Lecture 13: Multivariate Polynomial Division Algorithm \& Monomial Ideals

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

March 1, 2021

Overview

- Two Familiar Division Algorithms
- Generalization: Multivariate Multipolynomial Division
- Issues with the division algorithm
- Monomial Ideals \& Dickson's Lemma
- Conclusion
- Acknowledgements

Division with remainder over $\mathbb{F}[x]$

- Input: two elements $a, b \in \mathbb{F}[x]$, with b non-zero
- Output: $q, r \in \mathbb{F}[x]$ such that $\operatorname{deg}(r)<\operatorname{deg}(b)$ and $a=q \cdot b+r$

Division with remainder over $\mathbb{F}[x]$

- Input: two elements $a, b \in \mathbb{F}[x]$, with b non-zero
- Output: $q, r \in \mathbb{F}[x]$ such that $\operatorname{deg}(r)<\operatorname{deg}(b)$ and $a=q \cdot b+r$
- Start with $r=a, q=0$

Division with remainder over $\mathbb{F}[x]$

- Input: two elements $a, b \in \mathbb{F}[x]$, with b non-zero
- Output: $q, r \in \mathbb{F}[x]$ such that $\operatorname{deg}(r)<\operatorname{deg}(b)$ and $a=q \cdot b+r$
- Start with $r=a, q=0$
- While $\operatorname{deg}(r) \geq \operatorname{deg}(b)$:
$\operatorname{mainlamin}_{0=q+a^{2}}^{(a)} q \leftarrow q+x \operatorname{dg}(r)-\operatorname{deg}(b)$
- $r \leftarrow r \underbrace{\text { 酋 }(r)-\operatorname{deg}(b)} \cdot \frac{L C(r)}{L C(b)} \cdot b$
reducing degree of remainder

$$
\begin{aligned}
& L T(x)=L C(x) \cdot x^{\operatorname{deg}(x)} \\
& \frac{L C(x)}{L C(b)} x^{\operatorname{deg}(x)-\operatorname{deg}(b)} \cdot L C(b) \cdot x^{\operatorname{deg}(b)}=L C(x) \cdot x^{\operatorname{deg}(x)}
\end{aligned}
$$

Division with remainder over $\mathbb{F}[x]$

- Input: two elements $a, b \in \mathbb{F}[x]$, with b non-zero
- Output: $q, r \in \mathbb{F}[x]$ such that $\operatorname{deg}(r)<\operatorname{deg}(b)$ and $a=q \cdot b+r$
- Start with $r=a, q=0$
- While $\operatorname{deg}(r) \geq \operatorname{deg}(b)$:
- $q \leftarrow q+x^{\operatorname{deg}(r)-\operatorname{deg}(b)}$
- $r \leftarrow r-x^{\operatorname{deg}(r)-\operatorname{deg}(b)} \cdot \frac{L C(r)}{L C(b)} \cdot b$
- Analysis: we will perform at most $\operatorname{deg}(a)-\operatorname{deg}(b)+1$ subtractions to r. Total time $(\operatorname{deg}(a)-\operatorname{deg}(b)+1)(\operatorname{deg}(b)+1)$.

Example

$$
\begin{aligned}
& a(x)=x^{3}+2 x^{2}+x+1, b(x)=2 x+1 \quad r=\frac{7}{8} \\
& q= \frac{x^{2}}{2}+\frac{3}{4} x+\frac{1}{8} \\
& b=2 x+1 \frac{x^{3}+2 x^{2}+x+1}{x^{3}+\frac{x^{2}}{2}} \\
& \frac{\frac{3}{2} x^{2}+x+1}{\frac{\frac{3}{2} x^{2}+\frac{3 x}{4}}{4}+1} \\
& \frac{\frac{x}{4}+\frac{1}{8}}{7 / 8} / 0
\end{aligned}
$$

Solving Linear System - Gaussian Elimination

- Input: matrix $A \in \mathbb{F}^{n \times d}$, vector $b \in \mathbb{F}^{n}$
- Output: Is there a solution $y \in \mathbb{F}^{d}$ to $A y=b$?

Solving Linear System - Gaussian Elimination

- Input: matrix $A \in \mathbb{F}^{n \times d}$, vector $b \in \mathbb{F}^{n}$
- Output: Is there a solution $y \in \mathbb{F}^{d}$ to $A y=b$?
- Algorithm
(1) Put $C=\left(\begin{array}{ll}A & b\end{array}\right)$ in reduced row-echelon form we will focus on this F^{n}

Solving Linear System - Gaussian Elimination

- Input: matrix $A \in \mathbb{F}^{n \times d}$, vector $b \in \mathbb{F}^{n}$
- Output: Is there a solution $y \in \mathbb{F}^{d}$ to $A y=b$?
- Algorithm
(1) Put $C=\left(\begin{array}{ll}A & b\end{array}\right)$ in reduced row-echelon form we will focus on this
(2) From bottom-up along rows of A, if the equation has a solution then set it properly

Solving Linear System - Gaussian Elimination

- Input: matrix $A \in \mathbb{F}^{n \times d}$, vector $b \in \mathbb{F}^{n}$
- Output: Is there a solution $y \in \mathbb{F}^{d}$ to $A y=b$?
- Algorithm
(1) Put $C=\left(\begin{array}{ll}A & b\end{array}\right)$ in reduced row-echelon form we will focus on this
(2) From bottom-up along rows of A, if the equation has a solution then set it properly
(3) So long as there are no inconsistencies, we found a solution

$$
\begin{aligned}
& \text { Example } \\
& \left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{2}
\end{array}\right) \downarrow \\
& \text { - } A=\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 0 \\
2 & 3 & -1
\end{array}\right) \text { and } b=\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right) \quad \exists y \in \mathbb{F}^{3} \text { s.t. } A y=b \\
& C=\left(\begin{array}{ccc:c}
1 & 0 & 1 & 3 \\
-1 & 1 & 0 & 1 \\
\rightarrow 2 & 3 & -1 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & -2 \\
0 & 3 & -3 \\
\hline
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{cccc}
(i) & 0 & 1 & 3 \\
0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right) \leftarrow \text { nen-rudundart } \\
& y_{3}=t \quad y_{2}-t=-2 \Rightarrow y_{2}=t-2 \\
& y_{1}+t=3 \Rightarrow y_{1}=3-t \quad\left(\begin{array}{c}
3-t \\
t-2 \\
t
\end{array}\right) \quad t \in \mathbb{F}
\end{aligned}
$$

