Lecture 11: Finding Short Vectors in a Lattice

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

February 22, 2021

Overview

－Short Vectors in a Lattice
－Algorithm Idea：Find Good Basis
－Gram－Schmidt Orthogonalization
－Lenstra－Lenstra－Lovasz（LLL）Basis Reduction Algorithm
－Conclusion
－Acknowledgements

Short Vectors in a Lattice

- Input: linearly independent vectors $b_{1}, \ldots, b_{n} \in \mathbb{Z}^{n}$, bound $M \in \mathbb{N}$

$$
\mathcal{L}=\left\{\alpha_{1} b_{1}+\cdots \alpha_{n} b_{n} \mid \alpha_{i} \in \mathbb{Z}\right\}
$$

- Output: A vector $v \in \mathcal{L}$ such that $\|v\| \leq M$

Short Vectors in a Lattice

- Input: linearly independent vectors $b_{1}, \ldots, b_{n} \in \mathbb{Z}^{n}$, bound $M \in \mathbb{N}$

$$
\mathcal{L}=\left\{\alpha_{1} b_{1}+\cdots \alpha_{n} b_{n} \mid \alpha_{i} \in \mathbb{Z}\right\}
$$

- Output: A vector $v \in \mathcal{L}$ such that $\|v\| \leq M$
- The problem above is NP-hard, as it would allow us to find the shortest vector in a lattice (which is an NP-hard problem).

Short Vectors in a Lattice

- Input: linearly independent vectors $b_{1}, \ldots, b_{n} \in \mathbb{Z}^{n}$, bound $M \in \mathbb{N}$

$$
\mathcal{L}=\left\{\alpha_{1} b_{1}+\cdots \alpha_{n} b_{n} \mid \alpha_{i} \in \mathbb{Z}\right\}
$$

- Output: A vector $v \in \mathcal{L}$ such that $\|v\| \leq M$
- The problem above is NP-hard, as it would allow us to find the shortest vector in a lattice (which is an NP-hard problem).
- So we will settle for the approximation version:
(1) Input: linearly independent vectors $b_{1}, \ldots, b_{n} \in \mathbb{T}_{2}^{n}$, approximation bound $(M \in \mathbb{N}$

$$
\mathcal{L}=\left\{\alpha_{1} b_{1}+\cdots \alpha_{n} b_{m} \mid \alpha_{i} \in \mathbb{Z}\right\}
$$

(2) Output: A vector $v \in \mathcal{L}$ such that $\|v\| \leq M \cdot \lambda(\mathcal{L})$, where $\underline{\lambda(\mathcal{L})}$ is the length of the shortest vector in \mathcal{L}

Short Vectors in a Lattice

- Input: linearly independent vectors $b_{1}, \ldots, b_{n} \in \mathbb{Z}^{n}$, bound $M \in \mathbb{N}$

$$
\mathcal{L}=\left\{\alpha_{1} b_{1}+\cdots \alpha_{n} b_{n} \mid \alpha_{i} \in \mathbb{Z}\right\}
$$

- Output: A vector $v \in \mathcal{L}$ such that $\|v\| \leq M$
- The problem above is NP-hard, as it would allow us to find the shortest vector in a lattice (which is an NP-hard problem).
- So we will settle for the approximation version:
(1) Input: linearly independent vectors $b_{1}, \ldots, b_{n} \in \mathbb{R}^{n}$, approximation bound $M \in \mathbb{N}$

$$
\mathcal{L}=\left\{\alpha_{1} b_{1}+\cdots \alpha_{n} b_{m} \mid \alpha_{i} \in \mathbb{Z}\right\}
$$

(2) Output: A vector $v \in \mathcal{L}$ such that $\|v\| \leq M \cdot \lambda(\mathcal{L})$, where $\lambda(\mathcal{L})$ is the length of the shortest vector in \mathcal{L}

- Today we will see a polynomial time algorithm when $M=2^{\frac{n-1}{2}}$

Observations on our Lattice Problem

- In previous lecture, we wrote the problem with input vectors

$$
b_{1}, \ldots, b_{m} \in \mathbb{Z}^{n}
$$

where m, n could be distinct. Why isn't the problem from the previous slide less general?

Observations on our Lattice Problem

- In previous lecture, we wrote the problem with input vectors

$$
b_{1}, \ldots, b_{m} \in \mathbb{Z}^{n}
$$

where m, n could be distinct. Why isn't the problem from the previous slide less general?

- If $m<n$, can simply make $m=n$ by reducing the dimension of ambient space orthogonal projections ${ }^{1}$

Observations on our Lattice Problem

- In previous lecture, we wrote the problem with input vectors

$$
b_{1}, \ldots, b_{m} \in \mathbb{Z}^{n}
$$

where m, n could be distinct. Why isn't the problem from the previous slide less general?

- If $m<n$, can simply make $m=n$ by reducing the dimension of ambient space orthogonal projections ${ }^{1}$
- If $m>n$, we can simply take a linearly independent subset of the vectors b_{i} which span the lattice.

Observations on our Lattice Problem

- In previous lecture, we wrote the problem with input vectors

$$
b_{1}, \ldots, b_{m} \in \mathbb{Z}^{n}
$$

where m, n could be distinct. Why isn't the problem from the previous slide less general?

- If $m<n$, can simply make $m=n$ by reducing the dimension of ambient space orthogonal projections ${ }^{1}$
- If $m>n$, we can simply take a linearly independent subset of the vectors b_{i} which span the lattice.
- Given previous bullets, we can indeed assume that $m=n$.

Reducing to a basis of \mathbb{R}^{n}

- Suppose we have $b_{1}, \ldots, b_{m} \in \mathbb{Z}^{n}$ where $m>n$ and we know that b_{1}, \ldots, b_{m} span \mathbb{R}^{n}

Reducing to a basis of \mathbb{R}^{n}

- Suppose we have $b_{1}, \ldots, b_{m} \in \mathbb{Z}^{n}$ where $m>n$ and we know that b_{1}, \ldots, b_{m} span \mathbb{R}^{n}
- Let $B=\left(\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{m}\end{array}\right)$ be matrix with b_{k} 's as columns. Let $b_{k}=\left(b_{k 1}, b_{k 2}, \ldots, b_{k n}\right)^{T}$.

$$
\begin{aligned}
& B=\left(\begin{array}{ccc}
1 & 1 & \\
b_{1} & b_{2} & \cdots \\
1 & 1 & b_{m} \\
b_{k}=\left(\begin{array}{c}
b_{k 1} \\
b_{k 2} \\
\vdots \\
b_{k n}
\end{array}\right)
\end{array}, \quad 1\right.
\end{aligned}
$$

Reducing to a basis of \mathbb{R}^{n}

- Suppose we have $b_{1}, \ldots, b_{m} \in \mathbb{Z}^{n}$ where $m>n$ and we know that b_{1}, \ldots, b_{m} span \mathbb{R}^{n}
- Let $B=\left(\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{m}\end{array}\right)$ be matrix with b_{k} 's as columns. Let $b_{k}=\left(b_{k 1}, b_{k 2}, \ldots, b_{k n}\right)^{T}$.
(1) compute $g=\operatorname{gcd}\left(b_{11}, b_{21}, \ldots, b_{m 1}\right)$ and integers a_{1}, \ldots, a_{m} such that $\sum_{i=1}^{m} a_{i} b_{1 i}=g$

Reducing to a basis of \mathbb{R}^{n}

- Suppose we have $b_{1}, \ldots, b_{m} \in \mathbb{Z}^{n}$ where $m>n$ and we know that b_{1}, \ldots, b_{m} span \mathbb{R}^{n}
- Let $B=\left(\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{m}\end{array}\right)$ be matrix with b_{k} 's as columns. Let $b_{k}=\left(b_{k 1}, b_{k 2}, \ldots, b_{k n}\right)^{T}$.
(1) compute $g=\operatorname{gcd}\left(b_{11}, b_{21}, \ldots, b_{m 1}\right)$ and integers a_{1}, \ldots, a_{m} such that $\sum_{i=1}^{m} a_{i} b_{1 i}=g$
(2) Construct a new basis $C=\left(c_{1}, \ldots, c_{m}\right)$ as follows:

$$
\begin{aligned}
& \mathscr{d} \Rightarrow c_{1}=a_{1} b_{1}+\cdots+a_{m} b_{m} \\
& \mathscr{D}_{0} \geqslant c_{k}=b_{k}-\frac{b_{k 1}}{g} \cdot c_{1} \quad c_{k 1}=0
\end{aligned}
$$

