
Lecture 13: Multivariate Polynomial Division Algorithm
& Monomial Ideals

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

March 1, 2021

1 / 70



Overview

Two Familiar Division Algorithms

Generalization: Multivariate Multipolynomial Division

Issues with the division algorithm

Monomial Ideals & Dickson’s Lemma

Conclusion

Acknowledgements

2 / 70



Division with remainder over F[x ]
Input: two elements a, b ∈ F[x ], with b non-zero

Output: q, r ∈ F[x ] such that deg(r) < deg(b) and a = q · b + r

3 / 70



Division with remainder over F[x ]
Input: two elements a, b ∈ F[x ], with b non-zero

Output: q, r ∈ F[x ] such that deg(r) < deg(b) and a = q · b + r

Start with r = a, q = 0

4 / 70



Division with remainder over F[x ]
Input: two elements a, b ∈ F[x ], with b non-zero

Output: q, r ∈ F[x ] such that deg(r) < deg(b) and a = q · b + r

Start with r = a, q = 0

While deg(r) ≥ deg(b):

q ← q + xdeg(r)−deg(b)

r ← r − xdeg(r)−deg(b) · LC (r)

LC (b)
· b

5 / 70



Division with remainder over F[x ]
Input: two elements a, b ∈ F[x ], with b non-zero

Output: q, r ∈ F[x ] such that deg(r) < deg(b) and a = q · b + r

Start with r = a, q = 0

While deg(r) ≥ deg(b):

q ← q + xdeg(r)−deg(b)

r ← r − xdeg(r)−deg(b) · LC (r)

LC (b)
· b

Analysis: we will perform at most deg(a)− deg(b) + 1 subtractions to
r . Total time (deg(a)− deg(b) + 1)(deg(b) + 1).

6 / 70



Example

a(x) = x3 + 2x2 + x + 1, b(x) = 2x + 1

7 / 70



Solving Linear System - Gaussian Elimination

Input: matrix A ∈ Fn×d , vector b ∈ Fn

Output: Is there a solution y ∈ Fd to Ay = b?

8 / 70



Solving Linear System - Gaussian Elimination

Input: matrix A ∈ Fn×d , vector b ∈ Fn

Output: Is there a solution y ∈ Fd to Ay = b?

Algorithm
1 Put C =

�
A b

�
in reduced row-echelon form we will focus on this

9 / 70



Solving Linear System - Gaussian Elimination

Input: matrix A ∈ Fn×d , vector b ∈ Fn

Output: Is there a solution y ∈ Fd to Ay = b?

Algorithm
1 Put C =

�
A b

�
in reduced row-echelon form we will focus on this

2 From bottom-up along rows of A, if the equation has a solution then
set it properly

10 / 70



Solving Linear System - Gaussian Elimination

Input: matrix A ∈ Fn×d , vector b ∈ Fn

Output: Is there a solution y ∈ Fd to Ay = b?

Algorithm
1 Put C =

�
A b

�
in reduced row-echelon form we will focus on this

2 From bottom-up along rows of A, if the equation has a solution then
set it properly

3 So long as there are no inconsistencies, we found a solution

11 / 70



Example

A =



1 0 1
1 1 0
2 3 −1


 and b =



3
1
0




12 / 70





Two Familiar Division Algorithms

Generalization: Multivariate Multipolynomial Division

Issues with the division algorithm

Monomial Ideals & Dickson’s Lemma

Conclusion

Acknowledgements

13 / 70



Why Multivariate Multipolynomial Division?

From last lecture, many algorithmic problems we really would like to
solve:

1 ideal membership problem
2 solving polynomial equations
3 implicitization problem
4 finding irreducible components of algebraic set
5 among others...

14 / 70



Why Multivariate Multipolynomial Division?

From last lecture, many algorithmic problems we really would like to
solve:

1 ideal membership problem
2 solving polynomial equations
3 implicitization problem
4 finding irreducible components of algebraic set
5 among others...

It turns out that a generalization of both algorithms above is
fundamental to solve all the problems above!

15 / 70



Why Multivariate Multipolynomial Division?

From last lecture, many algorithmic problems we really would like to
solve:

1 ideal membership problem
2 solving polynomial equations
3 implicitization problem
4 finding irreducible components of algebraic set
5 among others...

It turns out that a generalization of both algorithms above is
fundamental to solve all the problems above!

