Lecture 12: Introduction to Commutative Algebra and Algebraic Geometry

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

February 24, 2021

Overview

- Elementary Commutative Algebra
- Algebraic Sets
- Structural \& Computational Questions
- Conclusion
- Acknowledgements

Ring Basics

- Given a ring R, an ideal $I \subset R$ is a subset of the ring R such that:
(1) I is closed under addition

$$
a, b \in I \Rightarrow a+b \in I
$$

(2) I is closed under multiplication by elements of R

$$
a \in I, s \in R \Rightarrow s \cdot a \in I
$$

Ring Basics

- Given a ring R, an ideal $I \subset R$ is a subset of the ring R such that:
(1) I is closed under addition

$$
a, b \in I \Rightarrow a+b \in I
$$

(2) I is closed under multiplication by elements of R

$$
a \in I, s \in R \Rightarrow s \cdot a \in I
$$

- Examples:
(1) (0) is ideal generated by the 0 element of the ring

Ring Basics

- Given a ring R, an ideal $I \subset R$ is a subset of the ring R such that:
(1) I is closed under addition

$$
a, b \in I \Rightarrow a+b \in I
$$

(2) I is closed under multiplication by elements of R

$$
a \in I, s \in R \Rightarrow s \cdot a \in I
$$

- Examples:
(1) (0) is ideal generated by the 0 element of the ring
(2) R is an ideal

Ring Basics

- Given a ring R, an ideal $I \subset R$ is a subset of the ring R such that:
(1) I is closed under addition

$$
a, b \in I \Rightarrow a+b \in I
$$

(2) I is closed under multiplication by elements of R

$$
a \in I, s \in R \Rightarrow s \cdot a \in I
$$

- Examples:
(1) (0) is ideal generated by the 0 element of the ring
(2) R is an ideal
(3) ring of integers \mathbb{Z} then the set of all even numbers is the ideal generated by 2 , denoted (2)
$I=\left\{\sum_{i=1}^{t} a_{i} r_{i} \quad \mid \quad r_{i} \in R\right\}=:\left(a_{11} \ldots, a_{t}\right)$

Ring Basics

- Given a ring R, an ideal $I \subset R$ is a subset of the ring R such that:
(1) I is closed under addition

$$
a, b \in I \Rightarrow a+b \in I
$$

(2) I is closed under multiplication by elements of R

$$
a \in I, s \in R \Rightarrow s \cdot a \in I
$$

- Examples:
(1) (0) is ideal generated by the 0 element of the ring
(2) R is an ideal
(3) ring of integers \mathbb{Z} then the set of all even numbers is the ideal generated by 2 , denoted (2)
(9) In $\mathbb{Q}[x]$ the set of all polynomials whose constant coefficient is zero is the ideal (x) generated by x
$(x)=\{f(x) \in \mathbb{Q}[x] \mid f(0)=0\}$

Ring Basics

- Given a ring R, an ideal $I \subset R$ is a subset of the ring R such that:
(1) I is closed under addition

$$
a, b \in I \Rightarrow a+b \in I
$$

(2) I is closed under multiplication by elements of R

$$
a \in I, s \in R \Rightarrow s \cdot a \in I
$$

- Examples:
(1) (0) is ideal generated by the 0 element of the ring
(2) R is an ideal
(3) ring of integers \mathbb{Z} then the set of all even numbers is the ideal generated by 2 , denoted (2)
(9) In $\mathbb{Q}[x]$ the set of all polynomials whose constant coefficient is zero is the ideal (x) generated by x
(5) In $\mathbb{Q}[x, y]$ the set of all polynomials whose constant coefficient is zero is the ideal (x, y) generated by x and y
$(x, y)=\{f(x, y) \in \mathbb{Q}[x, y] \mid f(0,0)=0\}$

Operations with Ideals

- $I, J \subset R$ ideals, then:
(1) $I+J$ is an ideal

$$
I+J=\{a+b \mid a \in I, b \in J\}
$$

Operations with Ideals

- $I, J \subset R$ ideals, then:
(1) $I+J$ is an ideal
(2) $I \cap J$ is an ideal

$$
I \cap J=\left\{a \in R \left\lvert\, \begin{array}{c}
a \in I \text { and } \\
a \in J
\end{array}\right.\right\}
$$