Note that new basis also spans the same lattice \mathcal{L} and $c_{k 1}=0$ for all $k>1$.

$$
\left.\begin{array}{c}
c_{1}=\sum_{k=1}^{m} a_{k} b_{k} \\
c=\left(\frac{g}{t}\right) \frac{000 \cdot 0}{*}
\end{array}\right)
$$

$$
\left(\frac{a_{1} b_{11}+a_{2} b_{21}+\cdots+a_{m} b_{m 1}}{\cdots} \begin{array}{c}
\dot{i} \\
\vdots
\end{array}\right) g
$$

$$
\mathscr{L}\left(b_{1}, \ldots, b_{n}\right)=\mathcal{L}^{(}\left(c_{1} \cdots \cdots ; c_{n}\right)
$$

Reducing to a basis of \mathbb{R}^{n}

- Suppose we have $b_{1}, \ldots, b_{m} \in \mathbb{Z}^{n}$ where $m>n$ and we know that b_{1}, \ldots, b_{m} span \mathbb{R}^{n}
- Let $B=\left(\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{m}\end{array}\right)$ be matrix with b_{k} 's as columns. Let $b_{k}=\left(b_{k 1}, b_{k 2}, \ldots, b_{k n}\right)^{T}$.
(1) compute $g=\operatorname{gcd}\left(b_{11}, b_{21}, \ldots, b_{m 1}\right)$ and integers a_{1}, \ldots, a_{m} such that $\sum_{i=1}^{m} a_{i} b_{1 i}=g$
(2) Construct a new basis $C=\left(c_{1}, \ldots, c_{m}\right)$ as follows:

$$
\begin{aligned}
& c_{1}=a_{1} b_{1}+\cdots+a_{m} b_{m} \\
& c_{k}=b_{k}-\frac{b_{k 1}}{g} \cdot c_{1}
\end{aligned}
$$

Note that new basis also spans the same lattice \mathcal{L} and $c_{k 1}=0$ for all $k>1$.
(3) Repeat step (1) for $\left(c_{2}, \ldots, c_{m}\right)$

Reducing to a basis of \mathbb{R}^{n}

- Suppose we have $b_{1}, \ldots, b_{m} \in \mathbb{Z}^{n}$ where $m>n$ and we know that b_{1}, \ldots, b_{m} span \mathbb{R}^{n}
- Let $B=\left(\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{m}\end{array}\right)$ be matrix with b_{k} 's as columns. Let $b_{k}=\left(b_{k 1}, b_{k 2}, \ldots, b_{k n}\right)^{T}$.
(1) compute $g=\operatorname{gcd}\left(b_{11}, b_{21}, \ldots, b_{m 1}\right)$ and integers a_{1}, \ldots, a_{m} such that $\sum_{i=1}^{m} a_{i} b_{1 i}=g$
(2) Construct a new basis $C=\left(c_{1}, \ldots, c_{m}\right)$ as follows:

$$
\begin{aligned}
& c_{1}=a_{1} b_{1}+\cdots+a_{m} b_{m} \\
& c_{k}=b_{k}-\frac{b_{k 1}}{g} \cdot c_{1}
\end{aligned}
$$

Note that new basis also spans the same lattice \mathcal{L} and $c_{k 1}=0$ for all $k>1$.
(3) Repeat step (1) for $\left(c_{2}, \ldots, c_{m}\right)$
recursion

- Note that by the end of this process, we will have a matrix

$$
\longrightarrow M=\left(\begin{array}{ll}
A & 0
\end{array}\right)
$$

where $A \in \mathbb{Z}^{n \times n}$ is integral, full rank, and the column vectors of A span the same lattice \mathcal{L}.

$$
\begin{aligned}
& \text { Example } \\
& \left.\begin{array}{ccc}
2 & 5 & 4 \\
3 & -1 & 4
\end{array}\right) \quad \begin{array}{r}
1=\operatorname{gcd}(2,5,4) \\
1 \\
b_{1}
\end{array} b_{2} \uparrow b_{3} \\
& 2 \cdot 0+5 \cdot 1+4 \cdot(-1) \\
& c_{1}=\binom{2}{3} \cdot 0+\binom{5}{-1} \cdot 1+(-1)\binom{4}{4}=\binom{1}{-5} \\
& c_{2}=b_{2}-\frac{5}{1} \cdot c_{1}=\binom{5}{-1}-5\binom{1}{-5}=\binom{0}{24} \\
& c_{3}=b_{3}-\frac{4}{1} \cdot c_{1}=\binom{4}{4}-4\binom{1}{-5}=\binom{0}{24} \\
& \left.\left(\begin{array}{ccc}
1 & 0 & 0 \\
-5 & 24 & 24
\end{array}\right) \longleftrightarrow \begin{array}{cc}
1 & 0 \\
-5 & 24 \\
0
\end{array}\right)
\end{aligned}
$$

Example

Example

Determinant of a Lattice

- Now that we clarified the assumption that $m=n$ and that b_{1}, \ldots, b_{n} form a basis of \mathbb{R}^{n}, we can define an invariant of our lattice: the determinant

$$
B=\left(\begin{array}{cccc}
1 & 1 & 1 \\
b_{1} & b_{2} & \cdots & b_{n} \\
1 & 1 & & 1
\end{array}\right) \quad \operatorname{det}(\mathfrak{b})=\left|\operatorname{det}\left(\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right)\right|
$$

Determinant of a Lattice

- Now that we clarified the assumption that $m=n$ and that b_{1}, \ldots, b_{n} form a basis of \mathbb{R}^{n}, we can define an invariant of our lattice: the determinant

$$
\operatorname{det}(\mathcal{L})=\left|\operatorname{det}\left(\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right)\right|
$$

- The definition above is basis independent: if $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is another basis for \mathcal{L}, we have that

$$
\left|\operatorname{det}\left(\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right)\right|=\left\lvert\, \begin{array}{llll}
\left.\operatorname{det}\left(\begin{array}{llll}
c_{1} & c_{2} & \cdots & c_{n}
\end{array}\right) \right\rvert\,
\end{array}\right.
$$

Determinant of a Lattice

- Now that we clarified the assumption that $m=n$ and that b_{1}, \ldots, b_{n} form a basis of \mathbb{R}^{n}, we can define an invariant of our lattice: the determinant

$$
\operatorname{det}(\mathcal{L})=\left|\operatorname{det}\left(\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right)\right|
$$

- The definition above is basis independent: if $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is another basis for \mathcal{L}, we have that

$$
\left|\operatorname{det}\left(\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right)\right|=\left\lvert\, \begin{array}{llll}
\left.\operatorname{det}\left(\begin{array}{llll}
c_{1} & c_{2} & \cdots & c_{n}
\end{array}\right) \right\rvert\,
\end{array}\right.
$$

- Proof: invertible linear transformation taking one basis to another.

$$
c_{k}=\sum_{i}^{n} A_{j k} b_{j} \quad A_{k j} \in \mathbb{\pi}
$$

$$
\begin{gathered}
\left(\begin{array}{llll}
c_{1} & c_{2} & \cdots & c_{n}
\end{array}\right)=\left(\begin{array}{lll}
b_{1} & \cdots & b_{n}
\end{array}\right)\left(\begin{array}{ccc}
A_{11} & A_{12} & \\
A_{21} & A_{12} \\
\vdots & & \\
A_{n 1} & & \ddots \\
B=C \tilde{A}
\end{array}\right) \\
\\
\end{gathered}
$$

$$
\begin{aligned}
& c_{1}=A_{11} b_{1}+A_{21} b_{2}+\cdots+A_{n 1} b_{n} \\
& A_{i j} \in \mathbb{Z} \\
& \frac{\operatorname{det}(C)}{\cdots \operatorname{det}(B A)}=\frac{\operatorname{det}(B) \cdot|\operatorname{det}(A)|}{\in Z_{L}} \\
& \Rightarrow \quad \operatorname{det}(B)|\operatorname{det}(C) \xrightarrow{\text { and }} \operatorname{det}(C)| \operatorname{det}(B)
\end{aligned}
$$