Implicit in the seminal works of Hilbert and Gordan from 1890s!

16 / 70



Why Multivariate Multipolynomial Division?

From last lecture, many algorithmic problems we really would like to
solve:

1 ideal membership problem
2 solving polynomial equations
3 implicitization problem
4 finding irreducible components of algebraic set
5 among others...

It turns out that a generalization of both algorithms above is
fundamental to solve all the problems above!

Implicit in the seminal works of Hilbert and Gordan from 1890s!

Complexity analyzed by Buchberger in 1960s!

17 / 70



Monomial Ordering

In division algorithm over F[x ], implicitly assumed x ≤ x2 ≤ x3 ≤ · · ·
and that constants were ”smaller than” any power of x

18 / 70



Monomial Ordering

In division algorithm over F[x ], implicitly assumed x ≤ x2 ≤ x3 ≤ · · ·
and that constants were ”smaller than” any power of x

In our linear system solving algorithm, we implicitly assumed that
y1 ≥ y2 ≥ · · · ≥ yd

19 / 70



Monomial Ordering

In division algorithm over F[x ], implicitly assumed x ≤ x2 ≤ x3 ≤ · · ·
and that constants were ”smaller than” any power of x

In our linear system solving algorithm, we implicitly assumed that
y1 ≥ y2 ≥ · · · ≥ yd

Can we assume a similar ordering for monomials in F[x1, . . . , xn]?
YES!

20 / 70



Monomial Ordering

In division algorithm over F[x ], implicitly assumed x ≤ x2 ≤ x3 ≤ · · ·
and that constants were ”smaller than” any power of x

In our linear system solving algorithm, we implicitly assumed that
y1 ≥ y2 ≥ · · · ≥ yd

Can we assume a similar ordering for monomials in F[x1, . . . , xn]?
YES!

Even to write a polynomial in a “humanly consistent way” we assume
a monomial order (i.e., the ones we write first)

Example: given two monomials xa, xb ∈ F[x1, . . . , xn], we say

xa � xb if a ≥ b in lexicographic order over Nn

21 / 70



Monomial Ordering

In division algorithm over F[x ], implicitly assumed x ≤ x2 ≤ x3 ≤ · · ·
and that constants were ”smaller than” any power of x

In our linear system solving algorithm, we implicitly assumed that
y1 ≥ y2 ≥ · · · ≥ yd

Can we assume a similar ordering for monomials in F[x1, . . . , xn]?
YES!

Even to write a polynomial in a “humanly consistent way” we assume
a monomial order (i.e., the ones we write first)

Example: given two monomials xa, xb ∈ F[x1, . . . , xn], we say

xa � xb if a ≥ b in lexicographic order over Nn

In general a good monomial order has:
1 Total order: any two elements can be compared
2 Transitive: xa � xb and xb � xc then xa � xc

3 Well-behaved under multiplication: xa � xbb ⇒ xa+c � xb+c

4 Well-ordering: every non-empty subset has a smallest element

22 / 70



Leading Terms, Monomials, Coefficients

Now we are ready to define special terms of polynomials

f (x) =
�

α

fα · xα

23 / 70



Leading Terms, Monomials, Coefficients

Now we are ready to define special terms of polynomials

f (x) =
�

α

fα · xα

The support of f

supp(f ) := {α ∈ Nn | fα �= 0}

24 / 70



Leading Terms, Monomials, Coefficients

Now we are ready to define special terms of polynomials

f (x) =
�

α

fα · xα

The support of f

supp(f ) := {α ∈ Nn | fα �= 0}

The multidegree of f is the maximum monomial in the support of f
according to �. Termed mdeg(f ).

The leading monomial of f is LM(f ) := xmdeg(f )

The leading coefficient of f is LC (f ) := fmdeg(f )

The leading term of f is LC (f ) · LM(f ).