Operations with Ideals

- $I, J \subset R$ ideals, then:
(1) $I+J$ is an ideal
(2) $I \cap J$ is an ideal
(3) $I J:=$ ideal generated by $\{a b \mid a \in I, b \in J\}$
∞ 'll many generators

$$
\begin{aligned}
& I=\left(a_{1}, a_{t}\right) \quad I J=\left(a_{i} b_{j}\right)_{i, j}, \\
& J=\left(b_{1}, \ldots, b_{n}\right)
\end{aligned}
$$

Operations with Ideals

- $I, J \subset R$ ideals, then:
(1) $I+J$ is an ideal
(2) $I \cap J$ is an ideal
(3) IJ:= ideal generated by $\{a b \mid a \in I, b \in J\}$
(4) $\operatorname{rad}(I):=\left\{a \in R \mid \exists n \in \mathbb{N}\right.$ s.t. $\left.a^{n} \in I\right\}$ is an ideal

$$
\begin{aligned}
& I=\left(x^{2}\right) \subset \mathbb{C}[x] \\
& \operatorname{rad}(I)=(x)
\end{aligned}
$$

Quotient Rings

- Given a ring R, and an ideal $I \subset R$, we can form equivalence classes of elements of R modulo $/$

$$
a \sim b \Leftrightarrow a-b \in I
$$

Quotient Rings

- Given a ring R, and an ideal $I \subset R$, we can form equivalence classes of elements of R modulo I

$$
a \sim b \Leftrightarrow a-b \in I
$$

- If we only consider these equivalence classes, we have the quotient ring R / I

Quotient Rings

－Given a ring R ，and an ideal $I \subset R$ ，we can form equivalence classes of elements of R modulo I

$$
a \sim b \Leftrightarrow a-b \in I
$$

－If we only consider these equivalence classes，we have the quotient ring R / I
－Examples：
（1）$R=\mathbb{Z}$ and $I=(2)$ gives the field \mathbb{Z}_{2} ブったた

Quotient Rings

- Given a ring R, and an ideal $I \subset R$, we can form equivalence classes of elements of R modulo $/$

$$
a \sim b \Leftrightarrow a-b \in I
$$

- If we only consider these equivalence classes, we have the quotient ring R / I
- Examples:
(1) $R=\mathbb{Z}$ and $I=(2)$ gives the field \mathbb{Z}_{2}
(2) $R=\mathbb{Z}$ and $I=(6)$ gives the ring of integers modulo $6, \mathbb{Z}_{6}$ $7 Z_{6}$ not a domain (not field)
zers divisor $\overline{3} \cdot \overline{2}=\overline{0}$

Quotient Rings

- Given a ring R, and an ideal $I \subset R$, we can form equivalence classes of elements of R modulo $/$

$$
a \sim b \Leftrightarrow a-b \in I
$$

- If we only consider these equivalence classes, we have the quotient ring R / I
- Examples:
(1) $R=\mathbb{Z}$ and $I=(2)$ gives the field \mathbb{Z}_{2}
(2) $R=\mathbb{Z}$ and $I=(6)$ gives the ring of integers modulo $6, \mathbb{Z}_{6}$
- An element $q \in R$ is irreducible if q is not a unit and $q=a \cdot b \Rightarrow$ either a or b are a unit.

Quotient Rings

- Given a ring R, and an ideal $I \subset R$, we can form equivalence classes of elements of R modulo $/$

$$
a \sim b \Leftrightarrow a-b \in I
$$

- If we only consider these equivalence classes, we have the quotient ring R / I
- Examples:
(1) $R=\mathbb{Z}$ and $I=(2)$ gives the field \mathbb{Z}_{2}
(2) $R=\mathbb{Z}$ and $I=(6)$ gives the ring of integers modulo $6, \mathbb{Z}_{6}$
- An element $q \in R$ is irreducible if q is not a unit and $q=a \cdot b \Rightarrow$ either a or b are a unit.
- An ideal $I \subset R$ is prime if for any $a, b \in R$, if $a b \in I$ then $a \in I$ or $b \in I$

Quotient Rings

- Given a ring R, and an ideal $I \subset R$, we can form equivalence classes of elements of R modulo $/$

$$
a \sim b \Leftrightarrow a-b \in I
$$

- If we only consider these equivalence classes, we have the quotient ring R / I
- Examples:
(1) $R=\mathbb{Z}$ and $I=(2)$ gives the field \mathbb{Z}_{2}
(2) $R=\mathbb{Z}$ and $I=(6)$ gives the ring of integers modulo $6, \mathbb{Z}_{6}$
- An element $q \in R$ is irreducible if q is not a unit and $q=a \cdot b \Rightarrow$ either a or b are a unit.
- An ideal $I \subset R$ is prime if for any $a, b \in R$, if $a b \in I$ then $a \in I$ or $b \in I$
- Two ideals $I, J \subset R$ are coprime if $I+J=R$

$$
(a)+(b)=(\operatorname{gcd}(a, b))
$$

"Complexities" in Rings

- zero divisors: an element $a \in R$ is a zero divisor if $a \neq 0$ and there exists $b \in R \backslash\{0\}$ such that $a b=0$