Determinant of a Lattice

- Now that we clarified the assumption that $m=n$ and that b_{1}, \ldots, b_{n} form a basis of \mathbb{R}^{n}, we can define an invariant of our lattice: the determinant

$$
\operatorname{det}(\mathcal{L})=\left|\operatorname{det}\left(\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right)\right|
$$

- The definition above is basis independent: if $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is another basis for \mathcal{L}, we have that

$$
\left|\operatorname{det}\left(\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right)\right|=\left\lvert\, \begin{array}{llll}
\left.\operatorname{det}\left(\begin{array}{llll}
c_{1} & c_{2} & \cdots & c_{n}
\end{array}\right) \right\rvert\,
\end{array}\right.
$$

- Proof: invertible linear transformation taking one basis to another.
- To go from one basis to another, we can do elementary column operations, that is, if we have basis b_{1}, \ldots, b_{n} then we can do

$$
c_{k}=b_{k}-\alpha b_{i}, \alpha \in \mathbb{Z} \quad \text { and } \quad c_{\ell}=b_{\ell} \quad \text { for } \ell \neq k
$$

- Short Vectors in a Lattice
- Algorithm Idea: Find Good Basis
- Gram-Schmidt Orthogonalization
- Lenstra-Lenstra-Lovasz (LLL) Basis Reduction Algorithm
- Conclusion
- Acknowledgements

Algorithm idea: a good basis will contain a short vector!

- Let's work this out for $n=2$. Suppose we have $a, b \in \mathbb{Z}^{2}$ which form a basis for the lattice $\mathcal{L}=\mathbb{Z} a+\mathbb{Z} b$. Also, assume $\|a\| \leq\|b\|$.

Algorithm idea: a good basis will contain a short vector!

- Let's work this out for $n=2$. Suppose we have $a, b \in \mathbb{Z}^{2}$ which form a basis for the lattice $\mathcal{L}=\mathbb{Z} a+\mathbb{Z} b$. Also, assume $\|a\| \leq\|b\|$.
- If we have that $\|a\| \leq\|b\| \leq\|b+\alpha a\|$ for all $\alpha \in \mathbb{Z}$, then we have that a is the shortest vector in our lattice!

Algorithm idea: a good basis will contain a short vector!

- Let's work this out for $n=2$. Suppose we have $a, b \in \mathbb{Z}^{2}$ which form a basis for the lattice $\mathcal{L}=\mathbb{Z} a+\mathbb{Z} b$. Also, assume $\|a\| \leq\|b\|$.
- If we have that $\|a\| \leq\|b\| \leq\|b+\alpha a\|$ for all $\alpha \in \mathbb{Z}$, then we have that a is the shortest vector in our lattice!
- Proof: let $z=\beta a+\gamma b$, where $\beta, \gamma \in \mathbb{Z}$. Can assume $\beta, \gamma \neq 0$

$$
\begin{aligned}
& \gamma=0 \Rightarrow z=\beta a \Rightarrow\|z\|=\|\beta\| \cdot\|a\| \\
& \geqslant\|a\| \\
& \beta=0 \Rightarrow z=\gamma b \Rightarrow\|z\| \geqslant\|b\| \geqslant\|a\|
\end{aligned}
$$

Algorithm idea: a good basis will contain a short vector!

- Let's work this out for $n=2$. Suppose we have $a, b \in \mathbb{Z}^{2}$ which form a basis for the lattice $\mathcal{L}=\mathbb{Z} a+\mathbb{Z} b$. Also, assume $\|a\| \leq\|b\|$.
- If we have that $\|a\| \leq\|b\| \leq\|b+\alpha a\|$ for all $\alpha \in \mathbb{Z}$, then we have that a is the shortest vector in our lattice!
- Proof: let $z=\beta a+\gamma b$, where $\beta, \gamma \in \mathbb{Z}$. Can assume $\beta, \gamma \neq 0$
- Case 1: $\beta>\gamma \quad \beta>0$

$$
\begin{aligned}
&(a+b)^{2}=\|a\|^{2}+\|b\|^{2}+2\langle a, b\rangle \geqslant\|y\|^{2}=\langle b, b\rangle \\
& \Rightarrow 2\langle a, b\rangle \geqslant-\langle a, a\rangle \\
&\|z\|^{2}=\langle\beta a+\gamma b, \beta a+\gamma b\rangle=\beta^{2}\|a\|^{2}+\gamma^{2}\|b\|^{2} \\
&+2 \beta \gamma\langle a, b\rangle \\
& \geqslant \beta^{2}\|a\|^{2}+\gamma^{2}\|b\|^{2}-\beta \gamma\|a\|^{2}=\beta(\beta-\gamma)\|a\|^{2}+\gamma^{2}\|b\|^{2} \\
& \geqslant \beta\left(\frac{\beta-\gamma)}{>0}\|a\|^{2} \geqslant\|a\|^{2}\right.
\end{aligned}
$$

Algorithm idea: a good basis will contain a short vector!

- Let's work this out for $n=2$. Suppose we have $a, b \in \mathbb{Z}^{2}$ which form a basis for the lattice $\mathcal{L}=\mathbb{Z} a+\mathbb{Z} b$. Also, assume $\|a\| \leq\|b\|$.
- If we have that $\|a\| \leq\|b\| \leq\|b+\alpha a\|$ for all $\alpha \in \mathbb{Z}$, then we have that a is the shortest vector in our lattice!
- Proof: let $z=\beta a+\gamma b$, where $\beta, \gamma \in \mathbb{Z}$. Can assume $\beta, \gamma \neq 0$
- Case 1: $\beta>\gamma$
- Case 2: $\beta \leq \gamma$

$$
\|a+b\|^{2} \geqslant\|a\|^{2}
$$

similar to
previous sliele

Algorithm idea: a good basis will contain a short vector!

- Let's work this out for $n=2$. Suppose we have $a, b \in \mathbb{Z}^{2}$ which form a basis for the lattice $\mathcal{L}=\mathbb{Z} a+\mathbb{Z} b$. Also, assume $\|a\| \leq\|b\|$.
- If we have that $\|a\| \leq\|b\| \leq\|b+\alpha a\|$ for all $\alpha \in \mathbb{Z}$, then we have that a is the shortest vector in our lattice!
- Proof: let $z=\beta a+\gamma b$, where $\beta, \gamma \in \mathbb{Z}$. Can assume $\beta, \gamma \neq 0$
- Case 1: $\beta>\gamma$
- Case 2: $\beta \leq \gamma$
- How do we find such a basis (a, b) with the property from the second bullet? An orthogonal basis does it.

Algorithm idea: a good basis will contain a short vector!

- Let's work this out for $n=2$. Suppose we have $a, b \in \mathbb{Z}^{2}$ which form a basis for the lattice $\mathcal{L}=\mathbb{Z} a+\mathbb{Z} b$. Also, assume $\|a\| \leq\|b\|$.
- If we have that $\|a\| \leq\|b\| \leq\|b+\alpha a\|$ for all $\alpha \in \mathbb{Z}$, then we have that a is the shortest vector in our lattice!
- Proof: let $z=\beta a+\gamma b$, where $\beta, \gamma \in \mathbb{Z}$. Can assume $\beta, \gamma \neq 0$
- Case 1: $\beta>\gamma$
- Case 2: $\beta \leq \gamma$
- How do we find such a basis (a, b) with the property from the second bullet? An orthogonal basis does it.
- It will not always be the case that a lattice has orthogonal basis. For instance

$$
\left(\begin{array}{cc}
0 & 1 \\
3 & -1
\end{array}\right)
$$

Algorithm idea: a good basis will contain a short vector!

