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Ring Basics

Given a ring R, an ideal I ⊂ R is a subset of the ring R such that:
1 I is closed under addition

a, b ∈ I ⇒ a+ b ∈ I

2 I is closed under multiplication by elements of R

a ∈ I , s ∈ R ⇒ s · a ∈ I
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Ring Basics

Given a ring R, an ideal I ⊂ R is a subset of the ring R such that:
1 I is closed under addition

a, b ∈ I ⇒ a+ b ∈ I

2 I is closed under multiplication by elements of R

a ∈ I , s ∈ R ⇒ s · a ∈ I

Examples:
1 (0) is ideal generated by the 0 element of the ring
2 R is an ideal
3 ring of integers Z then the set of all even numbers is the ideal

generated by 2, denoted (2)
4 In Q[x ] the set of all polynomials whose constant coefficient is zero is

the ideal (x) generated by x
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Ring Basics

Given a ring R, an ideal I ⊂ R is a subset of the ring R such that:
1 I is closed under addition

a, b ∈ I ⇒ a+ b ∈ I

2 I is closed under multiplication by elements of R

a ∈ I , s ∈ R ⇒ s · a ∈ I

Examples:
1 (0) is ideal generated by the 0 element of the ring
2 R is an ideal
3 ring of integers Z then the set of all even numbers is the ideal

generated by 2, denoted (2)
4 In Q[x ] the set of all polynomials whose constant coefficient is zero is

the ideal (x) generated by x
5 In Q[x , y ] the set of all polynomials whose constant coefficient is zero

is the ideal (x , y) generated by x and y
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Operations with Ideals

I , J ⊂ R ideals, then:
1 I + J is an ideal
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Operations with Ideals

I , J ⊂ R ideals, then:
1 I + J is an ideal
2 I ∩ J is an ideal
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Operations with Ideals

I , J ⊂ R ideals, then:
1 I + J is an ideal
2 I ∩ J is an ideal
3 IJ := ideal generated by {ab | a ∈ I , b ∈ J}
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Operations with Ideals

I , J ⊂ R ideals, then:
1 I + J is an ideal
2 I ∩ J is an ideal
3 IJ := ideal generated by {ab | a ∈ I , b ∈ J}
4 rad(I ) := {a ∈ R | ∃n ∈ N s.t. an ∈ I} is an ideal
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Quotient Rings

Given a ring R, and an ideal I ⊂ R , we can form equivalence classes
of elements of R modulo I

a ∼ b ⇔ a− b ∈ I
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1 R = Z and I = (2) gives the field Z2

15 / 72



Quotient Rings

Given a ring R, and an ideal I ⊂ R , we can form equivalence classes
of elements of R modulo I

a ∼ b ⇔ a− b ∈ I

If we only consider these equivalence classes, we have the quotient
ring R/I

Examples:
1 R = Z and I = (2) gives the field Z2

2 R = Z and I = (6) gives the ring of integers modulo 6, Z6
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Quotient Rings

Given a ring R, and an ideal I ⊂ R , we can form equivalence classes
of elements of R modulo I

a ∼ b ⇔ a− b ∈ I

If we only consider these equivalence classes, we have the quotient
ring R/I

Examples:
1 R = Z and I = (2) gives the field Z2

2 R = Z and I = (6) gives the ring of integers modulo 6, Z6

An element q ∈ R is irreducible if q is not a unit and q = a · b ⇒
either a or b are a unit.

17 / 72



Quotient Rings

Given a ring R, and an ideal I ⊂ R , we can form equivalence classes
of elements of R modulo I

a ∼ b ⇔ a− b ∈ I

If we only consider these equivalence classes, we have the quotient
ring R/I

Examples:
1 R = Z and I = (2) gives the field Z2

2 R = Z and I = (6) gives the ring of integers modulo 6, Z6

An element q ∈ R is irreducible if q is not a unit and q = a · b ⇒
either a or b are a unit.