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
2 & 3 & -1
\end{array}\right) \quad b=\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right) \\
& \rightarrow f_{1} \quad y_{1}+y_{3}-3=0 \\
& \rightarrow \begin{cases}f_{2} & y_{1}+y_{2}-1=0 \\
f_{3} & y_{1}+3 y_{2}-y_{3}=0\end{cases} \\
& y_{1}>y_{2}>y_{3} \\
& f_{1}, f_{2}-f_{1}, \frac{f_{3}-f_{1}-3\left(f_{2}-f_{1}\right)}{0}
\end{aligned}
$$

- Two Familiar Division Algorithms
- Generalization: Multivariate Multipolynomial Division
- Issues with the division algorithm
- Monomial Ideals \& Dickson's Lemma
- Conclusion
- Acknowledgements

Why Multivariate Multipolynomial Division?

- From last lecture, many algorithmic problems we really would like to solve:
(1) ideal membership problem
(2) solving polynomial equations
(3) implicitization problem
(9) finding irreducible components of algebraic set
(3) among others...

Why Multivariate Multipolynomial Division?

- From last lecture, many algorithmic problems we really would like to solve:
(1) ideal membership problem
(2) solving polynomial equations
(3) implicitization problem
(9) finding irreducible components of algebraic set
(- among others...
- It turns out that a generalization of both algorithms above is fundamental to solve all the problems above!

Why Multivariate Multipolynomial Division?

- From last lecture, many algorithmic problems we really would like to solve:
(1) ideal membership problem
(2) solving polynomial equations
(3) implicitization problem
(9) finding irreducible components of algebraic set
() among others...
- It turns out that a generalization of both algorithms above is fundamental to solve all the problems above!
- Implicit in the seminal works of Hilbert and Gordan from 1890s!

Why Multivariate Multipolynomial Division?

- From last lecture, many algorithmic problems we really would like to solve:
(1) ideal membership problem
(2) solving polynomial equations
(3) implicitization problem
(9) finding irreducible components of algebraic set
(0 among others...
- It turns out that a generalization of both algorithms above is fundamental to solve all the problems above!
- Implicit in the seminal works of Hilbert and Gordan from 1890s!
- Complexity analyzed by Buchberger in 1960s!

Monomial Ordering

- In division algorithm over $\mathbb{F}[x]$, implicitly assumed $x \leq x^{2} \leq x^{3} \leq \cdots$ and that constants were "smaller than" any power of x

Monomial Ordering

- In division algorithm over $\mathbb{F}[x]$, implicitly assumed $x \leq x^{2} \leq x^{3} \leq \cdots$ and that constants were "smaller than" any power of x
- In our linear system solving algorithm, we implicitly assumed that $y_{1} \geq y_{2} \geq \cdots \geq y_{d}$

Monomial Ordering

- In division algorithm over $\mathbb{F}[x]$, implicitly assumed $x \leq x^{2} \leq x^{3} \leq \cdots$ and that constants were "smaller than" any power of x
- In our linear system solving algorithm, we implicitly assumed that $y_{1} \geq y_{2} \geq \cdots \geq y_{d}$
- Can we assume a similar ordering for monomials in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$? YES!

Monomial Ordering

- In division algorithm over $\mathbb{F}[x]$, implicitly assumed $x \leq x^{2} \leq x^{3} \leq \cdots$ and that constants were "smaller than" any power of x
- In our linear system solving algorithm, we implicitly assumed that $y_{1} \geq y_{2} \geq \cdots \geq y_{d}$
- Can we assume a similar ordering for monomials in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$? YES!
- Even to write a polynomial in a "humanly consistent way" we assume a monomial order (i.e., the ones we write first)
- Example: given two monomials $\mathbf{x}^{\mathbf{a}}, \mathbf{x}^{\mathbf{b}} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, we say

$$
\mathbf{x}^{\mathbf{a}} \succeq \mathbf{x}^{\mathbf{b}} \text { if } \mathbf{a} \geq \mathbf{b} \text { in lexicographic order over } \mathbb{N}^{n}
$$

$a \geq b$ if first index inst. $a_{i} \neq b_{i}$ we have $a_{i}>b_{i}$
aardvark $>$ aboriginal $\quad(2,1,3)>(2,0,100)$

Monomial Ordering

- In division algorithm over $\mathbb{F}[x]$, implicitly assumed $x \leq x^{2} \leq x^{3} \leq \cdots$ and that constants were "smaller than" any power of x
- In our linear system solving algorithm, we implicitly assumed that $y_{1} \geq y_{2} \geq \cdots \geq y_{d}$
- Can we assume a similar ordering for monomials in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$? YES!
- Even to write a polynomial in a "humanly consistent way" we assume a monomial order (i.e., the ones we write first)
- Example: given two monomials $\mathbf{x}^{\mathbf{a}}, \mathbf{x}^{\mathbf{b}} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, we say

$$
\mathbf{x}^{\mathbf{a}} \succeq \mathbf{x}^{\mathbf{b}} \text { if } \mathbf{a} \geq \mathbf{b} \text { in lexicographic order over } \mathbb{N}^{n}
$$

- In general a good monomial order has:

(1) Total order: any two elements can be compared
(2) Transitive: $\mathbf{x}^{\mathbf{a}} \succeq \mathbf{x}^{\mathbf{b}}$ and $\mathbf{x}^{\mathbf{b}} \succeq \mathbf{x}^{\mathbf{c}}$ then $\mathbf{x}^{\mathbf{a}} \succeq \mathbf{x}^{\mathbf{c}}$
(3) Well-behaved under multiplication: $\mathbf{x}^{\mathbf{a}} \succeq \mathbf{x}^{\boldsymbol{b}} \Rightarrow \mathbf{x}^{\mathbf{a}+\mathbf{c}} \succeq \mathbf{x}^{\mathbf{b}+\mathbf{c}}$
(9) Well-ordering: every non-empty subset has a smallest element