- Let's work this out for $n=2$. Suppose we have $a, b \in \mathbb{Z}^{2}$ which form a basis for the lattice $\mathcal{L}=\mathbb{Z} a+\mathbb{Z} b$. Also, assume $\|a\| \leq\|b\|$.
- If we have that $\|a\| \leq\|b\| \leq\|b+\alpha a\|$ for all $\alpha \in \mathbb{Z}$, then we have that a is the shortest vector in our lattice!
- Proof: let $z=\beta a+\gamma b$, where $\beta, \gamma \in \mathbb{Z}$. Can assume $\beta, \gamma \neq 0$
- Case 1: $\beta>\gamma$
- Case 2: $\beta \leq \gamma$
- How do we find such a basis (a, b) with the property from the second bullet? An orthogonal basis does it.
- It will not always be the case that a lattice has orthogonal basis. For instance

$$
\left(\begin{array}{cc}
0 & 1 \\
3 & -1
\end{array}\right)
$$

- "Close enough" to orthogonal does it!

Looking at Counterexample

$$
\begin{aligned}
& B=\left(\begin{array}{cc}
0 & 1 \\
3 & -1
\end{array}\right) \quad U=\left(\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right) \text { orthogonal } \\
&|\operatorname{det}(B)|=|\operatorname{det}(u)| \text { invariant } \\
&|0 \cdot(-1)-1 \cdot 3|=3=\underbrace{(\operatorname{det}(U) \mid}_{\left\|u_{1}\right\| \cdot\left\|u_{2}\right\|}
\end{aligned}
$$

$U \cdot U^{+}=\operatorname{det}(U)^{2} \cdot I$ (U orthogonal) $\left(\begin{array}{c}\|u,\|^{2} \\ 0 \\ 0\end{array} \|=0\right.$

$$
\begin{aligned}
& \left\|u_{1}\right\| \cdot\left\|u_{2}\right\|=3 \quad B=\left(\begin{array}{cc}
0 & 1 \\
3 & -1
\end{array}\right) \\
& \left.u_{1}, u_{2} \in b_{0}\binom{0}{3},\binom{1}{-1}\right) \\
& \Rightarrow u_{1}, u_{2} \in \mathbb{l}^{2} \\
& \left\|u_{1}\right\|^{2} \cdot\left\|u_{2}\right\|^{2}=9 \Rightarrow \begin{array}{l}
\left\|u_{1}\right\|=3 \\
\frac{\left\|u_{2}\right\|}{e_{1}, e_{2}}
\end{array} \\
& \left\|u_{1}\right\|=\left\|u_{2}\right\|=\sqrt{3}
\end{aligned}
$$

Gauss' Reduction Algorithm

- The LLL algorithm is generalization of 2D basis reduction due to Gauss
- Idea: given two vectors u, v, s.t. $\|u\| \leq\|v\|$ subtract off as much of u 's projection from v, while staying in the lattice
making u,v"as orthogonal as possible" $\|v-\alpha u\|$ smallest $\alpha \in \mathbb{Z}$

Gauss' Reduction Algorithm

- The LLL algorithm is generalization of 2D basis reduction due to Gauss
- Idea: given two vectors u, v, s.t. $\|u\| \leq\|v\|$ subtract off as much of u 's projection from v, while staying in the lattice
- There is $\alpha \in \mathbb{Z}$ such that

$$
|\langle v-\alpha u, u\rangle| \leq \frac{1}{2}\|u\|^{2}
$$

Gauss' Reduction Algorithm

- The LLL algorithm is generalization of 2D basis reduction due to Gauss
- Idea: given two vectors u, v, s.t. $\|u\| \leq\|v\|$ subtract off as much of u 's projection from v, while staying in the lattice
- There is $\alpha \in \mathbb{Z}$ such that

$$
|\langle v-\alpha u, u\rangle| \leq \frac{1}{2}\|u\|^{2}
$$

- Proof: if $\beta=\frac{\langle u, v\rangle}{\|u\|}$, take $\alpha \in \mathbb{Z}$ closest to β. Thus $|\alpha-\beta| \leq 1 / 2$

$$
\begin{aligned}
& \left|\left\langle\frac{v-\alpha u}{*} u\right\rangle\right|=|\langle v-\beta u, u\rangle+\langle(\beta-\alpha) u, u\rangle| \leq \frac{1}{2}\|u\|^{2} \\
& v-\beta u+(\beta-\alpha) u \searrow^{D} \\
& v-\beta u \perp u
\end{aligned}
$$

Gauss' Reduction Algorithm

- The LLL algorithm is generalization of 2D basis reduction due to Gauss
- Idea: given two vectors u, v, s.t. $\|u\| \leq\|v\|$ subtract off as much of u 's projection from v, while staying in the lattice
- There is $\alpha \in \mathbb{Z}$ such that

$$
|\langle v-\alpha u, u\rangle| \leq \frac{1}{2}\|u\|^{2}
$$

- Proof: if $\beta=\frac{\langle u, v\rangle}{\|u\|}$, take $\alpha \in \mathbb{Z}$ closest to β. Thus $|\alpha-\beta| \leq 1 / 2$

$$
|\langle v-\alpha u, u\rangle|=|\langle v-\beta u, u\rangle+\langle(\beta-\alpha) u, u\rangle| \leq \frac{1}{2}\|u\|^{2}
$$

- If $\|v-\alpha u\| \geq\|u\|$ stop. Otherwise swap the vectors and continue.

Gauss' Reduction Algorithm

- The LLL algorithm is generalization of 2D basis reduction due to Gauss
- Idea: given two vectors u, v, s.t. $\|u\| \leq\|v\|$ subtract off as much of u 's projection from v, while staying in the lattice
- There is $\alpha \in \mathbb{Z}$ such that

$$
|\langle v-\alpha u, u\rangle| \leq \frac{1}{2}\|u\|^{2}
$$

- Proof: if $\beta=\frac{\langle u, v\rangle}{\|u\|}$, take $\alpha \in \mathbb{Z}$ closest to β. Thus $|\alpha-\beta| \leq 1 / 2$

$$
|\langle v-\alpha u, u\rangle|=|\langle v-\beta u, u\rangle+\langle(\beta-\alpha) u, u\rangle| \leq \frac{1}{2}\|u\|^{2}
$$

- If $\|v-\alpha u\| \geq\|u\|$ stop. Otherwise swap the vectors and continue.
- Note that at each iteration we are decreasing the norm of the smallest basis vector. When we cannot decrease further, previous slide gives us that u is the shortest vector!
- Short Vectors in a Lattice
- Algorithm Idea: Find Good Basis
- Gram-Schmidt Orthogonalization
- Lenstra-Lenstra-Lovasz (LLL) Basis Reduction Algorithm
- Conclusion
- Acknowledgements

Orthogonal Bases and Short Vectors

- Note that if $b_{1}, \ldots, b_{n} \in \mathbb{Z}^{n}$ were an orthogonal basis for the lattice, then one of these vectors must be the shortest!