"Complexities" in Rings

- zero divisors: an element $a \in R$ is a zero divisor if $a \neq 0$ and there exists $b \in R \backslash\{0\}$ such that $a b=0$
- \mathbb{Z}_{6} has 2 as zero divisor
"Complexities" in Rings
- zero divisors: an element $a \in R$ is a zero divisor if $a \neq 0$ and there exists $b \in R \backslash\{0\}$ such that $a b=0$
- \mathbb{Z}_{6} has 2 as zero divisor
- a special type of zero divisors are nilpotent elements. These are notus elements $a \in R$ such that there exists $n \in \mathbb{N}$ for which $a^{n}=0$
- $\mathbb{Q}[x] /\left(x^{2}\right)$ has x as nilpotent element

$$
\begin{aligned}
x \neq 0 \quad \text { but } x^{2} & \in\left(x^{2}\right) \\
& \Rightarrow x^{2}=0 \text { in } \mathbb{Q}[x] /\left(x^{2}\right)
\end{aligned}
$$

"Complexities" in Rings

- zero divisors: an element $a \in R$ is a zero divisor if $a \neq 0$ and there exists $b \in R \backslash\{0\}$ such that $a b=0$
- \mathbb{Z}_{6} has 2 as zero divisor
- a special type of zero divisors are nilpotent elements. These are elements $a \in R$ such that there exists $n \in \mathbb{N}$ for which $a^{n}=0$
- $\mathbb{Q}[x] /\left(x^{2}\right)$ has x as nilpotent element
- Rings with no zero divisors are called integral domains
- R / I is a domain whenever I is prime
$a b \in I \Rightarrow a \in I$ or $b \in I$

$$
\begin{aligned}
\bar{a}, \bar{b} & \in R / I \quad \bar{a} \cdot \bar{b}=\overline{0} \Leftrightarrow a \cdot b \in I \\
& \Rightarrow a \in I \quad o \quad b \in I \Rightarrow \bar{a}=\bar{a} \text { or } \bar{b}=0
\end{aligned}
$$

Unique Factorization Domains

- An integral domain R is a unique factorization domain (UFD) if
\rightarrow (1) every element in R is expressed as a product of finitely many irreducible elements
\rightarrow (2) Every irreducible element $p \in R$ yields a prime ideal (p) $\left\{\begin{array}{l}\text { and have ascending chain condition (ACC) } \\ \text { for principal ideas }\end{array}\right.$
principal ideal: ideal generated by single element.
ACC: any chain of principal ideals $($ for principe $)$
id ions $\quad\left(a_{1}\right) \subset\left(a_{2}\right) \subset\left(a_{3}\right) \subset \ldots$

$$
\exists N \in \mathbb{N} \text { att. } \quad\left(a_{N}\right)=\left(a_{N+1}\right)=\left(a_{N+1}\right)=\cdots
$$

Unique Factorization Domains

- An integral domain R is a unique factorization domain (UFD) if
(1) every element in R is expressed as a product of finitely many irreducible elements
(2) Every irreducible element $p \in R$ yields a prime ideal (p)
- A very special kind of UFD, which we have seen a lot, is a principal ideal domain (PID): R is a PID if every ideal of R is principal (generated by one element)

Unique Factorization Domains

- An integral domain R is a unique factorization domain (UFD) if
(1) every element in R is expressed as a product of finitely many irreducible elements
(2) Every irreducible element $p \in R$ yields a prime ideal (p)
- A very special kind of UFD, which we have seen a lot, is a principal ideal domain (PID): R is a PID if every ideal of R is principal (generated by one element)
- Examples of PIDs and UFDs
(1) \mathbb{Z} is a PID (and hence UFD)

Unique Factorization Domains

- An integral domain R is a unique factorization domain (UFD) if
(1) every element in R is expressed as a product of finitely many irreducible elements
(2) Every irreducible element $p \in R$ yields a prime ideal (p)
- A very special kind of UFD, which we have seen a lot, is a principal ideal domain (PID): R is a PID if every ideal of R is principal (generated by one element)
- Examples of PIDs and UFDs
(1) \mathbb{Z} is a PID (and hence UFD)
(2) $\mathbb{Q}[x]$ is a PID (and hence UFD)