An ideal I ⊂ R is prime if for any a, b ∈ R, if ab ∈ I then a ∈ I or
b ∈ I
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Quotient Rings

Given a ring R, and an ideal I ⊂ R , we can form equivalence classes
of elements of R modulo I

a ∼ b ⇔ a− b ∈ I

If we only consider these equivalence classes, we have the quotient
ring R/I

Examples:
1 R = Z and I = (2) gives the field Z2

2 R = Z and I = (6) gives the ring of integers modulo 6, Z6

An element q ∈ R is irreducible if q is not a unit and q = a · b ⇒
either a or b are a unit.

An ideal I ⊂ R is prime if for any a, b ∈ R, if ab ∈ I then a ∈ I or
b ∈ I

Two ideals I , J ⊂ R are coprime if I + J = R
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“Complexities” in Rings

zero divisors: an element a ∈ R is a zero divisor if a �= 0 and there
exists b ∈ R \ {0} such that ab = 0
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exists b ∈ R \ {0} such that ab = 0

Z6 has 2 as zero divisor

a special type of zero divisors are nilpotent elements. These are
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“Complexities” in Rings

zero divisors: an element a ∈ R is a zero divisor if a �= 0 and there
exists b ∈ R \ {0} such that ab = 0

Z6 has 2 as zero divisor

a special type of zero divisors are nilpotent elements. These are
elements a ∈ R such that there exists n ∈ N for which an = 0

Q[x ]/(x2) has x as nilpotent element

Rings with no zero divisors are called integral domains

R/I is a domain whenever I is prime
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Unique Factorization Domains

An integral domain R is a unique factorization domain (UFD) if
1 every element in R is expressed as a product of finitely many

irreducible elements
2 Every irreducible element p ∈ R yields a prime ideal (p)
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Unique Factorization Domains

An integral domain R is a unique factorization domain (UFD) if
1 every element in R is expressed as a product of finitely many

irreducible elements
2 Every irreducible element p ∈ R yields a prime ideal (p)

A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)

Examples of PIDs and UFDs
1 Z is a PID (and hence UFD)
2 Q[x ] is a PID (and hence UFD)
3 any Euclidean domain is a PID (and hence UFD)
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Unique Factorization Domains

An integral domain R is a unique factorization domain (UFD) if
1 every element in R is expressed as a product of finitely many

irreducible elements
2 Every irreducible element p ∈ R yields a prime ideal (p)

A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)

Examples of PIDs and UFDs
1 Z is a PID (and hence UFD)
2 Q[x ] is a PID (and hence UFD)
3 any Euclidean domain is a PID (and hence UFD)
4 Q[x , y ] is a UFD but not a PID
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Ring Homomorphisms

A homomorphism between rings R, S is a map φ : R → S preserving
the ring structure

1 φ(1) = 1
2 φ(a + b) = φ(a) + φ(b)
3 φ(ab) = φ(a) · φ(b)
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Ring Homomorphisms

A homomorphism between rings R, S is a map φ : R → S preserving
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Natural homomorphism between a ring R and its quotient R/I
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Ring Homomorphisms

A homomorphism between rings R, S is a map φ : R → S preserving
the ring structure

1 φ(1) = 1
2 φ(a + b) = φ(a) + φ(b)
3 φ(ab) = φ(a) · φ(b)

Natural homomorphism between a ring R and its quotient R/I

Two rings R , S are isomorphic, denoted R � S if there are two
homomorphisms φ : R → S and ψ : S → R such that

φ ◦ ψ : S → S and ψ ◦ φ : R → R

are the identity homomorphisms.
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Ring Homomorphisms

A homomorphism between rings R, S is a map φ : R → S preserving
the ring structure

1 φ(1) = 1
2 φ(a + b) = φ(a) + φ(b)
3 φ(ab) = φ(a) · φ(b)

Natural homomorphism between a ring R and its quotient R/I

Two rings R , S are isomorphic, denoted R � S if there are two
homomorphisms φ : R → S and ψ : S → R such that

φ ◦ ψ : S → S and ψ ◦ φ : R → R

are the identity homomorphisms.