Orthogonal Bases and Short Vectors

- Note that if $b_{1}, \ldots, b_{n} \in \mathbb{Z}^{n}$ were an orthogonal basis for the lattice, then one of these vectors must be the shortest!
- It will not always be the case that a lattice has orthogonal basis. For instance

$$
\left(\begin{array}{cc}
0 & 1 \\
3 & -1
\end{array}\right)
$$

Orthogonal Bases and Short Vectors

- Note that if $b_{1}, \ldots, b_{n} \in \mathbb{Z}^{n}$ were an orthogonal basis for the lattice, then one of these vectors must be the shortest!
- It will not always be the case that a lattice has orthogonal basis. For instance

$$
\left(\begin{array}{cc}
0 & 1 \\
3 & -1
\end{array}\right)
$$

- But we could still attempt to get something "almost as good"
- Let us compare to "the best" we could hope for: Gram-Schmidt

Orthogonal Bases and Short Vectors

- Note that if $b_{1}, \ldots, b_{n} \in \mathbb{Z}^{n}$ were an orthogonal basis for the lattice, then one of these vectors must be the shortest!
- It will not always be the case that a lattice has orthogonal basis. For instance

$$
\left(\begin{array}{cc}
0 & 1 \\
3 & -1
\end{array}\right)
$$

- But we could still attempt to get something "almost as good"
- Let us compare to "the best" we could hope for: Gram-Schmidt
- Input: basis $b_{1}, \ldots, b_{n} \in \mathbb{R}^{n}$
- Output: Set of orthogonal basis u_{1}, \ldots, u_{n}

Orthogonal Bases and Short Vectors

- Note that if $b_{1}, \ldots, b_{n} \in \mathbb{Z}^{n}$ were an orthogonal basis for the lattice, then one of these vectors must be the shortest!
- It will not always be the case that a lattice has orthogonal basis. For instance

$$
\left(\begin{array}{cc}
0 & 1 \\
3 & -1
\end{array}\right)
$$

- But we could still attempt to get something "almost as good"
- Let us compare to "the best" we could hope for: Gram-Schmidt
- Input: basis $b_{1}, \ldots, b_{n} \in \mathbb{R}^{n}$
- Output: Set of orthogonal basis u_{1}, \ldots, u_{n}
(1) Set $u_{1}=b_{1}$

Orthogonal Bases and Short Vectors

- Note that if $b_{1}, \ldots, b_{n} \in \mathbb{Z}^{n}$ were an orthogonal basis for the lattice, then one of these vectors must be the shortest!
- It will not always be the case that a lattice has orthogonal basis. For instance

$$
\left(\begin{array}{cc}
0 & 1 \\
3 & -1
\end{array}\right)
$$

- But we could still attempt to get something "almost as good"
- Let us compare to "the best" we could hope for: Gram-Schmidt
- Input: basis $b_{1}, \ldots, b_{n} \in \mathbb{R}^{n}$
- Output: Set of orthogonal basis u_{1}, \ldots, u_{n}
(1) Set $u_{1}=b_{1}$
(2) Repeat the following for $2 \leq k \leq n$

$$
\underline{u_{k}}=b_{k}-\sum_{i=1}^{k-1} \frac{\frac{\left\langle b_{k}, u_{i}\right\rangle}{\left\|u_{i}\right\|^{2}} \cdot u_{i}}{\left.\begin{array}{c}
\text { projection of } b_{k} \\
\text { onto eli }
\end{array}\right)}
$$

Orthogonal Bases and Short Vectors

- Note that if $b_{1}, \ldots, b_{n} \in \mathbb{Z}^{n}$ were an orthogonal basis for the lattice, then one of these vectors must be the shortest!
- It will not always be the case that a lattice has orthogonal basis. For instance

$$
\left(\begin{array}{cc}
0 & 1 \\
3 & -1
\end{array}\right)
$$

- But we could still attempt to get something "almost as good"
- Let us compare to "the best" we could hope for: Gram-Schmidt
- Input: basis $b_{1}, \ldots, b_{n} \in \mathbb{R}^{n}$
- Output: Set of orthogonal basis u_{1}, \ldots, u_{n}
(1) Set $u_{1}=b_{1}$
(2) Repeat the following for $2 \leq k \leq n$

$$
u_{k}=b_{k}-\sum_{i=1}^{k-1} \frac{\sqrt{\left.b_{k}, u_{i}\right\rangle}}{\left\|u_{i}\right\|^{2}} \cdot u_{i}
$$

- Orthogonal basis not necessarily a basis for our lattice!

Properties of Gram-Schmidt Basis

- Gram-Schmidt algorithm:
(1) Set $u_{1}=b_{1}$
(2) Repeat the following for $2 \leq k \leq n$

$$
u_{k}=b_{k}-\sum_{i=1}^{k-1} \frac{\left\langle b_{k}, u_{i}\right\rangle}{\left\|u_{i}\right\|^{2}} \cdot u_{i}
$$

Properties of Gram-Schmidt Basis

- Gram-Schmidt algorithm:
(1) Set $u_{1}=b_{1}$
(2) Repeat the following for $2 \leq k \leq n$

$$
\underline{\underline{u_{k}}=b_{k}}-\sum_{i=1}^{k-1} \frac{\left\langle b_{k}, u_{i}\right\rangle}{\left\|u_{i}\right\|^{2}} \cdot u_{i}
$$

- Can write

$$
b_{k}=\sum_{i=1}^{k} \mu_{k i} \cdot u_{i}
$$

with $\mu_{k k}=1$.

Properties of Gram-Schmidt Basis

- Gram-Schmidt algorithm:
(1) Set $u_{1}=b_{1}$
(2) Repeat the following for $2 \leq k \leq n$

$$
u_{k}=b_{k}-\sum_{i=1}^{k-1} \frac{\left\langle b_{k}, u_{i}\right\rangle}{\left\|u_{i}\right\|^{2}} \cdot u_{i}
$$

- Can write

$$
b_{k}=\sum_{i=1}^{k} \mu_{k i} \cdot u_{i}
$$

with $\mu_{k k}=1$.

- If don't change the order but make some $b_{k}=b_{k}+\alpha b_{j}$ with $j<k$ the GSO basis stays the same

Properties of Gram-Schmidt Basis

- Gram-Schmidt algorithm:
(1) Set $u_{1}=b_{1}$
(2) Repeat the following for $2 \leq k \leq n$

$$
u_{k}=b_{k}-\sum_{i=1}^{k-1} \frac{\left\langle b_{k}, u_{i}\right\rangle}{\left\|u_{i}\right\|^{2}} \cdot u_{i}
$$

- Can write

$$
b_{k}=\sum_{i=1}^{k} \mu_{k i} \cdot u_{i}
$$

with $\mu_{k k}=1$.

- If don't change the order but make some $b_{k}=b_{k}+\alpha b_{j}$ with $j<k$ the GSO basis stays the same
- If input basis is integral (or rational) then the output basis is rational

Shortest vector \& Gram-Schmidt Orthogonalization (GSO)

- From now on, given any basis $\left(b_{1}, \ldots, b_{n}\right)$ we can refer to its GSO $\left(u_{1}, \ldots, u_{n}\right)$

Shortest vector \& Gram-Schmidt Orthogonalization (GSO)

- From now on, given any basis $\left(b_{1}, \ldots, b_{n}\right)$ we can refer to its GSO $\left(u_{1}, \ldots, u_{n}\right)$
- Relationship between GSO basis and shortest vector in $\mathcal{L}\left(b_{1}, \ldots, b_{n}\right)$ Shortest vector in GSO basis lower bounds shortest vector in \mathcal{L}.

Shortest vector \& Gram-Schmidt Orthogonalization (GSO)

- From now on, given any basis $\left(b_{1}, \ldots, b_{n}\right)$ we can refer to its GSO $\left(u_{1}, \ldots, u_{n}\right)$
- Relationship between GSO basis and shortest vector in $\mathcal{L}\left(b_{1}, \ldots, b_{n}\right)$ Shortest vector in GSO basis lower bounds shortest vector in \mathcal{L}.
- Proof: let $v \in \mathcal{L}$. Then we can write $v=\alpha_{1} b_{1}+\cdots+\alpha_{n} b_{n}, \alpha_{j} \in \mathbb{Z}$

Shortest vector \& Gram-Schmidt Orthogonalization (GSO)

- From now on, given any basis $\left(b_{1}, \ldots, b_{n}\right)$ we can refer to its GSO $\left(u_{1}, \ldots, u_{n}\right)$
- Relationship between GSO basis and shortest vector in $\mathcal{L}\left(b_{1}, \ldots, b_{n}\right)$

Shortest vector in GSO basis lower bounds shortest vector in \mathcal{L}.