Unique Factorization Domains

- An integral domain R is a unique factorization domain (UFD) if
(1) every element in R is expressed as a product of finitely many irreducible elements
(2) Every irreducible element $p \in R$ yields a prime ideal (p)
- A very special kind of UFD, which we have seen a lot, is a principal ideal domain (PID): R is a PID if every ideal of R is principal (generated by one element)
- Examples of PIDs and UFDs
(1) \mathbb{Z} is a PID (and hence UFD)
(2) $\mathbb{Q}[x]$ is a PID (and hence UFD)
(3) any Euclidean domain is a PID (and hence UFD)

Unique Factorization Domains

- An integral domain R is a unique factorization domain (UFD) if
(1) every element in R is expressed as a product of finitely many irreducible elements
(2) Every irreducible element $p \in R$ yields a prime ideal (p)
- A very special kind of UFD, which we have seen a lot, is a principal ideal domain (PID): R is a PID if every ideal of R is principal (generated by one element)
- Examples of RIDs and UFDs
(1) \mathbb{Z} is a PID (and hence UFD)
(2) $\mathbb{Q}[x]$ is a PID (and hence UFD)
(3) any Euclidean domain is a PID (and hence UFD)
(9) $\mathbb{Q}[x, y]$ is a UFD but not a PID

Ring Homomorphisms

- A homomorphism between rings R, S is a map $\phi: R \rightarrow S$ preserving the ring structure
(1) $\phi(1)=1$ unit
(2) $\phi(a+b)=\phi(a)+\phi(b)$
addition
(3) $\phi(a b)=\phi(a) \cdot \phi(b)$ multiplication

Rings \leftrightarrow commutative rings with unit

Ring Homomorphisms

- A homomorphism between rings R, S is a map $\phi: R \rightarrow S$ preserving the ring structure
(1) $\phi(1)=1$
(2) $\phi(a+b)=\phi(a)+\phi(b)$
(3) $\phi(a b)=\phi(a) \cdot \phi(b)$
- Natural homomorphism between a ring R and its quotient R / I

Ring Homomorphisms

- A homomorphism between rings R, S is a map $\phi: R \rightarrow S$ preserving the ring structure
(1) $\phi(1)=1$
(2) $\phi(a+b)=\phi(a)+\phi(b)$
(3) $\phi(a b)=\phi(a) \cdot \phi(b)$
- Natural homomorphism between a ring R and its quotient R / I
- Two rings R, S are isomorphic, denoted $R \simeq S$ if there are two homomorphisms $\phi: R \rightarrow S$ and $\psi: S \rightarrow R$ such that

$$
\phi \circ \psi: S \rightarrow S \quad \text { and } \quad \psi \circ \phi: R \rightarrow R
$$

are the identity homomorphisms.

Ring Homomorphisms

- A homomorphism between rings R, S is a map $\phi: R \rightarrow S$ preserving the ring structure
(1) $\phi(1)=1$
(2) $\phi(a+b)=\phi(a)+\phi(b)$
(3) $\phi(a b)=\phi(a) \cdot \phi(b)$
- Natural homomorphism between a ring R and its quotient R / I
- Two rings R, S are isomorphic, denoted $R \simeq S$ if there are two homomorphisms $\phi: R \rightarrow S$ and $\psi: S \rightarrow R$ such that

$$
\phi \circ \psi: S \rightarrow S \quad \text { and } \quad \psi \circ \phi: R \rightarrow R
$$

are the identity homomorphisms.

- Example:

$$
\mathbb{Z}_{6} \simeq \underline{\mathbb{Z}_{2} \times \mathbb{Z}_{3}}
$$

- Elementary Commutative Algebra
- Algebraic Sets
- Structural \& Computational Questions
- Conclusion
- Acknowledgements

Algebraic Sets

- Given a collection of polynomials $\mathcal{F} \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ the set

$$
V(\mathcal{F}):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all } f \in \mathcal{F}\right\}
$$

is called an algebraic set.

Algebraic Sets

- Given a collection of polynomials $\mathcal{F} \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ the set

$$
V(\mathcal{F}):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all } f \in \mathcal{F}\right\}
$$

is called an algebraic set.

- Set of all solutions to the system of equations defined by $f\left(x_{1}, \ldots, x_{n}\right)=0$ for all $f \in \mathcal{F}$

Algebraic Sets

- Given a collection of polynomials $\mathcal{F} \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ the set

$$
V(\mathcal{F}):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all } f \in \mathcal{F}\right\}
$$

is called an algebraic set.