Leading Terms, Monomials, Coefficients

- Now we are ready to define special terms of polynomials

$$
f(\mathbf{x})=\sum_{\alpha} f_{\alpha} \cdot \mathbf{x}^{\alpha}
$$

Leading Terms, Monomials, Coefficients

- Now we are ready to define special terms of polynomials

$$
f(\mathbf{x})=\sum_{\alpha} f_{\alpha} \cdot \mathbf{x}^{\alpha}
$$

- The support of f

$$
\operatorname{supp}(f):=\left\{\alpha \in \mathbb{N}^{n} \mid f_{\alpha} \neq 0\right\}
$$

Leading Terms, Monomials, Coefficients

$$
f(x, y)=x^{2} y+x y^{100}+x y^{99}+y^{200}
$$

- Now we are ready to define special terms of polynomials ce lex

$$
\operatorname{moleg}(f)=(2,1) \quad f(x)=\sum_{\alpha} f_{\alpha} \cdot x^{\alpha} \quad \text { \&ex graded lex } \quad \operatorname{mdeg}(f)=y^{200}
$$

- The support of f

$$
\operatorname{supp}(f):=\left\{\alpha \in \mathbb{N}^{n} \mid f_{\alpha} \neq 0\right\}
$$

- The multidegree of f is the maximum monomial in the support of f according to \succeq. Termed $\operatorname{mdeg}(f)$.
- The leading monomial of f is $L M(f):=x^{\operatorname{mdeg}(f)}$
- The leading coefficient of f is $L C(f):=f_{\operatorname{mdeg}(f)}$
- The leading term of f is $L C(f) \cdot L M(f)$.

A Division Algorithm - a first attempt $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$

- Input: polynomials $G, F_{1}, \ldots, F_{s} \in \mathbb{F}[\mathbf{x}]$ and a monomial order \succeq
- Output: $Q_{1}, \ldots, Q_{s}, R \in \mathbb{F}[\mathbf{x}]$ such that

$$
G=F_{1} \cdot Q_{1}+\cdots+F_{s} \cdot Q_{s}+R
$$

where $\operatorname{mdeg}(R)<\operatorname{mdeg}\left(F_{i}\right)$ for $i \in[s]$

A Division Algorithm - a first attempt

- Input: polynomials $G, F_{1}, \ldots, F_{s} \in \mathbb{F}[\mathbf{x}]$ and a monomial order \succeq
- Output: $Q_{1}, \ldots, Q_{s}, R \in \mathbb{F}[\mathbf{x}]$ such that

$$
G=F_{1} \cdot Q_{1}+\cdots+F_{s} \cdot Q_{s}+R
$$

where $\operatorname{mdeg}(R)<\operatorname{mdeg}\left(F_{i}\right)$ for $i \in[s]$

- Idea: same as in one-variable case - cancel the leading term of G by using F_{i}

A Division Algorithm - a first attempt

- Input: polynomials $G, F_{1}, \ldots, F_{s} \in \mathbb{F}[\mathbf{x}]$ and a monomial order \succeq
- Output: $Q_{1}, \ldots, Q_{s}, R \in \mathbb{F}[\mathbf{x}]$ such that

$$
G=F_{1} \cdot Q_{1}+\cdots+F_{s} \cdot Q_{s}+R
$$

where $\operatorname{mdeg}(R)<\operatorname{mdeg}\left(F_{i}\right)$ for $i \in[s]$

- Idea: same as in one-variable case - cancel the leading term of G by using F_{i}
- Example 1: $G=x y^{2}+1, F_{1}=x y+1$ and $F_{2}=y+1$

$$
\begin{aligned}
& Q_{1}: y \\
& F_{2}=y+1 \\
& F_{1}=x y+1
\end{aligned}
$$

$$
r=2
$$

A Division Algorithm - a first attempt

- Input: polynomials $G, F_{1}, \ldots, F_{s} \in \mathbb{F}[\mathbf{x}]$ and a monomial order \succeq
- Output: $Q_{1}, \ldots, Q_{s}, R \in \mathbb{F}[\mathbf{x}]$ such that

$$
G=F_{1} \cdot Q_{1}+\cdots+F_{s} \cdot Q_{s}+R
$$

where $\operatorname{mdeg}(R)<\operatorname{mdeg}\left(F_{i}\right)$ for $i \in[s]$

- Idea: same as in one-variable case - cancel the leading term of G by using F_{i}
- Example 1: $G=x y^{2}+1, F_{1}=x y+1$ and $F_{2}=y+1$
- Thus we have

$$
x y^{2}+1=y \cdot(x y+1)+(-1) \cdot(y+1)+2
$$

A Division Algorithm - a first attempt

- Input: polynomials $G, F_{1}, \ldots, F_{s} \in \mathbb{F}[\mathbf{x}]$ and a monomial order \succeq
- Output: $Q_{1}, \ldots, Q_{s}, R \in \mathbb{F}[\mathbf{x}]$ such that

$$
G=F_{1} \cdot Q_{1}+\cdots+F_{s} \cdot Q_{s}+R
$$

where $\operatorname{mdeg}(R)<\operatorname{mdeg}\left(F_{i}\right)$ for $i \in[s]$

- Idea: same as in one-variable case - cancel the leading term of G by using F_{i}
- Example 1: $G=x y^{2}+1, F_{1}=x y+1$ and $F_{2}=y+1$
- Thus we have

$$
x y^{2}+1=y \cdot(x y+1)+(-1) \cdot(y+1)+2
$$

- Quotients are not unique:

$$
x y^{2}+1=x y \cdot(y+1)+(-1) \cdot(x y+1)+2
$$

$$
x^{2} y>x y^{100}
$$

but $x y^{100} \not \subset x^{2} y$
problem for the dissision question that we posed