- Proof: let $v \in \mathcal{L}$. Then we can write $v=\alpha_{1} b_{1}+\cdots+\alpha_{n} b_{n}, \alpha_{j} \in \mathbb{Z}$
- By GSO, we can write $b_{k}=\sum_{i=1}^{k} \mu_{k i} \cdot u_{i}$, with $\mu_{k k}=1$

Shortest vector \& Gram-Schmidt Orthogonalization (GSO)

- From now on, given any basis $\left(b_{1}, \ldots, b_{n}\right)$ we can refer to its GSO $\left(u_{1}, \ldots, u_{n}\right)$
- Relationship between GSO basis and shortest vector in $\mathcal{L}\left(b_{1}, \ldots, b_{n}\right)$ Shortest vector in GSO basis lower bounds shortest vector in \mathcal{L}.
- Proof: let $v \in \mathcal{L}$. Then we can write $v=\alpha_{1} b_{1}+\cdots+\alpha_{n} b_{n}, \alpha_{j} \in \mathbb{Z}$
- By GSO, we can write $b_{k}=\sum_{i=1}^{k} \mu_{k i} \cdot u_{i}$, with $\mu_{k k}=1$
- Thus, if $\alpha_{t} \neq 0$ and $\alpha_{\ell}=0$ for all $\ell>t$:

$$
v=\beta_{1} u_{1}+\cdots+\beta_{t} u_{t}
$$

With $\beta_{t}=\boldsymbol{k}$, as no other u_{i} depends on u_{t}.

$$
\begin{aligned}
v & =\alpha_{i} b_{1}+\cdots+\alpha_{t} b_{t} \\
& =\sum_{i=1}^{t} \beta_{i} u_{i} \quad b_{t}=
\end{aligned}
$$

$$
b_{1, \ldots,} b_{t-1}
$$

don't depend on u_{t}

$$
b_{t}=u_{t}+(-)
$$

Shortest vector \& Gram-Schmidt Orthogonalization (GSO)

- From now on, given any basis $\left(b_{1}, \ldots, b_{n}\right)$ we can refer to its GSO $\left(u_{1}, \ldots, u_{n}\right)$
- Relationship between GSO basis and shortest vector in $\mathcal{L}\left(b_{1}, \ldots, b_{n}\right)$

Shortest vector in GSO basis lower bounds shortest vector in \mathcal{L}.

- Proof: let $v \in \mathcal{L}$. Then we can write $v=\alpha_{1} b_{1}+\cdots+\alpha_{n} b_{n}, \alpha_{j} \in \mathbb{Z}$
- By GSO, we can write $b_{k}=\sum_{i=1}^{k} \mu_{k i} \cdot u_{i}$, with $\mu_{k k}=1$
- Thus, if $\alpha_{t} \neq 0$ and $\alpha_{\ell}=0$ for all $\ell>t$:

$$
v=\beta_{1} \underline{u_{1}}+\cdots+\beta_{t} \underline{u_{t}}
$$

With $\beta_{t}=\mathcal{Q}$, as no other u_{i} depends on u_{t}.

- And the norm is given by:

$$
\|v\|=\underbrace{\left|\beta_{1}\right| \cdot\left\|u_{1}\right\|+\cdots+}_{\geqslant 0} \underbrace{\left|\beta_{t}\right|}_{\geqslant 1} \cdot\left\|u_{t}\right\| \geq \frac{\left\|u_{t}\right\|}{\epsilon} \text { GSO }
$$

Reduced Basis

- Now we are ready to define what a "good basis" is:
- Let $\left(u_{1}, \ldots, u_{n}\right)$ be the GSO basis from $\left(b_{1}, \ldots, b_{n}\right)$

$$
b_{k}=\sum_{i=1}^{k} \mu_{k i} u_{i}
$$

Reduced Basis

- Now we are ready to define what a "good basis" is:
- Let $\left(u_{1}, \ldots, u_{n}\right)$ be the GSO basis from $\left(b_{1}, \ldots, b_{n}\right)$

$$
b_{k}=\sum_{i=1}^{k} \mu_{k i} u_{i}
$$

- A basis $\left(b_{1}, \ldots, b_{n}\right)$ is a reduced basis if
(1) each $\left|\mu_{k i}\right| \leq 1 / 2$ when $i \neq k \longleftarrow$ orthogonality of b_{i} 's
(2) For each k,

$$
\left\|u_{k}\right\|^{2} \leq \frac{4}{3} \cdot\left\|u_{k+1}+\mu_{(k+1) k} u_{k}\right\|^{2}
$$

G So
bosis

$$
b_{k}=u_{k}+\sum_{i<k} r_{n i} u_{i}
$$ have "spikes"

Reduced Basis

- Now we are ready to define what a "good basis" is:
- Let $\left(u_{1}, \ldots, u_{n}\right)$ be the GSO basis from $\left(b_{1}, \ldots, b_{n}\right)$

$$
b_{k}=\sum_{i=1}^{k} \mu_{k i} u_{i}
$$

- A basis $\left(b_{1}, \ldots, b_{n}\right)$ is a reduced basis if
(1) each $\mu_{k i} \leq 1 / 2$ when $i \neq k$
(2) For each k,

$$
\left\|u_{k}\right\|^{2} \leq \frac{4}{3} \cdot\left\|u_{k+1}+\mu_{(k+1) k} u_{k}\right\|^{2}
$$

- The LLL basis reduction algorithm will simply construct a reduced basis iteratively, much like Gauss' reduction algorithm.
- Short Vectors in a Lattice
- Algorithm Idea: Find Good Basis
- Gram-Schmidt Orthogonalization
- Lenstra-Lenstra-Lovasz (LLL) Basis Reduction Algorithm
- Conclusion
- Acknowledgements

LLL Basis Reduction Algorithm

- A basis $\left(b_{1}, \ldots, b_{n}\right)$ is a reduced basis if
(1) each $\left|\mu_{k i}\right| \leq 1 / 2$ when $i \neq k$
(2) For each k,

$$
\left\|u_{k}\right\|^{2} \leq \frac{4}{3} \cdot\left\|u_{k+1}+\mu_{(k+1) k} u_{k}\right\|^{2}
$$

GSO $\left(u_{1}, \ldots, u_{n}\right)$

$$
b_{k}=u_{k}+\sum_{i<k} \mu_{k i} u_{i}
$$

LLL Basis Reduction Algorithm

- A basis $\left(b_{1}, \ldots, b_{n}\right)$ is a reduced basis if
(1) each $\mu_{k i} \leq 1 / 2$ when $i \neq k$
(2) For each k,

$$
\left\|u_{k}\right\|^{2} \leq \frac{4}{3} \cdot\left\|u_{k+1}+\mu_{(k+1) k} u_{k}\right\|^{2}
$$

- Start with input basis $\left(b_{1}, \ldots, b_{n}\right)$ sorted by increasing norm, then get GSO $\left(u_{1}, \ldots, u_{n}\right)$

LLL Basis Reduction Algorithm

- A basis $\left(b_{1}, \ldots, b_{n}\right)$ is a reduced basis if
(1) each $\left|\mu_{k i}\right| \leq 1 / 2$ when $i \neq k$
(2) For each k,

$$
\left\|u_{k}\right\|^{2} \leq \frac{4}{3} \cdot\left\|u_{k+1}+\mu_{(k+1) k} u_{k}\right\|^{2}
$$

- Start with input basis $\left(b_{1}, \ldots, b_{n}\right)$ sorted by increasing norm, then get GSO $\left(u_{1}, \ldots, u_{n}\right)$
- If condition 1 fails, then apply Gauss' reduction to the vectors.

$$
\left.\begin{array}{c}
\left|\mu_{n i}\right|>\frac{1}{2} \quad\left(b_{i}, b_{n}\right) \quad \begin{array}{c}
\text { Gauss' } \\
\text { reduce }
\end{array} \\
b_{k} \leftarrow b_{k}-\alpha b_{i} \mid
\end{array}\right\}
$$

LLL Basis Reduction Algorithm

- A basis $\left(b_{1}, \ldots, b_{n}\right)$ is a reduced basis if
(1) each $\mu_{k i} \leq 1 / 2$ when $i \neq k$
(2) For each k,

$$
\left\|u_{k}\right\|^{2} \leq \frac{4}{3} \cdot\left\|u_{k+1}+\mu_{(k+1) k} u_{k}\right\|^{2}
$$

- Start with input basis $\left(b_{1}, \ldots, b_{n}\right)$ sorted by increasing norm, then get GSO $\left(u_{1}, \ldots, u_{n}\right)$
- If condition 1 fails, then apply Gauss' reduction to the vectors.
- If condition 2 fails for k, then swap vectors $\left(b_{k}, b_{k+1}\right)$ and recompute the GSO.