- Set of all solutions to the system of equations defined by $f\left(x_{1}, \ldots, x_{n}\right)=0$ for all $f \in \mathcal{F}$
- For this part of the course, we assume that \mathbb{F} is algebraically closed, as we don't want certain oddities to come up.

Algebraic Sets

- Given a collection of polynomials $\mathcal{F} \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ the set

$$
V(\mathcal{F}):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all } f \in \mathcal{F}\right\}
$$

is called an algebraic set.

- Set of all solutions to the system of equations defined by $f\left(x_{1}, \ldots, x_{n}\right)=0$ for all $f \in \mathcal{F}$
- For this part of the course, we assume that \mathbb{F} is algebraically closed, as we don't want certain oddities to come up.
- Examples:

Algebraic Sets

- Given a collection of polynomials $\mathcal{F} \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ the set

$$
V(\mathcal{F}):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all } f \in \mathcal{F}\right\}
$$

is called an algebraic set.

- Set of all solutions to the system of equations defined by $f\left(x_{1}, \ldots, x_{n}\right)=0$ for all $f \in \mathcal{F}$
- For this part of the course, we assume that \mathbb{F} is algebraically closed, as we don't want certain oddities to come up.
- Examples:
(1) Circle: $V\left(x^{2}+y^{2}-1\right)$

Algebraic Sets

- Given a collection of polynomials $\mathcal{F} \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ the set

$$
V(\mathcal{F}):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all } f \in \mathcal{F}\right\}
$$

is called an algebraic set.

- Set of all solutions to the system of equations defined by $f\left(x_{1}, \ldots, x_{n}\right)=0$ for all $f \in \mathcal{F}$
- For this part of the course, we assume that \mathbb{F} is algebraically closed, as we don't want certain oddities to come up.
- Examples:
(1) Circle: $V\left(x^{2}+y^{2}-1\right)$
(2) Lorenz cone: $V\left(z^{2}-x^{2}-y^{2}\right)$

Algebraic Sets

- Given a collection of polynomials $\mathcal{F} \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ the set

$$
V(\mathcal{F}):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all } f \in \mathcal{F}\right\}
$$

is called an algebraic set.

- Set of all solutions to the system of equations defined by $f\left(x_{1}, \ldots, x_{n}\right)=0$ for all $f \in \mathcal{F}$
- For this part of the course, we assume that \mathbb{F} is algebraically closed, as we don't want certain oddities to come up.
- Examples:
(1) Circle: $V\left(x^{2}+y^{2}-1\right)$
(2) Lorenz cone: $V\left(z^{2}-x^{2}-y^{2}\right)$
(3) Twisted Cubic: $V\left(y-x^{2}, z-x^{3}\right)$

Algebraic Sets

- Given a collection of polynomials $\mathcal{F} \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ the set

$$
V(\mathcal{F}):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all } f \in \mathcal{F}\right\}
$$

is called an algebraic set.

- Set of all solutions to the system of equations defined by $f\left(x_{1}, \ldots, x_{n}\right)=0$ for all $f \in \mathcal{F}$
- For this part of the course, we assume that \mathbb{F} is algebraically closed, as we don't want certain oddities to come up.
- Examples:
(1) Circle: $V\left(x^{2}+y^{2}-1\right)$
(2) Lorenz cone: $V\left(z^{2}-x^{2}-y^{2}\right)$
(3) Twisted Cubic: $V\left(y-x^{2}, z-x^{3}\right)$
(3) Line and Hyperplane: $V(x z, y z)$

Algebraic Sets

- Given a collection of polynomials $\mathcal{F} \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ the set

$$
V(\mathcal{F}):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all } f \in \mathcal{F}\right\}
$$

is called an algebraic set.