Division Algorithm - Subtlety

- The following subtlety comes because we have more than one variable
- Example 2: $G=x^{2} y+x y^{2}+y^{2}, F_{1}=x y-1$ and $F_{2}=y^{2}-1$ with lex order
$Q_{1}: x+y$

$$
x=x+y+1
$$

$Q_{2}: 1$

$$
\begin{aligned}
& F_{1}=x y-1 \\
& F_{2}=y^{2}-1 \frac{x^{2} y+x y^{2}+y^{2}}{x^{2} y-x} \\
& \frac{x y^{2}-y}{x y^{2}+x+y^{2}} \\
& \frac{x+y^{2}+y}{y^{2}+y} \\
& y^{2}-1 / y+1 / 10
\end{aligned}
$$

Division Algorithm - Subtlety

- The following subtlety comes because we have more than one variable
- Example 2: $G=x^{2} y+x y^{2}+y^{2}, F_{1}=x y-1$ and $F_{2}=y^{2}-1$ with lex order
- Thus we have

$$
x^{2} y+x y^{2}+y^{2}=\underline{(x+y)} \cdot \underline{(x y-1)}+\underline{1} \cdot \underline{\left(y^{2}-1\right)}+\underline{(x+y+1)}
$$

Division Algorithm - Subtlety

- The following subtlety comes because we have more than one variable
- Example 2: $G=x^{2} y+x y^{2}+y^{2}, F_{1}=x y-1$ and $F_{2}=y^{2}-1$ with lex order
- Thus we have

$$
x^{2} y+x y^{2}+y^{2}=(x+y) \cdot(x y-1)+1 \cdot\left(y^{2}-1\right)+(x+y+1)
$$

- So, instead of requiring that the leading term of remainder be smaller than leading term of divisors, better to require that no monomial of R is divisible by any leading monomial of the F_{i} 's

A Division Algorithm - second attempt

- Input: polynomials $G, F_{1}, \ldots, F_{s} \in \mathbb{F}[\mathbf{x}]$
- Output: $Q_{1}, \ldots, Q_{s}, R \in \mathbb{F}[\mathbf{x}]$ such that

$$
G=\underline{F_{1}} \cdot \underline{Q_{1}}+\cdots+\underline{F_{s}} \cdot \underline{Q_{s}}+\underline{R}
$$

no monomial of R be divisible by any leading term of the F_{i} 's.
Furthermore if $F_{i} Q_{i} \neq 0$, we also want:

$$
L M(G) \succeq L M\left(F_{i} Q_{i}\right)
$$

A Division Algorithm - second attempt

- Input: polynomials $G, F_{1}, \ldots, F_{s} \in \mathbb{F}[\mathbf{x}]$
- Output: $Q_{1}, \ldots, Q_{s}, R \in \mathbb{F}[\mathbf{x}]$ such that

$$
G=F_{1} \cdot Q_{1}+\cdots+F_{s} \cdot Q_{s}+R
$$

no monomial of R be divisible by any leading term of the F_{i} 's.
Furthermore if $F_{i} Q_{i} \neq 0$, we also want:

$$
L M(G) \succeq L M\left(F_{i} Q_{i}\right)
$$

- Algorithm:
(1) While $L M(G)$ is divisible by some $L M\left(F_{i}\right)$, divide appropriately (respecting the order preference of F_{i} 's)
(2) If no $L M\left(F_{i}\right) \mid L M(G)$, add $L T(G)$ to the remainder and go back to step 1

A Division Algorithm - second attempt

- Input: polynomials $G, F_{1}, \ldots, F_{s} \in \mathbb{F}[\mathbf{x}]$
- Output: $Q_{1}, \ldots, Q_{s}, R \in \mathbb{F}[\mathbf{x}]$ such that

$$
G=F_{1} \cdot Q_{1}+\cdots+F_{s} \cdot Q_{s}+R
$$

no monomial of R be divisible by any leading term of the F_{i} 's.
Furthermore if $F_{i} Q_{i} \neq 0$, we also want:

$$
L M(G) \succeq L M\left(F_{i} Q_{i}\right)
$$

- Algorithm:
(1) While $L M(G)$ is divisible by some $L M\left(F_{i}\right)$, divide appropriately (respecting the order preference of F_{i} 's)
(2) If no $L M\left(F_{i}\right) \mid L M(G)$, add $L T(G)$ to the remainder and go back to step 1
- The algorithm above always terminates.

A Division Algorithm - second attempt

- Input: polynomials $G, F_{1}, \ldots, F_{s} \in \mathbb{F}[\mathbf{x}]$
- Output: $Q_{1}, \ldots, Q_{s}, R \in \mathbb{F}[\mathbf{x}]$ such that

$$
G=F_{1} \cdot Q_{1}+\cdots+F_{s} \cdot Q_{s}+R
$$

no monomial of R be divisible by any leading term of the F_{i} 's. Furthermore if $F_{i} Q_{i} \neq 0$, we also want:

$$
L M(G) \succeq L M\left(F_{i} Q_{i}\right)
$$

- Algorithm:
(1) While $L M(G)$ is divisible by some $L M\left(F_{i}\right)$, divide appropriately (respecting the order preference of F_{i} 's)
(2) If no $L M\left(F_{i}\right) \mid L M(G)$, add $L T(G)$ to the remainder and go back to step 1
- The algorithm above always terminates.
- Proof is by well-ordering principle of the monomial order and fact that each step of division algorithm decreases leading term of G.

Proof of termination

$$
\begin{aligned}
& G^{(0)}, G^{(1)}, G^{(2)}, \cdots \\
& \operatorname{LM}\left(G^{(0)}\right) \succ \operatorname{LM}\left(G^{(1)}\right) \succ \operatorname{LM}\left(G^{(2)}\right) \succ \cdots
\end{aligned}
$$

monomial ordering is a well ordering.
$S=\left\{\operatorname{LM}\left(G^{(i)}\right)\right\}$ must have a smallest element!

How does this generalize the two previous algorithms?