25 / 70



A Division Algorithm - a first attempt

Input: polynomials G ,F1, . . . ,Fs ∈ F[x] and a monomial order �
Output: Q1, . . . ,Qs ,R ∈ F[x] such that

G = F1 · Q1 + · · ·+ Fs · Qs + R

where mdeg(R) < mdeg(Fi ) for i ∈ [s]

26 / 70



A Division Algorithm - a first attempt

Input: polynomials G ,F1, . . . ,Fs ∈ F[x] and a monomial order �
Output: Q1, . . . ,Qs ,R ∈ F[x] such that

G = F1 · Q1 + · · ·+ Fs · Qs + R

where mdeg(R) < mdeg(Fi ) for i ∈ [s]

Idea: same as in one-variable case - cancel the leading term of G by
using Fi

27 / 70



A Division Algorithm - a first attempt

Input: polynomials G ,F1, . . . ,Fs ∈ F[x] and a monomial order �
Output: Q1, . . . ,Qs ,R ∈ F[x] such that

G = F1 · Q1 + · · ·+ Fs · Qs + R

where mdeg(R) < mdeg(Fi ) for i ∈ [s]

Idea: same as in one-variable case - cancel the leading term of G by
using Fi

Example 1: G = xy2 + 1, F1 = xy + 1 and F2 = y + 1

28 / 70



A Division Algorithm - a first attempt

Input: polynomials G ,F1, . . . ,Fs ∈ F[x] and a monomial order �
Output: Q1, . . . ,Qs ,R ∈ F[x] such that

G = F1 · Q1 + · · ·+ Fs · Qs + R

where mdeg(R) < mdeg(Fi ) for i ∈ [s]

Idea: same as in one-variable case - cancel the leading term of G by
using Fi

Example 1: G = xy2 + 1, F1 = xy + 1 and F2 = y + 1

Thus we have

xy2 + 1 = y · (xy + 1) + (−1) · (y + 1) + 2

29 / 70



A Division Algorithm - a first attempt

Input: polynomials G ,F1, . . . ,Fs ∈ F[x] and a monomial order �
Output: Q1, . . . ,Qs ,R ∈ F[x] such that

G = F1 · Q1 + · · ·+ Fs · Qs + R

where mdeg(R) < mdeg(Fi ) for i ∈ [s]

Idea: same as in one-variable case - cancel the leading term of G by
using Fi

Example 1: G = xy2 + 1, F1 = xy + 1 and F2 = y + 1

Thus we have

xy2 + 1 = y · (xy + 1) + (−1) · (y + 1) + 2

Quotients are not unique:

xy2 + 1 = xy · (y + 1) + (−1) · (xy + 1) + 2

30 / 70





Division Algorithm - Subtlety

The following subtlety comes because we have more than one variable

Example 2: G = x2y + xy2 + y2, F1 = xy − 1 and F2 = y2 − 1 with
lex order

31 / 70



Division Algorithm - Subtlety

The following subtlety comes because we have more than one variable

Example 2: G = x2y + xy2 + y2, F1 = xy − 1 and F2 = y2 − 1 with
lex order

Thus we have

x2y + xy2 + y2 = (x + y) · (xy − 1) + 1 · (y2 − 1) + (x + y + 1)

32 / 70



Division Algorithm - Subtlety

The following subtlety comes because we have more than one variable

Example 2: G = x2y + xy2 + y2, F1 = xy − 1 and F2 = y2 − 1 with
lex order

Thus we have

x2y + xy2 + y2 = (x + y) · (xy − 1) + 1 · (y2 − 1) + (x + y + 1)

So, instead of requiring that the leading term of remainder be smaller
than leading term of divisors, better to require that no monomial of R
is divisible by any leading monomial of the Fi ’s

33 / 70



A Division Algorithm - second attempt

Input: polynomials G ,F1, . . . ,Fs ∈ F[x]
Output: Q1, . . . ,Qs ,R ∈ F[x] such that

G = F1 · Q1 + · · ·+ Fs · Qs + R

no monomial of R be divisible by any leading term of the Fi ’s.
Furthermore if FiQi �= 0, we also want:

LM(G ) � LM(FiQi )

34 / 70



A Division Algorithm - second attempt

Input: polynomials G ,F1, . . . ,Fs ∈ F[x]
Output: Q1, . . . ,Qs ,R ∈ F[x] such that

G = F1 · Q1 + · · ·+ Fs · Qs + R

no monomial of R be divisible by any leading term of the Fi ’s.
Furthermore if FiQi �= 0, we also want:

LM(G ) � LM(FiQi )

Algorithm:
1 While LM(G ) is divisible by some LM(Fi ), divide appropriately

(respecting the order preference of Fi ’s)
2 If no LM(Fi ) | LM(G ), add LT (G ) to the remainder and go back to

step 1

35 / 70



A Division Algorithm - second attempt

Input: polynomials G ,F1, . . . ,Fs ∈ F[x]
Output: Q1, . . . ,Qs ,R ∈ F[x] such that

G = F1 · Q1 + · · ·+ Fs · Qs + R

no monomial of R be divisible by any leading term of the Fi ’s.
Furthermore if FiQi �= 0, we also want:

LM(G ) � LM(FiQi )

Algorithm:
1 While LM(G ) is divisible by some LM(Fi ), divide appropriately

(respecting the order preference of Fi ’s)
2 If no LM(Fi ) | LM(G ), add LT (G ) to the remainder and go back to

step 1

The algorithm above always terminates.