- Set of all solutions to the system of equations defined by $f\left(x_{1}, \ldots, x_{n}\right)=0$ for all $f \in \mathcal{F}$
- For this part of the course, we assume that \mathbb{F} is algebraically closed, as we don't want certain oddities to come up.
- Examples:
(1) Circle: $V\left(x^{2}+y^{2}-1\right)$
(2) Lorenz cone: $V\left(z^{2}-x^{2}-y^{2}\right)$
(3) Twisted Cubic: $V\left(y-x^{2}, z-x^{3}\right)$
(3) Line and Hyperplane: $V(x z, y z)$
(5) Solutions of linear system of equations $V(A \mathbf{x}-\mathbf{b})$

Properties of algebraic sets

- U, V are algebraic sets, so are $U \cup V$ and $U \cap V$

Properties of algebraic sets

- U, V are algebraic sets, so are $U \cup V$ and $U \cap V$
- the set \mathcal{F} and the ideal $I_{\mathcal{F}}$ generated by the elements of \mathcal{F} define the same algebraic set

$$
\begin{aligned}
& I_{\mathcal{F}}=\left\{f=\sum_{i=1}^{V(\mathcal{F})=V\left(I_{\mathcal{F}}\right)} f_{i} r_{i} \mid f_{i} \in \mathcal{F}\right\} \\
& I_{\mathcal{F}} \supset \mathcal{F} \Rightarrow V\left(I_{\mathcal{F}}\right) \subset V(\mathcal{F}) \\
& a \in V(\mathcal{F}), f \in I_{\mathcal{F}} \\
& f(a)=\sum_{i=1}^{t} \frac{f_{i}(\bar{a}) \cdot r_{i}(a)=0}{O} \Rightarrow V(\mathcal{F}) \subset V\left(F_{\mathcal{F}}\right)
\end{aligned}
$$

Properties of algebraic sets

- U, V are algebraic sets, so are $U \cup V$ and $U \cap V$
- the set \mathcal{F} and the ideal $\boldsymbol{I}_{\mathcal{F}}$ generated by the elements of \mathcal{F} define the same algebraic set

$$
V(\mathcal{F})=V\left(I_{\mathcal{F}}\right)
$$

- For any ideal $I \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$

$$
\begin{gathered}
\quad V(I)=V(\operatorname{rad}(I)) \\
I \subset \operatorname{rad}(I) \Rightarrow V(\operatorname{rad}(I)) \subset V(I) \\
a \in V(I) f \in \operatorname{rad}(I) \Rightarrow f^{n} \in I \\
\Rightarrow f(a)^{n}=0 \Rightarrow f(a)=0 \\
\Rightarrow a \in V(\operatorname{rad}(I))
\end{gathered}
$$

Properties of algebraic sets

- U, V are algebraic sets, so are $U \cup V$ and $U \cap V$
- the set \mathcal{F} and the ideal $I_{\mathcal{F}}$ generated by the elements of \mathcal{F} define the same algebraic set

$$
V(\mathcal{F})=V\left(I_{\mathcal{F}}\right)
$$

- For any ideal $I \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$

$$
V(I)=V(\operatorname{rad}(I))
$$

- If I, J ideals

$$
\begin{gathered}
I \subset J \Rightarrow V(J) \subset V(1) \\
U \subset \mathbb{F}^{n} \quad I(U)=\left\{f \in \mathbb{F}\left[x_{\left.1, \ldots, x_{n}\right]} \quad f(a)=0 \quad \forall a \in U\right\}\right. \\
(x)=\{f \in \mathbb{Q}[x] \mid f(0)=0\}=I(\{0\})
\end{gathered}
$$

Properties of algebraic sets

- U, V are algebraic sets, so are $U \cup V$ and $U \cap V$
- the set \mathcal{F} and the ideal $I_{\mathcal{F}}$ generated by the elements of \mathcal{F} define the same algebraic set

$$
V(\mathcal{F})=V\left(I_{\mathcal{F}}\right)
$$

- For any ideal $I \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$

$$
V(I)=V(\operatorname{rad}(I))
$$

- If I, J ideals

$$
I \subset J \Rightarrow V(J) \subset V(I)
$$

- Relationship between I and $I(\underline{V(I)})$

Theorem (Hilbert's Nullstellensatz)

For every ideal $I \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, where \mathbb{F} is algebraically closed, we have:

$$
\operatorname{rad}(I)=I(V(I))
$$

Algebraic functions over algebraic sets

- It will be very important for us to study algebraic functions over algebraic sets
- Understanding these functions will help us understand the algebraic sets themselves! (and potentially more!)