- Note that for univariate polynomials, the division algorithm works in the same way, if we consider the leading term of G one at a time
${ }^{1}$ This is more appropriate when checking if a linear form is in the span of a set of other linear forms

How does this generalize the two previous algorithms?

- Note that for univariate polynomials, the division algorithm works in the same way, if we consider the leading term of G one at a time
- For row-echelon form, note that it is exactly the division algorithm when the polynomials are linear ${ }^{1}$
${ }^{1}$ This is more appropriate when checking if a linear form is in the span of a set of other linear forms
- Two Familiar Division Algorithms
- Generalization: Multivariate Multipolynomial Division
- Issues with the division algorithm
- Monomial Ideals \& Dickson's Lemma
- Conclusion
- Acknowledgements

Does it have the properties we want?

- What properties would we want from a division algorithm?
(1) remainder should be uniquely determined
(2) ordering shouldn't really matter (especially since we are trying to use it to solve ideal membership problem)
(3) univariate division algorithm solves ideal membership problem - so our division algorithm should also solve it

$$
\begin{aligned}
g \in ? & \left(f_{1}, f_{2}\right) \\
& \left(f_{2}, f_{1}\right) \\
g= & f \cdot q+r \quad g \in(f): f f=0
\end{aligned}
$$

Does it have the properties we want?

- What properties would we want from a division algorithm?
(1) remainder should be uniquely determined
(2) ordering shouldn't really matter (especially since we are trying to use it to solve ideal membership problem)
univariate division algorithm solves ideal membership problem - so our division algorithm should also solve it
- Example 3: $G=x^{2} y+x y^{2}+y^{2}, F_{1}=y^{2}-1$ and $F_{2}=x y-1$ with lex order same as example 2 with order reversed
$Q_{1}: x+1$

$$
x=2 x+1
$$

$Q_{2}: x$

$$
\begin{aligned}
& F_{1}=y^{2}-1 \\
& F_{2}=x y-1 \\
& \frac{x^{2} y+x y^{2}+y^{2}}{x y^{2}+x+y^{2}} \\
& \frac{x^{2} y^{2}-x}{\frac{2 x+y^{2}}{y^{2}}} \\
& \frac{y^{2}-1}{0}
\end{aligned}
$$

Does it have the properties we want?

- What properties would we want from a division algorithm?
(1) remainder should be uniquely determined
(2) ordering shouldn't really matter (especially since we are trying to use it to solve ideal membership problem)
(3) univariate division algorithm solves ideal membership problem - so our division algorithm should also solve it
- Example 3: $G=x^{2} y+x y^{2}+y^{2}, F_{1}=y^{2}-1$ and $F_{2}=x y-1$ with lex order same as example 2 with order reversed
- Note that remainder here is $2 x+1$, which is different from remainder in example 2: $(x+y+1)$

Does it have the properties we want?

- What properties would we want from a division algorithm?
(1) remainder should be uniquely determined
(2) ordering shouldn't really matter (especially since we are trying to use it to solve ideal membership problem)
(3) univariate division algorithm solves ideal membership problem - so our division algorithm should also solve it
- Example 3: $G=x^{2} y+x y^{2}+y^{2}, F_{1}=y^{2}-1$ and $F_{2}=x y-1$ with lex order same as example 2 with order reversed
- Note that remainder here is $2 x+1$, which is different from remainder in example 2: $(x+y+1)$
- Our division algorithm only gives sufficient condition for ideal membership problem: if G has zero remainder when divided by $\left(F_{1}, \ldots, F_{s}\right)$ then we know $G \in\left(F_{1}, \ldots, F_{s}\right)$

Does it have the properties we want?

- What properties would we want from a division algorithm?
(1) remainder should be uniquely determined
(2) ordering shouldn't really matter (especially since we are trying to use it to solve ideal membership problem)
(3) univariate division algorithm solves ideal membership problem - so our division algorithm should also solve it
- Example 3: $G=x^{2} y+x y^{2}+y^{2}, F_{1}=y^{2}-1$ and $F_{2}=x y-1$ with lex order same as example 2 with order reversed
- Note that remainder here is $2 x+1$, which is different from remainder in example 2: $(x+y+1)$
- Our division algorithm only gives sufficient condition for ideal membership problem: if G has zero remainder when divided by $\left(F_{1}, \ldots, F_{s}\right)$ then we know $G \in\left(F_{1}, \ldots, F_{s}\right)$
- Example 4: $G=x y^{2}-x, F_{1}=x y-1$ and $F_{2}=y^{2}-1$

Does it have the properties we want?

- What properties would we want from a division algorithm?
(1) remainder should be uniquely determined
(2) ordering shouldn't really matter (especially since we are trying to use it to solve ideal membership problem)
(3) univariate division algorithm solves ideal membership problem - so our division algorithm should also solve it
- Example 3: $G=x^{2} y+x y^{2}+y^{2}, F_{1}=y^{2}-1$ and $F_{2}=x y-1$ with lex order same as example 2 with order reversed
- Note that remainder here is $2 x+1$, which is different from remainder in example 2: $(x+y+1)$
- Our division algorithm only gives sufficient condition for ideal membership problem: if G has zero remainder when divided by $\left(F_{1}, \ldots, F_{s}\right)$ then we know $G \in\left(F_{1}, \ldots, F_{s}\right)$
- Example 4: $G=x y^{2}-x, F_{1}=x y-1$ and $F_{2}=y^{2}-1$
- The "fix" for this division algorithm is to find a good basis for the ideal generated by F_{1}, \ldots, F_{s} - the so-called Gröbner basis
- Two Familiar Division Algorithms
- Generalization: Multivariate Multipolynomial Division
- Issues with the division algorithm
- Monomial Ideals \& Dickson's Lemma
- Conclusion
- Acknowledgements

Description of Ideals

- In the definition of algebraic sets, we used any family of polynomials \mathcal{F} to define an algebraic set (or the ideal $I_{\mathcal{F}}$).

```
Question
Does every ideal of \(\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]\) have a finite description?
```

[^0]
Description of Ideals

- In the definition of algebraic sets, we used any family of polynomials \mathcal{F} to define an algebraic set (or the ideal $I_{\mathcal{F}}$).