Example:
Z6 � Z2 × Z3
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Algebraic Sets

Given a collection of polynomials F ⊂ F[x1, . . . , xn] the set

V (F) := {(a1, . . . , an) ∈ Fn | f (a1, . . . , an) = 0 for all f ∈ F}

is called an algebraic set.
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Given a collection of polynomials F ⊂ F[x1, . . . , xn] the set

V (F) := {(a1, . . . , an) ∈ Fn | f (a1, . . . , an) = 0 for all f ∈ F}

is called an algebraic set.

Set of all solutions to the system of equations defined by
f (x1, . . . , xn) = 0 for all f ∈ F
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V (F) := {(a1, . . . , an) ∈ Fn | f (a1, . . . , an) = 0 for all f ∈ F}

is called an algebraic set.
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f (x1, . . . , xn) = 0 for all f ∈ F
For this part of the course, we assume that F is algebraically closed,
as we don’t want certain oddities to come up.
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Algebraic Sets

Given a collection of polynomials F ⊂ F[x1, . . . , xn] the set

V (F) := {(a1, . . . , an) ∈ Fn | f (a1, . . . , an) = 0 for all f ∈ F}

is called an algebraic set.

Set of all solutions to the system of equations defined by
f (x1, . . . , xn) = 0 for all f ∈ F
For this part of the course, we assume that F is algebraically closed,
as we don’t want certain oddities to come up.

Examples:
1 Circle: V (x2 + y2 − 1)
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Algebraic Sets

Given a collection of polynomials F ⊂ F[x1, . . . , xn] the set

V (F) := {(a1, . . . , an) ∈ Fn | f (a1, . . . , an) = 0 for all f ∈ F}

is called an algebraic set.

Set of all solutions to the system of equations defined by
f (x1, . . . , xn) = 0 for all f ∈ F
For this part of the course, we assume that F is algebraically closed,
as we don’t want certain oddities to come up.

Examples:
1 Circle: V (x2 + y2 − 1)
2 Lorenz cone: V (z2 − x2 − y2)
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Algebraic Sets

Given a collection of polynomials F ⊂ F[x1, . . . , xn] the set

V (F) := {(a1, . . . , an) ∈ Fn | f (a1, . . . , an) = 0 for all f ∈ F}

is called an algebraic set.

Set of all solutions to the system of equations defined by
f (x1, . . . , xn) = 0 for all f ∈ F
For this part of the course, we assume that F is algebraically closed,
as we don’t want certain oddities to come up.

Examples:
1 Circle: V (x2 + y2 − 1)
2 Lorenz cone: V (z2 − x2 − y2)
3 Twisted Cubic: V (y − x2, z − x3)
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Algebraic Sets

Given a collection of polynomials F ⊂ F[x1, . . . , xn] the set

V (F) := {(a1, . . . , an) ∈ Fn | f (a1, . . . , an) = 0 for all f ∈ F}

is called an algebraic set.

Set of all solutions to the system of equations defined by
f (x1, . . . , xn) = 0 for all f ∈ F
For this part of the course, we assume that F is algebraically closed,
as we don’t want certain oddities to come up.

Examples:
1 Circle: V (x2 + y2 − 1)
2 Lorenz cone: V (z2 − x2 − y2)
3 Twisted Cubic: V (y − x2, z − x3)
4 Line and Hyperplane: V (xz , yz)
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Algebraic Sets

Given a collection of polynomials F ⊂ F[x1, . . . , xn] the set

V (F) := {(a1, . . . , an) ∈ Fn | f (a1, . . . , an) = 0 for all f ∈ F}

is called an algebraic set.