functions
retional
functions

Algebraic functions over algebraic sets

- It will be very important for us to study algebraic functions over algebraic sets
- Understanding these functions will help us understand the algebraic sets themselves! (and potentially more!)
- Given ideal I and algebraic set $V(I) \subset \mathbb{F}^{n}$, note that two polynomials $f, g \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ yield same function iff

$$
f-g \in I
$$

$f(a)=g(a)+\frac{h(x)}{o}$

Algebraic functions over algebraic sets

- It will be very important for us to study algebraic functions over algebraic sets
- Understanding these functions will help us understand the algebraic sets themselves! (and potentially more!)
- Given ideal I and algebraic set $V(I) \subset \mathbb{F}^{n}$, note that two polynomials $f, g \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ yield same function iff

$$
f-g \in I
$$

- Naturally each algebraic set $V(I)$ has its coordinate ring all poly nomials \mathbb{F}^{n}

$$
\mathbb{F}[V]:=\overbrace{\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]} / 1
$$

polynomial functions

Algebraic functions over algebraic sets

- It will be very important for us to study algebraic functions over algebraic sets
- Understanding these functions will help us understand the algebraic sets themselves! (and potentially more!)
- Given ideal I and algebraic set $V(I) \subset \mathbb{F}^{n}$, note that two polynomials $f, g \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ yield same function iff

$$
f-g \in I
$$

- Naturally each algebraic set $V(I)$ has its coordinate ring

$$
\mathbb{F}[V]:=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right] / I
$$

- These rings could help us understand extra properties of the set $V(I)$, which may not be captured by $V(I)$ (for instance, multiplicities)

Algebraic Varieties

- An algebraic set V is said to be irreducible if for any decomposition

$$
V=\underline{U} \cup \underline{W} \Rightarrow \underline{U=V} \text { or } \underline{W}=\mathrm{V}
$$

Algebraic Varieties

- An algebraic set V is said to be irreducible if for any decomposition

$$
V=U \cup W \Rightarrow U=V \text { or } W=W
$$

- When the algebraic set $V(I)$ is irreducible, we call it an algebraic variety.

Algebraic Varieties

- An algebraic set V is said to be irreducible if for any decomposition

$$
V=U \cup W \Rightarrow U=V \text { or } W=W
$$

- When the algebraic set $V(I)$ is irreducible, we call it an algebraic variety.
- Practice problem: prove that I prime then $V(I)$ is irreducible.
- Elementary Commutative Algebra
- Algebraic Sets
- Structural \& Computational Questions
- Conclusion
- Acknowledgements

Description of Ideals

- In the definition of algebraic sets, we used any family of polynomials \mathcal{F} to define an algebraic set (or the ideal $I_{\mathcal{F}}$).

Question
Does every ideal of $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ have a finite description?
F may not be finite
ideals can be given implicitly os zero sets of a set of pints

$$
\left\{\left(t, t^{2}, t^{3}\right) \cdot \mid t \in \mathbb{C}\right\}=V\left(y-x^{2}, z-x^{3}\right)
$$

${ }^{1}$ We will even get to see his motivation to prove it!

Description of Ideals

- In the definition of algebraic sets, we used any family of polynomials \mathcal{F} to define an algebraic set (or the ideal $I_{\mathcal{F}}$).

Question

Does every ideal of $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ have a finite description?

- In coming lectures we will show that to be the case - a result known as Hilbert's basis theorem ${ }^{1}$
${ }^{1}$ We will even get to see his motivation to prove it!

Description of Ideals

- In the definition of algebraic sets, we used any family of polynomials \mathcal{F} to define an algebraic set (or the ideal $\boldsymbol{I}_{\mathcal{F}}$).

Question

Does every ideal of $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ have a finite description?

- In coming lectures we will show that to be the case - a result known as Hilbert's basis theorem ${ }^{1}$
- As it turns out, his proof (actually Gordan's simplification of Hilbert's proof) can be modified to construct Gröbner bases of an ideal, which are extremely important!
- The proof of Hilbert's basis theorem yields a multivariate polynomial division algorithm, generalizing
- Gaussian Elimination
- Euclidean Division

[^0]
Ideal Membership Problem

- Once we know that every ideal in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is finitely generated, our first algorithmic question is:

Ideal Membership Problem

- Once we know that every ideal in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is finitely generated, our first algorithmic question is:
- Input: polynomials $g, f_{1}, \ldots, f_{s} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$
- Output: is $g \in\left(f_{1}, \ldots, f_{s}\right)$?
- Problem above is ideal membership problem

Ideal Membership Problem

- Once we know that every ideal in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is finitely generated, our first algorithmic question is:
- Input: polynomials $g, f_{1}, \ldots, f_{s} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$
- Output: is $g \in\left(f_{1}, \ldots, f_{s}\right)$?
- Problem above is ideal membership problem
- Fundamental computational problem
- Decidable