Question

Does every ideal of $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ have a finite description?

- Today we will address this question for monomial ideals. This will be done by Dickson's lemma ${ }^{2}$

[^1]
Description of Ideals

- In the definition of algebraic sets, we used any family of polynomials \mathcal{F} to define an algebraic set (or the ideal $I_{\mathcal{F}}$).

Question

Does every ideal of $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ have a finite description?

- Today we will address this question for monomial ideals. This will be done by Dickson's lemma ${ }^{2}$
- A monomial ideal is any ideal generated by a family \mathcal{F} of monomials (not necessarily a finite number of them)

[^2]
Description of Ideals

- In the definition of algebraic sets, we used any family of polynomials \mathcal{F} to define an algebraic set (or the ideal $I_{\mathcal{F}}$).

Question

Does every ideal of $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ have a finite description?

- Today we will address this question for monomial ideals. This will be done by Dickson's lemma ${ }^{2}$
- A monomial ideal is any ideal generated by a family \mathcal{F} of monomials (not necessarily a finite number of them)

Theorem (Dickson's lemma)

Let $I=\left(\mathbf{x}^{\alpha} \mid \alpha \in \mathcal{F}\right) \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be a monomial ideal. Then I can be written as $I=\left(\mathbf{x}^{\alpha(1)}, \ldots, \mathbf{x}^{\alpha(s)}\right)$, where $\alpha(1), \ldots, \alpha(s) \in \mathcal{F}$

[^3]Dickson's Lemma - picture \& example

Proof of Dickson's Lemma

- Induction on number of variables:

Proof of Dickson's Lemma

- Induction on number of variables:
(1) $n=1$ then we know all monomial ideals are generated by x_{1}^{α} for some $\alpha \in \mathbb{N}$. If $\beta \in \mathcal{F}$ is its smallest element, then we have $I=\left(x_{1}^{\beta}\right)$

$$
\begin{aligned}
\mathcal{F} & =\left\{x_{1}^{\alpha}\right\}_{\alpha} \\
& \alpha \in \mathcal{F} \text { is } \alpha>\beta \Rightarrow x_{1}^{\beta} \mid x_{1}^{\alpha} \\
\Rightarrow & x_{1}^{\alpha} \in\left(x_{1}^{\beta}\right) \Rightarrow I=\left(x_{1}^{\beta}\right)
\end{aligned}
$$

Proof of Dickson's Lemma

- Induction on number of variables:
(1) $n=1$ then we know all monomial ideals are generated by x_{1}^{α} for some $\alpha \in \mathbb{N}$. If $\beta \in \mathcal{F}$ is its smallest element, then we have $I=\left(x_{1}^{\beta}\right)$
(2) Suppose $n \geq 1$ and theorem proved for n. Let us now prove it for $n+1$ variables. Rewrite variables as x_{1}, \ldots, x_{n}, y.

Proof of Dickson's Lemma

- Induction on number of variables:
(1) $n=1$ then we know all monomial ideals are generated by x_{1}^{α} for some $\alpha \in \mathbb{N}$. If $\beta \in \mathcal{F}$ is its smallest element, then we have $I=\left(x_{1}^{\beta}\right)$
(2) Suppose $n \geq 1$ and theorem proved for n. Let us now prove it for $n+1$ variables. Rewrite variables as x_{1}, \ldots, x_{n}, y.
(3) Let $J \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be the monomial ideal generated by \mathbf{x}^{α} such that $\mathbf{x}^{\alpha} \cdot y^{m} \in I$ for some $m \geq 0$.

$$
I=I_{\mathfrak{F}} \quad J \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]
$$

Proof of Dickson's Lemma

- Induction on number of variables:
(1) $n=1$ then we know all monomial ideals are generated by x_{1}^{α} for some $\alpha \in \mathbb{N}$. If $\beta \in \mathcal{F}$ is its smallest element, then we have $I=\left(x_{1}^{\beta}\right)$
(2) Suppose $n \geq 1$ and theorem proved for n. Let us now prove it for $n+1$ variables. Rewrite variables as x_{1}, \ldots, x_{n}, y.
(3) Let $J \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be the monomial ideal generated by \mathbf{x}^{α} such that $\mathbf{x}^{\alpha} \cdot y^{m} \in I$ for some $m \geq 0$.
(4) J is finitely generated, say $J=\left(\mathbf{x}^{\alpha(1)}, \cdots, \mathbf{x}^{\alpha(s)}\right)$

Proof of Dickson's Lemma

- Induction on number of variables:
(1) $n=1$ then we know all monomial ideals are generated by x_{1}^{α} for some $\alpha \in \mathbb{N}$. If $\beta \in \mathcal{F}$ is its smallest element, then we have $I=\left(x_{1}^{\beta}\right)$
(2) Suppose $n \geq 1$ and theorem proved for n. Let us now prove it for $n+1$ variables. Rewrite variables as x_{1}, \ldots, x_{n}, y.
(3) Let $J \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be the monomial ideal generated by \mathbf{x}^{α} such that $x^{\alpha} \cdot y^{m} \in I$ for some $m \geq 0$.
(4) J is finitely generated, say $J=\left(\mathbf{x}^{\alpha(1)}, \cdots, \mathbf{x}^{\alpha(s)}\right)$
(5) Let $m_{i} \in \mathbb{N}$ be smallest integer such that $\mathbf{x}^{\alpha(i)} \cdot y^{m_{i}} \in I$, and let $N:=\max m_{i}$. And let $I_{N}:=\left(\mathbf{x}^{\alpha(1)} \cdot y^{m_{1}}, \ldots, \mathbf{x}^{\alpha(s)} \cdot y^{m_{s}}\right)$