LLL Basis Reduction Algorithm

- A basis $\left(b_{1}, \ldots, b_{n}\right)$ is a reduced basis if
(1) each $\mu_{k i} \leq 1 / 2$ when $i \neq k$
(2) For each k,

$$
\left\|u_{k}\right\|^{2} \leq \frac{4}{3} \cdot\left\|u_{k+1}+\mu_{(k+1) k} u_{k}\right\|^{2}
$$

- Start with input basis $\left(b_{1}, \ldots, b_{n}\right)$ sorted by increasing norm, then get GSO $\left(u_{1}, \ldots, u_{n}\right)$
- If condition 1 fails, then apply Gauss' reduction to the vectors.
- If condition 2 fails for k, then swap vectors $\left(b_{k}, b_{k+1}\right)$ and recompute the GSO.
- Check once again both conditions. Stop only when both are satisfied.

LLL Basis Reduction Algorithm

- A basis $\left(b_{1}, \ldots, b_{n}\right)$ is a reduced basis if
(1) each $\mu_{k i} \leq 1 / 2$ when $i \neq k$
(2) For each k,

$$
\left\|u_{k}\right\|^{2} \leq \frac{4}{3} \cdot\left\|u_{k+1}+\mu_{(k+1) k} u_{k}\right\|^{2}
$$

- Start with input basis $\left(b_{1}, \ldots, b_{n}\right)$ sorted by increasing norm, then get GSO $\left(u_{1}, \ldots, u_{n}\right)$
- If condition 1 fails, then apply Gauss' reduction to the vectors.
- If condition 2 fails for k, then swap vectors $\left(b_{k}, b_{k+1}\right)$ and recompute the GSO.
- Check once again both conditions. Stop only when both are satisfied.
- We will now take a deeper look into the first routine

Step 1 - Gauss Reduction

- Given basis $\left(b_{1}, \ldots, b_{n}\right)$ with GSO basis $\left(u_{1}, \ldots, u_{n}\right)$, we can get a new basis $\left(c_{1}, \ldots, c_{n}\right)$ where

$$
c_{k}=\sum_{i=1}^{k} \gamma_{k i} u_{i} \quad \text { with } \quad\left|\gamma_{k i}\right| \leq 1 / 2 \quad i<k
$$

$\left(c_{1}, \ldots, c_{n}\right)$ hes some $G S O$ basis as $\left(b_{1}, \ldots, b_{n}\right)$

Step 1 - Gauss Reduction

- Given basis $\left(b_{1}, \ldots, b_{n}\right)$ with GSO basis $\left(u_{1}, \ldots, u_{n}\right)$, we can get a new basis $\left(c_{1}, \ldots, c_{n}\right)$ where

$$
c_{k}=\sum_{i=1}^{k} \gamma_{k i} u_{i} \quad \text { with } \quad\left|\gamma_{k i}\right| \leq 1 / 2
$$

- If $\left(b_{1}, \ldots, b_{n}\right)$ does not have desired property, take maximum pair (k, i) such that $\left|\mu_{k i}\right|>1 / 2$.

$$
\begin{aligned}
& b_{k}^{\prime}:=b_{k}-\alpha b_{i} \quad \text { from Gauss reduction } \\
\Rightarrow & \left|\mu_{n i}\right| \leqslant 1 / 2
\end{aligned}
$$

Step 1 - Gauss Reduction

- Given basis $\left(b_{1}, \ldots, b_{n}\right)$ with GSO basis $\left(u_{1}, \ldots, u_{n}\right)$, we can get a new basis $\left(c_{1}, \ldots, c_{n}\right)$ where

$$
c_{k}=\sum_{i=1}^{k} \gamma_{k i} u_{i} \quad \text { with } \quad\left|\gamma_{k i}\right| \leq 1 / 2
$$

- If $\left(b_{1}, \ldots, b_{n}\right)$ does not have desired property, take maximum pair (k, i) such that $\left|\mu_{k i}\right|>1 / 2$.

$$
b_{k}^{\prime}:=b_{k}-\alpha b_{i} \text { from Gauss reduction } \boldsymbol{\mu}_{k^{\prime \prime \prime}} \text { sn ally spouse cher }
$$

- Why maximum? Because we don't mess up the higher μ 's (but we may mess up the lower ones)

$$
\begin{aligned}
& \mu_{k^{\prime} i^{\prime}} \quad\left(n^{\prime}, i^{\prime}\right)>(k, i) \\
& \text { not affected }
\end{aligned}
$$

Step 1 - Gauss Reduction

- Given basis $\left(b_{1}, \ldots, b_{n}\right)$ with GSO basis $\left(u_{1}, \ldots, u_{n}\right)$, we can get a new basis $\left(c_{1}, \ldots, c_{n}\right)$ where

$$
c_{k}=\sum_{i=1}^{k} \gamma_{k i} u_{i} \quad \text { with } \quad\left|\gamma_{k i}\right| \leq 1 / 2
$$

- If $\left(b_{1}, \ldots, b_{n}\right)$ does not have desired property, take maximum pair (k, i) such that $\left|\mu_{k i}\right|>1 / 2$.

$$
b_{k}^{\prime}:=b_{k}-\alpha b_{i} \quad \text { from Gauss reduction }
$$

- Why maximum? Because we don't mess up the higher μ 's (but we may mess up the lower ones)
- Gauss reduction will make $\left|\mu_{k i}\right| \leq 1 / 2$ but it may change $\mu_{k j}$ for $j<i$

Step 1 - Gauss Reduction

- Given basis $\left(b_{1}, \ldots, b_{n}\right)$ with GSO basis $\left(u_{1}, \ldots, u_{n}\right)$, we can get a new basis $\left(c_{1}, \ldots, c_{n}\right)$ where

$$
c_{k}=\sum_{i=1}^{k} \gamma_{k i} u_{i} \quad \text { with } \quad\left|\gamma_{k i}\right| \leq 1 / 2
$$

- If $\left(b_{1}, \ldots, b_{n}\right)$ does not have desired property, take maximum pair (k, i) such that $\left|\mu_{k i}\right|>1 / 2$.

$$
b_{k}^{\prime}:=b_{k}-\alpha b_{i} \text { from Gauss reduction }
$$

- Why maximum? Because we don't mess up the higher μ 's (but we may mess up the lower ones)
- Gauss reduction will make $\left|\mu_{k i}\right| \leq 1 / 2$ but it may change $\mu_{k j}$ for $j<i$
- After we go through all pairs (k, i) in decreasing order, the new coefficients $\gamma_{k i}$ will satisfy 1

Runtime Analysis

- We need to prove that our algorithm will terminate, and will do so quickly

Runtime Analysis

- We need to prove that our algorithm will terminate, and will do so quickly
- Let

$$
\begin{aligned}
& \underbrace{D\left(b_{1}, \ldots, b_{n}\right)}_{\downarrow}:=\prod_{i=1}^{n}\left\|u_{i}\right\|^{n-i} \\
& \left(u_{1, \ldots}, u_{n}\right)
\end{aligned}
$$

Runtime Analysis

- We need to prove that our algorithm will terminate, and will do so quickly
- Let

$$
D\left(b_{1}, \ldots, b_{n}\right):=\prod_{i=1}^{n}\left\|u_{i}\right\|^{n-i}
$$

- We will show that Gauss reduction does not change the invariant above, and step 2 only decreases it.
- Step 1 does not change the GSO basis, so D is unchanged

$$
D\left(b_{1}, \ldots, b_{n}\right)=D\left(c_{1}, \ldots, c_{n}\right)
$$

Gauss reductions
didn't change the GSO りasか

Runtime Analysis

- We need to prove that our algorithm will terminate, and will do so quickly
- Let

$$
D\left(b_{1}, \ldots, b_{n}\right):=\prod_{i=1}^{n}\left\|u_{i}\right\|^{n-i}
$$