Set of all solutions to the system of equations defined by
f (x1, . . . , xn) = 0 for all f ∈ F
For this part of the course, we assume that F is algebraically closed,
as we don’t want certain oddities to come up.

Examples:
1 Circle: V (x2 + y2 − 1)
2 Lorenz cone: V (z2 − x2 − y2)
3 Twisted Cubic: V (y − x2, z − x3)
4 Line and Hyperplane: V (xz , yz)
5 Solutions of linear system of equations V (Ax− b)
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Properties of algebraic sets

U,V are algebraic sets, so are U ∪ V and U ∩ V
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V (F) = V (IF )
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the set F and the ideal IF generated by the elements of F define the
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Properties of algebraic sets

U,V are algebraic sets, so are U ∪ V and U ∩ V

the set F and the ideal IF generated by the elements of F define the
same algebraic set

V (F) = V (IF )

For any ideal I ⊂ F[x1, . . . , xn]

V (I ) = V (rad(I ))

If I , J ideals
I ⊂ J ⇒ V (J) ⊂ V (I )

Relationship between I and I (V (I ))

Theorem (Hilbert’s Nullstellensatz)

For every ideal I ⊆ F[x1, . . . , xn], where F is algebraically closed, we have:

rad(I ) = I (V (I ))

48 / 72



Algebraic functions over algebraic sets

It will be very important for us to study algebraic functions over
algebraic sets

Understanding these functions will help us understand the algebraic
sets themselves! (and potentially more!)
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Algebraic functions over algebraic sets

It will be very important for us to study algebraic functions over
algebraic sets

Understanding these functions will help us understand the algebraic
sets themselves! (and potentially more!)

Given ideal I and algebraic set V (I ) ⊂ Fn, note that two polynomials
f , g ∈ F[x1, . . . , xn] yield same function iff

f − g ∈ I .
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Algebraic functions over algebraic sets

It will be very important for us to study algebraic functions over
algebraic sets

Understanding these functions will help us understand the algebraic
sets themselves! (and potentially more!)

Given ideal I and algebraic set V (I ) ⊂ Fn, note that two polynomials
f , g ∈ F[x1, . . . , xn] yield same function iff

f − g ∈ I .

Naturally each algebraic set V (I ) has its coordinate ring

F[V ] := F[x1, . . . , xn]/I
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Algebraic functions over algebraic sets

It will be very important for us to study algebraic functions over
algebraic sets

Understanding these functions will help us understand the algebraic
sets themselves! (and potentially more!)

Given ideal I and algebraic set V (I ) ⊂ Fn, note that two polynomials
f , g ∈ F[x1, . . . , xn] yield same function iff

f − g ∈ I .

Naturally each algebraic set V (I ) has its coordinate ring

F[V ] := F[x1, . . . , xn]/I

These rings could help us understand extra properties of the set V (I ),
which may not be captured by V (I ) (for instance, multiplicities)
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Algebraic Varieties

An algebraic set V is said to be irreducible if for any decomposition

V = U ∪W ⇒ U = V or W = W
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Algebraic Varieties

An algebraic set V is said to be irreducible if for any decomposition

V = U ∪W ⇒ U = V or W = W

When the algebraic set V (I ) is irreducible, we call it an algebraic
variety.
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Algebraic Varieties

An algebraic set V is said to be irreducible if for any decomposition

V = U ∪W ⇒ U = V or W = W

When the algebraic set V (I ) is irreducible, we call it an algebraic
variety.

Practice problem: prove that I prime then V (I ) is irreducible.
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Description of Ideals

In the definition of algebraic sets, we used any family of polynomials
F to define an algebraic set (or the ideal IF ).

Question

Does every ideal of F[x1, . . . , xn] have a finite description?

1We will even get to see his motivation to prove it!
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In the definition of algebraic sets, we used any family of polynomials
F to define an algebraic set (or the ideal IF ).

Question

Does every ideal of F[x1, . . . , xn] have a finite description?