Proof of Dickson's Lemma

- Induction on number of variables:
(1) $n=1$ then we know all monomial ideals are generated by x_{1}^{α} for some $\alpha \in \mathbb{N}$. If $\beta \in \mathcal{F}$ is its smallest element, then we have $I=\left(x_{1}^{\beta}\right)$
(2) Suppose $n \geq 1$ and theorem proved for n. Let us now prove it for $n+1$ variables. Rewrite variables as x_{1}, \ldots, x_{n}, y.
(3) Let $J \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be the monomial ideal generated by \mathbf{x}^{α} such that $x^{\alpha} \cdot y^{m} \in I$ for some $m \geq 0$.
(9) J is finitely generated, say $J=\left(\mathbf{x}^{\alpha(1)}, \cdots, \mathbf{x}^{\alpha(s)}\right)$
(5) Let $m_{i} \in \mathbb{N}$ be smallest integer such that $\mathbf{x}^{\alpha(i)} \cdot y^{m_{i}} \in I$, and let $N:=\max m_{i}$. And let $I_{N}:=\left(\mathbf{x}^{\alpha(1)} \cdot y^{m_{1}}, \ldots, \mathbf{x}^{\alpha(s)} \cdot y^{m_{s}}\right) \longleftarrow$
(6) Any $x^{\beta} y^{m}$ in I such that $m \geq N$ is in I_{N}.

$$
\begin{aligned}
& x^{\beta} y^{m} \in I \Rightarrow x^{\beta} \in J \Rightarrow x^{\beta} \in\left(x^{(i)}\right) \\
& m \geqslant N \Rightarrow y^{N}\left|y^{m} \Rightarrow y^{m_{i}} x^{\alpha(i)}\right| y^{N} x^{\alpha(i)} \\
& y^{N} x^{\alpha(1)} \mid y^{m} x^{\beta} \Rightarrow x^{\beta} y^{N} \in I_{N^{*}}=\operatorname{Dac}
\end{aligned}
$$

Proof of Dickson's Lemma

- Induction on number of variables:
(1) $n=1$ then we know all monomial ideals are generated by x_{1}^{α} for some $\alpha \in \mathbb{N}$. If $\beta \in \mathcal{F}$ is its smallest element, then we have $I=\left(x_{1}^{\beta}\right)$
(2) Suppose $n \geq 1$ and theorem proved for n. Let us now prove it for $n+1$ variables. Rewrite variables as x_{1}, \ldots, x_{n}, y.
(3) Let $J \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be the monomial ideal generated by \mathbf{x}^{α} such that $x^{\alpha} \cdot y^{m} \in I$ for some $m \geq 0$.
(4) J is finitely generated, say $J=\left(\mathbf{x}^{\alpha(1)}, \cdots, \mathbf{x}^{\alpha(s)}\right)$
(5) Let $m_{i} \in \mathbb{N}$ be smallest integer such that $\mathbf{x}^{\alpha(i)} \cdot y^{m_{i}} \in I$, and let $N:=\max m_{i}$. And let $I_{N}:=\left(\mathbf{x}^{\alpha(1)} \cdot y^{m_{1}}, \ldots, \mathbf{x}^{\alpha(s)} \cdot y^{m_{s}}\right)$
(6) Any $\mathbf{x}^{\beta} y^{m}$ in I such that $m \geq N$ is in I_{N}.
(7) For $0 \leq \ell<N$, let $J_{\ell} \subseteq \mathbb{F}[\mathbf{x}]$ be the monomial ideal defined by $\mathbf{x}^{\alpha} \in \bar{J}_{\ell} \Leftrightarrow \mathbf{x}^{\alpha} y^{\ell} \in I$. Also finitely generated. $J_{\ell}=\left(\mathbf{x}^{\alpha_{\ell}(1)}, \ldots, \mathbf{x}^{\alpha_{\ell}\left(s_{\ell}\right)}\right)$ induction hypothusis

Proof of Dickson's Lemma

- Induction on number of variables:
(1) $n=1$ then we know all monomial ideals are generated by x_{1}^{α} for some $\alpha \in \mathbb{N}$. If $\beta \in \mathcal{F}$ is its smallest element, then we have $I=\left(x_{1}^{\beta}\right)$
(2) Suppose $n \geq 1$ and theorem proved for n. Let us now prove it for $n+1$ variables. Rewrite variables as x_{1}, \ldots, x_{n}, y.
(3) Let $J \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be the monomial ideal generated by \mathbf{x}^{α} such that $x^{\alpha} \cdot y^{m} \in I$ for some $m \geq 0$.
(4) J is finitely generated, say $J=\left(\mathbf{x}^{\alpha(1)}, \cdots, \mathbf{x}^{\alpha(s)}\right)$
(5) Let $m_{i} \in \mathbb{N}$ be smallest integer such that $\mathbf{x}^{\alpha(i)} \cdot y^{m_{i}} \in I$, and let $N:=\max m_{i}$. And let $I_{N}:=\left(\mathbf{x}^{\alpha(1)} \cdot y^{m_{1}}, \ldots, \mathbf{x}^{\alpha(s)} \cdot y^{m_{s}}\right)$
(6) Any $\mathbf{x}^{\beta} y^{m}$ in I such that $m \geq N$ is in I_{N}.
(7) For $0 \leq \ell<N$, let $J_{\ell} \subseteq \mathbb{F}[\mathbf{x}]$ be the monomial ideal defined by $\mathbf{x}^{\alpha} \in \overline{J_{\ell}} \Leftrightarrow \mathbf{x}^{\alpha} y^{\ell} \in I$. Also finitely generated. $J_{\ell}=\left(\mathbf{x}^{\alpha_{\ell}(1)}, \ldots, \mathbf{x}^{\alpha_{\ell}\left(s_{\ell}\right)}\right)$
(8) Let $I_{\ell}:=\left(\mathbf{x}^{\alpha_{\ell}(1)} \cdot y^{\ell}, \ldots, \mathbf{x}^{\alpha_{\ell}\left(s_{\ell}\right)} \cdot y^{\ell}\right)$