36 / 70



A Division Algorithm - second attempt

Input: polynomials G ,F1, . . . ,Fs ∈ F[x]
Output: Q1, . . . ,Qs ,R ∈ F[x] such that

G = F1 · Q1 + · · ·+ Fs · Qs + R

no monomial of R be divisible by any leading term of the Fi ’s.
Furthermore if FiQi �= 0, we also want:

LM(G ) � LM(FiQi )

Algorithm:
1 While LM(G ) is divisible by some LM(Fi ), divide appropriately

(respecting the order preference of Fi ’s)
2 If no LM(Fi ) | LM(G ), add LT (G ) to the remainder and go back to

step 1

The algorithm above always terminates.

Proof is by well-ordering principle of the monomial order and fact that
each step of division algorithm decreases leading term of G .

37 / 70



Pseudocode

38 / 70



How does this generalize the two previous algorithms?

Note that for univariate polynomials, the division algorithm works in
the same way, if we consider the leading term of G one at a time

1This is more appropriate when checking if a linear form is in the span of a set of
other linear forms

39 / 70



How does this generalize the two previous algorithms?

Note that for univariate polynomials, the division algorithm works in
the same way, if we consider the leading term of G one at a time

For row-echelon form, note that it is exactly the division algorithm
when the polynomials are linear1

1This is more appropriate when checking if a linear form is in the span of a set of
other linear forms

40 / 70



Two Familiar Division Algorithms

Generalization: Multivariate Multipolynomial Division

Issues with the division algorithm

Monomial Ideals & Dickson’s Lemma

Conclusion

Acknowledgements

41 / 70



Does it have the properties we want?

What properties would we want from a division algorithm?
1 remainder should be uniquely determined
2 ordering shouldn’t really matter (especially since we are trying to use it

to solve ideal membership problem)
3 univariate division algorithm solves ideal membership problem - so our

division algorithm should also solve it

42 / 70



Does it have the properties we want?

What properties would we want from a division algorithm?
1 remainder should be uniquely determined
2 ordering shouldn’t really matter (especially since we are trying to use it

to solve ideal membership problem)
3 univariate division algorithm solves ideal membership problem - so our

division algorithm should also solve it

Example 3: G = x2y + xy2 + y2, F1 = y2 − 1 and F2 = xy − 1 with
lex order same as example 2 with order reversed

43 / 70



Does it have the properties we want?

What properties would we want from a division algorithm?
1 remainder should be uniquely determined
2 ordering shouldn’t really matter (especially since we are trying to use it

to solve ideal membership problem)
3 univariate division algorithm solves ideal membership problem - so our

division algorithm should also solve it

Example 3: G = x2y + xy2 + y2, F1 = y2 − 1 and F2 = xy − 1 with
lex order same as example 2 with order reversed

Note that remainder here is 2x + 1, which is different from remainder
in example 2: (x + y + 1)

44 / 70



Does it have the properties we want?

What properties would we want from a division algorithm?
1 remainder should be uniquely determined
2 ordering shouldn’t really matter (especially since we are trying to use it

to solve ideal membership problem)
3 univariate division algorithm solves ideal membership problem - so our

division algorithm should also solve it

Example 3: G = x2y + xy2 + y2, F1 = y2 − 1 and F2 = xy − 1 with
lex order same as example 2 with order reversed

Note that remainder here is 2x + 1, which is different from remainder
in example 2: (x + y + 1)

Our division algorithm only gives sufficient condition for ideal
membership problem: if G has zero remainder when divided by
(F1, . . . ,Fs) then we know G ∈ (F1, . . . ,Fs)

45 / 70



Does it have the properties we want?