- We will show that Gauss reduction does not change the invariant above, and step 2 only decreases it.
- Step 1 does not change the GSO basis, so D is unchanged
- Step 2 decreases D by at least $\frac{2}{\sqrt{3}} \quad$ exercise/practice problem

Runtime Analysis

- We need to prove that our algorithm will terminate, and will do so quickly
- Let

$$
D\left(b_{1}, \ldots, b_{n}\right):=\prod_{i=1}^{n}\left\|u_{i}\right\|^{n-i}
$$

- We will show that Gauss reduction does not change the invariant above, and step 2 only decreases it.
- Step 1 does not change the GSO basis, so D is unchanged \square Step 2 decreases D by at least $\frac{2}{\sqrt{3}}$
exercise/practice problem
- Upper bound on $D\left(b_{1}, \ldots, b_{n}\right)$:

$$
\frac{\left(b_{1}, \ldots, b_{n}\right):}{D\left(b_{1}, \ldots, b_{n}\right) \leq\left(\max _{i} \times\left\|u_{i}\right\|\right)^{n^{2}}} \underbrace{p\left(\left\|b_{i}\right\|\right)^{n^{2}}}_{\exp \left(n^{2}, b\right)}
$$

Runtime Analysis

- We need to prove that our algorithm will terminate, and will do so quickly
- Let

$$
\prod_{i=1}^{n e t}\left\|u_{i}\right\| \leq \underline{D\left(b_{1}, \ldots, b_{n}\right)}:=\prod_{i=1}^{n}\left\|u_{i}\right\|^{n-i+1}
$$

- We will show that Gauss reduction does not change the invariant above, and step 2 only decreases it.
- Step 1 does not change the GSO basis, so D is unchanged
- Step 2 decreases D by at least $\frac{2}{\sqrt{3}}$ exercise/practice problem
- Upper bound on $D\left(b_{1}, \ldots, b_{n}\right)$:

$$
D\left(b_{1}, \ldots, b_{n}\right) \leq\left(\max _{i}\left\|u_{i}\right\|\right)^{n^{2}} \leq \exp (n)
$$

- Lower bound: let $B=\left(b_{1} b_{2} \cdots b_{n}\right)$

$$
1 \leq \frac{\operatorname{det}\left(B^{T} B\right)}{\substack{\text { inkeru } \\>0}}=\prod_{i=1}^{n}\left\|u_{i}\right\|^{2}
$$

$$
\begin{aligned}
& b_{k}=u_{k}+\sum_{i<n} g_{k i} u_{i} \\
& U=\left(\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& B=U \cdot A \xrightarrow{\rightarrow \text { uppus ininglen }} \text { in dieponel } \\
& B^{\top} B=A^{\top} U^{\top} \cup A \Rightarrow \operatorname{det}\left(B^{\top} B\right)= \\
& \begin{aligned}
\operatorname{det}\left(A^{\top} A\right) \\
\operatorname{det}\left(U^{\top} U\right)
\end{aligned}
\end{aligned}
$$

$$
{\underset{\underbrace{}}{\operatorname{det}^{n}\left(\left.B\right|^{2}\right.}}_{\operatorname{dinteg}}^{\operatorname{den}}\left(B^{\top} B\right)=\underbrace{\operatorname{det}\left(A^{\top} A\right)}_{\substack{\operatorname{det}(A)^{2}}} \cdot \underbrace{\operatorname{det}\left(U^{\top} U\right)}_{\prod_{i=1}^{n}\left\|u_{i}\right\|^{2}}
$$

Finding Short Vector

- If $\left(b_{1}, \ldots, b_{n}\right)$ is a reduced basis of \mathcal{L}, then

$$
\left\|b_{1}\right\| \leq 2^{\frac{n-1}{2}} \lambda(\mathcal{L})
$$

where $\lambda(\mathcal{L})$ is the length of the shortest vector in \mathcal{L}

Finding Short Vector

- If $\left(b_{1}, \ldots, b_{n}\right)$ is a reduced basis of \mathcal{L}, then

$$
\left\|b_{1}\right\| \leq 2^{\frac{n-1}{2}} \lambda(\mathcal{L})
$$

where $\lambda(\mathcal{L})$ is the length of the shortest vector in \mathcal{L}

- By reduced property of our basis, if $\left(u_{1}, \ldots, u_{n}\right)$ is the GSO basis we have:

$$
\begin{aligned}
\left\|u_{k}\right\|^{2} & \leq \frac{4}{3} \cdot\left\|u_{k+1}+\mu_{(k+1) k} u_{k}\right\|^{2} \\
& =\frac{4}{3} \cdot\left\|u_{k+1}\right\|^{2}+\frac{4}{3} \cdot \mu_{(k+1) k}^{2} \cdot\left\|u_{k}\right\|^{2} \\
& \leq \frac{4}{3} \cdot\left\|u_{k+1}\right\|^{2}+\frac{1}{3} \cdot\left\|u_{k}\right\|^{2} \quad\left|\mu_{(k+1) k}\right| \leqslant \frac{1}{2} \\
& \Rightarrow\left\|u_{k}\right\|^{2} \leq \frac{2\left\|u_{k+1}\right\|^{2}}{4} \\
\frac{2}{3}\left\|u_{k}\right\|^{2} & \leq \frac{4}{3}\left\|u_{k+1}\right\|^{2}
\end{aligned}
$$

Finding Short Vector

- If $\left(b_{1}, \ldots, b_{n}\right)$ is a reduced basis of \mathcal{L}, then

$$
\left\|b_{1}\right\| \leq 2^{\frac{n-1}{2}} \lambda(\mathcal{L})
$$

where $\lambda(\mathcal{L})$ is the length of the shortest vector in \mathcal{L}

- By reduced property of our basis, if $\left(u_{1}, \ldots, u_{n}\right)$ is the GSO basis we have:
$\left\|b_{1}\right\|^{2}$

$$
\left\|u_{k}\right\|^{2} \leq \frac{4}{3} \cdot\left\|u_{k+1}+\mu_{(k+1) k} u_{k}\right\|^{2}
$$

$$
\begin{aligned}
\left\|u_{1}\right\|^{2} \leq 2^{k-1}\left\|u_{k}\right\|^{2} & =\frac{4}{3} \cdot\left\|u_{k+1}\right\|^{2}+\frac{4}{3} \cdot \mu_{(k+1) k}^{2} \cdot\left\|u_{k}\right\|^{2} \\
& \leq \frac{4}{3} \cdot\left\|u_{k+1}\right\|^{2}+\frac{1}{3} \cdot\left\|u_{k}\right\|^{2} \\
& \Rightarrow\left\|u_{k}\right\|^{2} \leq 2\left\|u_{k+1}\right\|^{2} \quad \leftarrow \text { induction }
\end{aligned}
$$

- Then our lemma on GSO basis and shortest vector gives us $\underline{\left\|b_{1}\right\|^{2}} \leq \underline{\min _{k}\left\{2^{k-1}\left\|u_{k}\right\|^{2}\right\}} \leq 2^{n-1} \cdot \frac{\min _{k}\left\|u_{k}\right\|^{2}}{690} \leq 2^{n-1} \cdot \lambda(\mathcal{L})^{2}$

Proof Details

- Short Vectors in a Lattice
- Algorithm Idea: Find Good Basis
- Gram-Schmidt Orthogonalization
- Lenstra-Lenstra-Lovasz (LLL) Basis Reduction Algorithm
- Conclusion
- Acknowledgements

Conclusion

In today's lecture, we learned

- Finding short vector in a lattice
- Finished proof of factoring algorithm over $\mathbb{Z}[x]$
- LLL algorithm is useful way beyond factoring!
(1) breaking cryptosystems
(2) finding simultaneous Diophantine approximations
(3) refutation of Mertens' conjecture
- Great final projects to explore here!

Acknowledgement

Based entirely on

- Lectures 10 and 11 from Madhu's notes http://people.csail.mit.edu/madhu/FT98/

