discovered by Hironaka, who termed these bases "standard bases" and used them for ideals in power series rings

[^1]: ${ }^{1}$ This was also independently discovered by Hironaka, who termed these bases "standard bases" and used them for ideals in power series rings

[^2]: ${ }^{4}$ Or the ascending chain condition on the monomial ideal $L T(I)$, for the fancy

[^3]: ${ }^{4}$ Or the ascending chain condition on the monomial ideal $L T(I)$, for the fancy

[^4]: ${ }^{4}$ Or the ascending chain condition on the monomial ideal $L T(I)$, for the fancy

[^5]: ${ }^{4}$ Or the ascending chain condition on the monomial ideal $L T(I)$, for the fancy