What properties would we want from a division algorithm?
1 remainder should be uniquely determined
2 ordering shouldn’t really matter (especially since we are trying to use it

to solve ideal membership problem)
3 univariate division algorithm solves ideal membership problem - so our

division algorithm should also solve it

Example 3: G = x2y + xy2 + y2, F1 = y2 − 1 and F2 = xy − 1 with
lex order same as example 2 with order reversed

Note that remainder here is 2x + 1, which is different from remainder
in example 2: (x + y + 1)

Our division algorithm only gives sufficient condition for ideal
membership problem: if G has zero remainder when divided by
(F1, . . . ,Fs) then we know G ∈ (F1, . . . ,Fs)

Example 4: G = xy2 − x , F1 = xy − 1 and F2 = y2 − 1

46 / 70



Does it have the properties we want?

What properties would we want from a division algorithm?
1 remainder should be uniquely determined
2 ordering shouldn’t really matter (especially since we are trying to use it

to solve ideal membership problem)
3 univariate division algorithm solves ideal membership problem - so our

division algorithm should also solve it

Example 3: G = x2y + xy2 + y2, F1 = y2 − 1 and F2 = xy − 1 with
lex order same as example 2 with order reversed

Note that remainder here is 2x + 1, which is different from remainder
in example 2: (x + y + 1)

Our division algorithm only gives sufficient condition for ideal
membership problem: if G has zero remainder when divided by
(F1, . . . ,Fs) then we know G ∈ (F1, . . . ,Fs)

Example 4: G = xy2 − x , F1 = xy − 1 and F2 = y2 − 1

The “fix” for this division algorithm is to find a good basis for the
ideal generated by F1, . . . ,Fs - the so-called Gröbner basis

47 / 70



Two Familiar Division Algorithms

Generalization: Multivariate Multipolynomial Division

Issues with the division algorithm

Monomial Ideals & Dickson’s Lemma

Conclusion

Acknowledgements

48 / 70



Description of Ideals

In the definition of algebraic sets, we used any family of polynomials
F to define an algebraic set (or the ideal IF ).

Question

Does every ideal of F[x1, . . . , xn] have a finite description?

2Which was in fact first proved by Gordan.
49 / 70



Description of Ideals

In the definition of algebraic sets, we used any family of polynomials
F to define an algebraic set (or the ideal IF ).

Question

Does every ideal of F[x1, . . . , xn] have a finite description?

Today we will address this question for monomial ideals. This will be
done by Dickson’s lemma2

2Which was in fact first proved by Gordan.
50 / 70



Description of Ideals

In the definition of algebraic sets, we used any family of polynomials
F to define an algebraic set (or the ideal IF ).

Question

Does every ideal of F[x1, . . . , xn] have a finite description?

Today we will address this question for monomial ideals. This will be
done by Dickson’s lemma2

A monomial ideal is any ideal generated by a family F of monomials
(not necessarily a finite number of them)

2Which was in fact first proved by Gordan.
51 / 70



Description of Ideals

In the definition of algebraic sets, we used any family of polynomials
F to define an algebraic set (or the ideal IF ).

Question

Does every ideal of F[x1, . . . , xn] have a finite description?

Today we will address this question for monomial ideals. This will be
done by Dickson’s lemma2

A monomial ideal is any ideal generated by a family F of monomials
(not necessarily a finite number of them)

Theorem (Dickson’s lemma)

Let I = (xα | α ∈ F) ⊂ F[x1, . . . , xn] be a monomial ideal. Then I can be
written as I = (xα(1), . . . , xα(s)), where α(1), . . . ,α(s) ∈ F

2Which was in fact first proved by Gordan.
52 / 70



Dickson’s Lemma - picture & example

Example: I = (x4y2, x3y4, x2y5) ⊂ F[x , y ]

53 / 70



Proof of Dickson’s Lemma

Induction on number of variables:

54 / 70



Proof of Dickson’s Lemma

Induction on number of variables:
1 n = 1 then we know all monomial ideals are generated by xα1 for some

α ∈ N. If β ∈ F is its smallest element, then we have I = (xβ1 )

55 / 70



Proof of Dickson’s Lemma

Induction on number of variables:
1 n = 1 then we know all monomial ideals are generated by xα1 for some

α ∈ N. If β ∈ F is its smallest element, then we have I = (xβ1 )
2 Suppose n ≥ 1 and theorem proved for n. Let us now prove it for n+ 1

variables. Rewrite variables as x1, . . . , xn, y .