Proof of Dickson's Lemma

- Induction on number of variables:
(1) $n=1$ then we know all monomial ideals are generated by x_{1}^{α} for some $\alpha \in \mathbb{N}$. If $\beta \in \mathcal{F}$ is its smallest element, then we have $I=\left(x_{1}^{\beta}\right)$
(2) Suppose $n \geq 1$ and theorem proved for n. Let us now prove it for $n+1$ variables. Rewrite variables as x_{1}, \ldots, x_{n}, y.
(3) Let $J \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be the monomial ideal generated by \mathbf{x}^{α} such that $x^{\alpha} \cdot y^{m} \in I$ for some $m \geq 0$.
(4) J is finitely generated, say $J=\left(\mathbf{x}^{\alpha(1)}, \cdots, \mathbf{x}^{\alpha(s)}\right)$
(5) Let $m_{i} \in \mathbb{N}$ be smallest integer such that $\mathbf{x}^{\alpha(i)} \cdot y^{m_{i}} \in I$, and let $N:=\max m_{i}$. And let $I_{N}:=\left(\mathbf{x}^{\alpha(1)} \cdot y^{m_{1}}, \ldots, \mathbf{x}^{\alpha(s)} \cdot y^{m_{s}}\right)$
(6) Any $x^{\beta} y^{m}$ in I such that $m \geq N$ is in I_{N}.
(7) For $0 \leq \ell<N$, let $J_{\ell} \subseteq \mathbb{F}[\mathbf{x}]$ be the monomial ideal defined by $\mathbf{x}^{\alpha} \in \overline{J_{\ell}} \Leftrightarrow \mathbf{x}^{\alpha} y^{\ell} \in I$. Also finitely generated. $J_{\ell}=\left(\mathbf{x}^{\alpha_{\ell}(1)}, \ldots, \mathbf{x}^{\alpha_{\ell}\left(s_{\ell}\right)}\right)$
(8) Let $I_{\ell}:=\left(\mathbf{x}^{\alpha_{\ell}(1)} \cdot y^{\ell}, \ldots, \mathbf{x}^{\alpha_{\ell}\left(s_{\ell}\right)} \cdot y^{\ell}\right)$
(9) Show that $I=\underline{I_{0}}+\underline{I_{1}}+\cdots+I_{N}$

Proof of Dickson's lemma

$$
\begin{aligned}
& I \subset \frac{I_{0}+I_{1}+\cdots+I_{N}}{x^{\beta} y^{m} \in I \text { if } m \geqslant N \text { thm } x^{\beta} y^{n} \in I_{N}}
\end{aligned}
$$

sappose $m<N$
by definition $x^{\beta} \in J_{m} \Rightarrow \exists \alpha_{m}(i)$

$$
\begin{aligned}
& \text { s.t. } x^{\alpha_{m}(i)} \mid x^{\beta} \\
& x^{\alpha_{m}(i)} \cdot y^{m} \mid y^{m} x^{\beta} \Rightarrow x^{\beta} y^{m} \in I_{m} \\
& I_{m} \Rightarrow I \subset I_{0}+\cdots+I_{N}
\end{aligned}
$$

Consequences of Dickson's lemma

- Dickson's lemma helps us decide if a monomial relation is a proper monomial ordering

Corollary (Monomial Order Criterion)

If $>$ is a relation on \mathbb{N}^{n} satsifying
(1) > is a total ordering on \mathbb{N}^{n}
(2) $\alpha>\beta$ and $\gamma \in \mathbb{N}^{n}$ then $\alpha+\gamma>\beta+\gamma$

Then $>$ is a well-ordering if, and only if, $\alpha \geq 0$ for all $\alpha \in \mathbb{N}^{n}$.

Consequences of Dickson's lemma

- Dickson's lemma helps us decide if a monomial relation is a proper monomial ordering

Corollary (Monomial Order Criterion)

If $>$ is a relation on \mathbb{N}^{n} satsifying
(1) > is a total ordering on \mathbb{N}^{n}
(2) $\alpha>\beta$ and $\gamma \in \mathbb{N}^{n}$ then $\alpha+\gamma>\beta+\gamma$

Then $>$ is a well-ordering if, and only if, $\alpha \geq 0$ for all $\alpha \in \mathbb{N}^{n}$.

- As we will see later in the course, this is great as different monomial orderings are used for different purposes.
- elimination ordering (voriant of lex roler)
- graded rev-lex order used in most ideal membership tasks

Consequences of Dickson's lemma

- Dickson's lemma helps us decide if a monomial relation is a proper monomial ordering

Corollary (Monomial Order Criterion)

If $>$ is a relation on \mathbb{N}^{n} satsifying
(1) $>$ is a total ordering on \mathbb{N}^{n}
(2) $\alpha>\beta$ and $\gamma \in \mathbb{N}^{n}$ then $\alpha+\gamma>\beta+\gamma$

Then $>$ is a well-ordering if, and only if, $\alpha \geq 0$ for all $\alpha \in \mathbb{N}^{n}$.

- As we will see later in the course, this is great as different monomial orderings are used for different purposes.
- elimination ordering
- graded rev-lex order used in most ideal membership tasks
- From the set of bases for a monomial ideal, there is one which is better than others:

A minimal basis of a monomial ideal is one where none of the generators is divisible by another generator.

- Two Familiar Division Algorithms
- Generalization: Multivariate Multipolynomial Division
- Issues with the division algorithm
- Monomial Ideals \& Dickson's Lemma
- Conclusion
- Acknowledgements

Conclusion

- Today we learned about the division algorithm and Dickson's lemma
- Division algorithm generalizes univariate division algorithm and Gaussian elimination
- Division algorithm is not great - we will fix that by finding a good basis
- Dickson's lemma shows that monomial ideals are finitely generated
- Can use it to have easy criterion for checking monomial orderings
- Will use this lemma to prove Hilbert Basis Theorem

Acknowledgement

- Lecture based entirely on the book by CLO: Ideals, varieties and algorithms (see course webpage for a copy - or get online version through UW library)

[^0]: ${ }^{2}$ Which was in fact first proved by Gordan.

[^1]: ${ }^{2}$ Which was in fact first proved by Gordan.

[^2]: ${ }^{2}$ Which was in fact first proved by Gordan.

[^3]: ${ }^{2}$ Which was in fact first proved by Gordan.