In coming lectures we will show that to be the case - a result known
as Hilbert’s basis theorem1

1We will even get to see his motivation to prove it!
58 / 72



Description of Ideals

In the definition of algebraic sets, we used any family of polynomials
F to define an algebraic set (or the ideal IF ).

Question

Does every ideal of F[x1, . . . , xn] have a finite description?

In coming lectures we will show that to be the case - a result known
as Hilbert’s basis theorem1

As it turns out, his proof (actually Gordan’s simplification of Hilbert’s
proof) can be modified to construct Gröbner bases of an ideal, which
are extremely important!

The proof of Hilbert’s basis theorem yields a multivariate polynomial
division algorithm, generalizing

Gaussian Elimination
Euclidean Division

1We will even get to see his motivation to prove it!
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Ideal Membership Problem

Once we know that every ideal in F[x1, . . . , xn] is finitely generated,
our first algorithmic question is:
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Ideal Membership Problem

Once we know that every ideal in F[x1, . . . , xn] is finitely generated,
our first algorithmic question is:

Input: polynomials g , f1, . . . , fs ∈ F[x1, . . . , xn]
Output: is g ∈ (f1, . . . , fs)?

Problem above is ideal membership problem
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Ideal Membership Problem

Once we know that every ideal in F[x1, . . . , xn] is finitely generated,
our first algorithmic question is:

Input: polynomials g , f1, . . . , fs ∈ F[x1, . . . , xn]
Output: is g ∈ (f1, . . . , fs)?

Problem above is ideal membership problem

Fundamental computational problem

Decidable

Our multivariate and multipolynomial division will give us an
algorithm!

EXPSPACE complete [Mayr & Meyer 80s]
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Implicitization Problem

Sometimes an algebraic set2 is given to us in parametric form

2or “most” of it
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Implicitization Problem

Sometimes an algebraic set2 is given to us in parametric form

Examples:

all matrices of rank ≤ r
all tensors of rank ≤ r
all polynomials computed by depth 3 circuits with top fanin k
Twisted cubic: {(t, t2, t3) | t ∈ F}

2or “most” of it
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Implicitization Problem

Sometimes an algebraic set2 is given to us in parametric form

Examples:

all matrices of rank ≤ r
all tensors of rank ≤ r
all polynomials computed by depth 3 circuits with top fanin k
Twisted cubic: {(t, t2, t3) | t ∈ F}

Which begs the computational question:

Input: given a parametric description of a an algebraic set V ⊂ Fn

Output: Equations f1, . . . , fs ∈ F[x1, . . . , xn] such that

V = V (f1, . . . , fs)

2or “most” of it
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Solving Polynomial Equations

Input: polynomials f1, . . . , fs ∈ F[x1, . . . , xn]
Output: is V (f1, . . . , fs) = ∅? If not empty, output a solution
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Solving Polynomial Equations

Input: polynomials f1, . . . , fs ∈ F[x1, . . . , xn]
Output: is V (f1, . . . , fs) = ∅? If not empty, output a solution

The decision version of this problem is known as Hilbert’s
Nullstellensatz problem.
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Solving Polynomial Equations

Input: polynomials f1, . . . , fs ∈ F[x1, . . . , xn]
Output: is V (f1, . . . , fs) = ∅? If not empty, output a solution

The decision version of this problem is known as Hilbert’s
Nullstellensatz problem.

(weak) Nullstellensatz gives us a certificate that a system of
polynomial equations has NO solutions

A solution (a1, . . . , an) is a certificate of a solution

This gives rise to an algebraic proof system! This proof system and
its variants are widely used in computer science.
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Conclusion

Today we saw overview of rings and algebraic sets

Saw the relationship between ideals and algebraic sets

Algebraic functions over varieties defined via coordinate rings

Lots of computational questions related to algebraic sets

Glimpse of hardness of algebraic computation (EXPSPACE territory)
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