56 / 70



Proof of Dickson’s Lemma

Induction on number of variables:
1 n = 1 then we know all monomial ideals are generated by xα1 for some

α ∈ N. If β ∈ F is its smallest element, then we have I = (xβ1 )
2 Suppose n ≥ 1 and theorem proved for n. Let us now prove it for n+ 1

variables. Rewrite variables as x1, . . . , xn, y .
3 Let J ⊆ F[x1, . . . , xn] be the monomial ideal generated by xα such that

xα · ym ∈ I for some m ≥ 0.

57 / 70



Proof of Dickson’s Lemma

Induction on number of variables:
1 n = 1 then we know all monomial ideals are generated by xα1 for some

α ∈ N. If β ∈ F is its smallest element, then we have I = (xβ1 )
2 Suppose n ≥ 1 and theorem proved for n. Let us now prove it for n+ 1

variables. Rewrite variables as x1, . . . , xn, y .
3 Let J ⊆ F[x1, . . . , xn] be the monomial ideal generated by xα such that

xα · ym ∈ I for some m ≥ 0.
4 J is finitely generated, say J = (xα(1), · · · , xα(s))

58 / 70



Proof of Dickson’s Lemma

Induction on number of variables:
1 n = 1 then we know all monomial ideals are generated by xα1 for some

α ∈ N. If β ∈ F is its smallest element, then we have I = (xβ1 )
2 Suppose n ≥ 1 and theorem proved for n. Let us now prove it for n+ 1

variables. Rewrite variables as x1, . . . , xn, y .
3 Let J ⊆ F[x1, . . . , xn] be the monomial ideal generated by xα such that

xα · ym ∈ I for some m ≥ 0.
4 J is finitely generated, say J = (xα(1), · · · , xα(s))
5 Let mi ∈ N be smallest integer such that xα(i) · ymi ∈ I , and let

N := maxmi . And let IN := (xα(1) · ym1 , . . . , xα(s) · yms )

59 / 70



Proof of Dickson’s Lemma

Induction on number of variables:
1 n = 1 then we know all monomial ideals are generated by xα1 for some

α ∈ N. If β ∈ F is its smallest element, then we have I = (xβ1 )
2 Suppose n ≥ 1 and theorem proved for n. Let us now prove it for n+ 1

variables. Rewrite variables as x1, . . . , xn, y .
3 Let J ⊆ F[x1, . . . , xn] be the monomial ideal generated by xα such that

xα · ym ∈ I for some m ≥ 0.
4 J is finitely generated, say J = (xα(1), · · · , xα(s))
5 Let mi ∈ N be smallest integer such that xα(i) · ymi ∈ I , and let

N := maxmi . And let IN := (xα(1) · ym1 , . . . , xα(s) · yms )
6 Any xβym in I such that m ≥ N is in IN .

60 / 70



Proof of Dickson’s Lemma

Induction on number of variables:
1 n = 1 then we know all monomial ideals are generated by xα1 for some

α ∈ N. If β ∈ F is its smallest element, then we have I = (xβ1 )
2 Suppose n ≥ 1 and theorem proved for n. Let us now prove it for n+ 1

variables. Rewrite variables as x1, . . . , xn, y .
3 Let J ⊆ F[x1, . . . , xn] be the monomial ideal generated by xα such that

xα · ym ∈ I for some m ≥ 0.
4 J is finitely generated, say J = (xα(1), · · · , xα(s))
5 Let mi ∈ N be smallest integer such that xα(i) · ymi ∈ I , and let

N := maxmi . And let IN := (xα(1) · ym1 , . . . , xα(s) · yms )
6 Any xβym in I such that m ≥ N is in IN .
7 For 0 ≤ � < N, let J� ⊆ F[x] be the monomial ideal defined by

xα ∈ J� ⇔ xαy � ∈ I . Also finitely generated. J� = (xα�(1), . . . , xα�(s�))

61 / 70



Proof of Dickson’s Lemma

Induction on number of variables:
1 n = 1 then we know all monomial ideals are generated by xα1 for some

α ∈ N. If β ∈ F is its smallest element, then we have I = (xβ1 )
2 Suppose n ≥ 1 and theorem proved for n. Let us now prove it for n+ 1

variables. Rewrite variables as x1, . . . , xn, y .
3 Let J ⊆ F[x1, . . . , xn] be the monomial ideal generated by xα such that

xα · ym ∈ I for some m ≥ 0.
4 J is finitely generated, say J = (xα(1), · · · , xα(s))
5 Let mi ∈ N be smallest integer such that xα(i) · ymi ∈ I , and let