Ideal Membership Problem

- Once we know that every ideal in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is finitely generated, our first algorithmic question is:
- Input: polynomials $g, f_{1}, \ldots, f_{s} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$
- Output: is $g \in\left(f_{1}, \ldots, f_{s}\right)$?
- Problem above is ideal membership problem
- Fundamental computational problem
- Decidable
- Our multivariate and multipolynomial division will give us an algorithm!
- EXPSPACE complete [Mayr \& Meyer 80s]

Implicitization Problem

- Sometimes an algebraic set ${ }^{2}$ is given to us in parametric form

Implicitization Problem

- Sometimes an algebraic set ${ }^{2}$ is given to us in parametric form
- Examples:
- all matrices of rank $\leq r$
- all tensors of rank $\leq r$
- all polynomials computed by depth 3 circuits with top fanin k
- Twisted cubic: $\left\{\left(t, t^{2}, t^{3}\right) \mid t \in \mathbb{F}\right\}$

$$
\begin{aligned}
V_{1} & =\left\{M \in \mathbb{C}^{n \times n} \mid \operatorname{rank}(M) \leq \pi\right\} \text { linear } \\
& =V\left((r+1) \times(n+1) \text { minns of } X=\left(x_{e j}\right)\right) \text { algetra }
\end{aligned}
$$

$$
P(\bar{x})=\sum_{i=1}^{\infty} \prod_{j=1}^{d_{i}} \frac{l_{i j}(\bar{k})}{l_{i n} e_{0}}
$$

²or "most" of it

$$
\left(a_{i j 1} x_{1}+a+a_{i j n} x_{n} f a_{i j 2}\right)
$$

Implicitization Problem

"inverse problem of solving

- Sometimes an algebraic set ${ }^{2}$ is given to us in parametric form
- Examples:
- all matrices of rank $\leq r$
- all tensors of rank $\leq r$
- all polynomials computed by depth 3 circuits with top fanin k
- Twisted cubic: $\left\{\left(t, t^{2}, t^{3}\right) \mid t \in \mathbb{F}\right\}$
- Which begs the computational question:
- Input: given a parametric description of a an algebraic set $V \subset \mathbb{F}^{n}$
- Output: Equations $f_{1}, \ldots, f_{s} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
V=V\left(f_{1}, \ldots, f_{s}\right)
$$

Solving Polynomial Equations

- Input: polynomials $f_{1}, \ldots, f_{s} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$
- Output: is $V\left(f_{1}, \ldots, f_{s}\right)=\emptyset$? If not empty, output a solution

$$
\begin{gathered}
f_{1}(\bar{x})=0 \\
f_{2}(\bar{x})=0 \\
\vdots \\
f_{1}(\bar{x})=0
\end{gathered}
$$

does it
have a solution?

$$
V\left(f_{1, \cdots}, f_{s}\right) \neq \phi ?
$$

Solving Polynomial Equations

- Input: polynomials $f_{1}, \ldots, f_{s} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$
- Output: is $V\left(f_{1}, \ldots, f_{s}\right)=\emptyset$? If not empty, output a solution
- The decision version of this problem is known as Hilbert's Nullstellensatz problem.

Solving Polynomial Equations

$$
1=f_{1} \underline{g}_{1}+\cdots+f_{1} \underline{g_{s}}
$$

- Input: polynomials $f_{1}, \ldots, f_{s} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$
- Output: is $V\left(f_{1}, \ldots, f_{s}\right)=\emptyset$? If not empty, output a solution
- The decision version of this problem is known as Hilbert's Nullstellensatz problem.
- (weak) Nullstellensatz gives us a certificate that a system of polynomial equations has NO solutions
- A solution $\left(a_{1}, \ldots, a_{n}\right)$ is a certificate of a solution
- This gives rise to an algebraic proof system! This proof system and its variants are widely used in computer science.

$$
\begin{aligned}
& V\left(f_{1}, \cdots f_{0}\right)=\phi \Leftrightarrow 1 \in\left(f_{1}, \ldots, f_{0}\right)
\end{aligned}
$$

- Elementary Commutative Algebra
- Algebraic Sets
- Structural \& Computational Questions
- Conclusion
- Acknowledgements

Conclusion

- Today we saw overview of rings and algebraic sets
- Saw the relationship between ideals and algebraic sets
- Algebraic functions over varieties defined via coordinate rings
- Lots of computational questions related to algebraic sets
- Glimpse of hardness of algebraic computation (EXPSPACE territory)

Acknowledgement

- Lecture based largely on the book by CLO: Ideals, varieties and algorithms (see course webpage for a copy - or get online version through UW library)

[^0]: ${ }^{1}$ We will even get to see his motivation to prove it!