N := maxmi . And let IN := (xα(1) · ym1 , . . . , xα(s) · yms )
6 Any xβym in I such that m ≥ N is in IN .
7 For 0 ≤ � < N, let J� ⊆ F[x] be the monomial ideal defined by

xα ∈ J� ⇔ xαy � ∈ I . Also finitely generated. J� = (xα�(1), . . . , xα�(s�))
8 Let I� := (xα�(1) · y �, . . . , xα�(s�) · y �)

62 / 70



Proof of Dickson’s Lemma

Induction on number of variables:
1 n = 1 then we know all monomial ideals are generated by xα1 for some

α ∈ N. If β ∈ F is its smallest element, then we have I = (xβ1 )
2 Suppose n ≥ 1 and theorem proved for n. Let us now prove it for n+ 1

variables. Rewrite variables as x1, . . . , xn, y .
3 Let J ⊆ F[x1, . . . , xn] be the monomial ideal generated by xα such that

xα · ym ∈ I for some m ≥ 0.
4 J is finitely generated, say J = (xα(1), · · · , xα(s))
5 Let mi ∈ N be smallest integer such that xα(i) · ymi ∈ I , and let

N := maxmi . And let IN := (xα(1) · ym1 , . . . , xα(s) · yms )
6 Any xβym in I such that m ≥ N is in IN .
7 For 0 ≤ � < N, let J� ⊆ F[x] be the monomial ideal defined by

xα ∈ J� ⇔ xαy � ∈ I . Also finitely generated. J� = (xα�(1), . . . , xα�(s�))
8 Let I� := (xα�(1) · y �, . . . , xα�(s�) · y �)
9 Show that I = I0 + I1 + · · ·+ IN

63 / 70



Proof of Dickson’s lemma

64 / 70



Consequences of Dickson’s lemma
Dickson’s lemma helps us decide if a monomial relation is a proper
monomial ordering

Corollary (Monomial Order Criterion)

If > is a relation on Nn satsifying

1 > is a total ordering on Nn

2 α > β and γ ∈ Nn then α+ γ > β + γ

Then > is a well-ordering if, and only if, α ≥ 0 for all α ∈ Nn.

65 / 70



Consequences of Dickson’s lemma
Dickson’s lemma helps us decide if a monomial relation is a proper
monomial ordering

Corollary (Monomial Order Criterion)

If > is a relation on Nn satsifying

1 > is a total ordering on Nn

2 α > β and γ ∈ Nn then α+ γ > β + γ

Then > is a well-ordering if, and only if, α ≥ 0 for all α ∈ Nn.

As we will see later in the course, this is great as different monomial
orderings are used for different purposes.

elimination ordering
graded rev-lex order used in most ideal membership tasks

66 / 70



Consequences of Dickson’s lemma
Dickson’s lemma helps us decide if a monomial relation is a proper
monomial ordering

Corollary (Monomial Order Criterion)

If > is a relation on Nn satsifying

1 > is a total ordering on Nn

2 α > β and γ ∈ Nn then α+ γ > β + γ

Then > is a well-ordering if, and only if, α ≥ 0 for all α ∈ Nn.

As we will see later in the course, this is great as different monomial
orderings are used for different purposes.

elimination ordering
graded rev-lex order used in most ideal membership tasks

From the set of bases for a monomial ideal, there is one which is
better than others:

A minimal basis of a monomial ideal is one where none of the
generators is divisible by another generator.

67 / 70



Two Familiar Division Algorithms

Generalization: Multivariate Multipolynomial Division

Issues with the division algorithm

Monomial Ideals & Dickson’s Lemma

Conclusion

Acknowledgements

68 / 70



Conclusion

Today we learned about the division algorithm and Dickson’s lemma

Division algorithm generalizes univariate division algorithm and
Gaussian elimination

Division algorithm is not great - we will fix that by finding a good
basis

Dickson’s lemma shows that monomial ideals are finitely generated

Can use it to have easy criterion for checking monomial orderings

Will use this lemma to prove Hilbert Basis Theorem

69 / 70



Acknowledgement

Lecture based entirely on the book by CLO: Ideals, varieties and
algorithms (see course webpage for a copy - or get online version
through UW library)

70 / 70


