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Short Vectors in a Lattice

@ Input: linearly independent vectors by, ..., b, € Z", bound M € N

,C:{Oélbl—i—-“anbn | a;EZ}

Output: A vector v € L such that |v|]| < M

The problem above is NP-hard, as it would allow us to find the
shortest vector in a lattice (which is an NP-hard problem).

@ So we will settle for the approximation version:
@ Input: linearly independent vectors b, ..., b, € R", approximation
bound M € N

Ez{albl—i----a,,bm ‘ a,-EZ}

@ Output: A vector v € L such that ||v|| < M- A(L), where
A(L) is the length of the shortest vector in £

Today we will see a polynomial time algorithm when M = 2%
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where m, n could be distinct. Why isn’t the problem from the
previous slide less general?

1See homework and practice exercises for this.
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Observations on our Lattice Problem

@ In previous lecture, we wrote the problem with input vectors
bi,...,bmn cZ"

where m, n could be distinct. Why isn’t the problem from the
previous slide less general?

@ If m < n, can simply make m = n by reducing the dimension of

ambient space orthogonal projections!

e If m > n, we can simply take a linearly independent subset of the
vectors b; which span the lattice.

@ Given previous bullets, we can indeed assume that m = n.

1See homework and practice exercises for this.
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@ Suppose we have by, ..., by € Z" where m > n and we know that
bi,...,bm span R"
o Let B= (b1 b, --- b ) be matrix with by's as columns. Let

bi = (bk1, bk, - - - bkn)T
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Reducing to a basis of R”

@ Suppose we have by, ..., by € Z" where m > n and we know that
bi,...,bm span R"
o Let B= (b1 by --- bm) be matrix with by's as columns. Let
bi = (bk1, b2, - - -, bin) T
© compute g = ged(b11, bo1, . . ., bm1) and integers ay, ..., an, such that
Siriaibi=g
Qu b'2.! - - bml

b b,

bly\ - T - bm'\



Reducing to a basis of R”

@ Suppose we have by, ..., by € Z" where m > n and we know that
bi,...,bm span R"
o Let B= (b1 by --- bm) be matrix with by's as columns. Let
bk = (bk1, b2, - - -, bkn) .
© compute g = ged(b11, bo1, . . ., bm1) and integers ay, ..., an, such that
Sriaibii=g -
@ Construct a new basis C = (¢1,...,¢cn) as follows:

& D a=ab +-+anbnm

Lo Bikzik—%'cl /Cm:OZ

Note that new basis also spans the same lattice £ and cx; = 0 for all

k >',:‘L a.by + Qg 4-- + Qb %
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Reducing to a basis of R”

@ Suppose we have by, ..., by € Z" where m > n and we know that
bi,...,bm span R"
o Let B= (b1 by --- bm) be matrix with by's as columns. Let
bk = (bk1, b2, - - -, bkn) .
© compute g = ged(b11, bo1, . . ., bm1) and integers ay, ..., an, such that
Siriaibi=g
@ Construct a new basis C = (¢1,...,¢cn) as follows:
a=abi+- -+ ambm

b
Ck:bk_ﬁ'cl
g

Note that new basis also spans the same lattice £ and c¢x; = 0 for all
k> 1.

© Repeat step (1) for (¢2,...,Cm) recursion




Reducing to a basis of R”

@ Suppose we have by, ..., by € Z" where m > n and we know that
bi,...,bm span R"
o Let B= (b1 by --- bm) be matrix with by's as columns. Let
bk = (bk1, b2, - - -, bkn) .
© compute g = ged(b11, bo1, . . ., bm1) and integers ay, ..., an, such that
S aibi=g
@ Construct a new basis C = (¢1,...,¢cn) as follows:
a=abi+- -+ ambm

b
Ck:bk_ﬁ'cl
g

Note that new basis also spans the same lattice £ and c¢x; = 0 for all
k> 1.
© Repeat step (1) for (ca,...,cm) recursion
@ Note that by the end of this process, we will have a matrix

M==AY

where A € Z"™" is integral, full rank, and the column vectors of A
span the same lattice L.
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Determinant of a Lattice

@ Now that we clarified the assumption that m = n and that by, ..., b,
form a basis of R”, we can define an invariant of our lattice: the
determinant

det(ﬁ |det (bl b --- bn) |

B = <b. b - %) et () < [det (3]
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@ Now that we clarified the assumption that m = n and that by, ..., b,
form a basis of R”, we can define an invariant of our lattice: the

determinant
det(ﬁ) = ]det (bl b --- bn) ’

@ The definition above is basis independent: if (c1, co,...,¢cn) is
another basis for £, we have that

|det(b1 by --- b,,)|:|det(c1 Co - C,,)|

@ Proof: invertilg‘l'e linear transformation taking one basis to another.
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Determinant of a Lattice

@ Now that we clarified the assumption that m = n and that by, ..., b,
form a basis of R", we can define an invariant of our lattice: the

determinant
det(£) = | det (b1 by --- b,,) ]

@ The definition above is basis independent: if (c1, co,...,¢cn) is
another basis for £, we have that

]det(bl by --- bn)]:|det(c1 o R c,,)|

@ Proof: invertible linear transformation taking one basis to another.

@ To go from one basis to another, we can do elementary column
operations, that is, if we have basis by, ..., b, then we can do

ck =bx—abj, a €7 and ¢y = by forﬁ;ék



@ Algorithm Idea: Find Good Basis
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Algorithm idea: a good basis will contain a short vector!

@ Let's work this out for n = 2. Suppose we have a, b € Z? which form
a basis for the lattice £ = Za + Zb. Also, assume ||a|| < |/b]|.

o If we have that ||a|| < ||b|| < ||b+ aa|| for all & € Z, then we have
that a is the shortest vector in our lattice!

@ Proof: let z = 8a+ b, where 3,7 € Z. Can assume 5,7 # 0
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Algorithm idea: a good basis will contain a short vector!

@ Let's work this out for n = 2. Suppose we have a, b € Z? which form
a basis for the lattice £ = Za + Zb. Also, assume ||a|| < ||b||.

o If we have that |la|| < ||b|| < ||b+ aa|| for all & € Z, then we have
that a is the shortest vector in our lattice!

@ Proof: let z= Ba+ b, where 3,+v € Z. Can assume 3,y # 0
o Case 1: B>v B>o

(o + bjl = ol (-)(/(\"/Jc 2<a.b> 2 L}MK@. 5
= —2 <°~ll’> z2 - <q(\9~>

2 2 2
t = &b, Bargb> = [ lalt 4 & Ul
il < e a g + 2ps<la b
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Algorithm idea: a good basis will contain a short vector!

@ Let's work this out for n = 2. Suppose we have a, b € Z? which form
a basis for the lattice £ = Za + Zb. Also, assume ||a|| < |/b]|.

o If we have that [|a]| < [|b|| < ||b+ «al| for all o € Z, then we have
that a is the shortest vector in our lattice!

@ Proof: let z = 8a+ b, where 3,7 € Z. Can assume 5,7 # 0
o Case 1: B>~
o Case 2: S <~

(\o.+b\\1 = (\OA-\\-L Al for o
previsw Allele



Algorithm idea: a good basis will contain a short vector!

Let's work this out for n = 2. Suppose we have a, b € Z? which form
a basis for the lattice £ = Za + Zb. Also, assume ||a|| < |/b]|.

If we have that ||a|| < ||b]| < ||b+ cal| for all a € Z, then we have
that a is the shortest vector in our lattice!

Proof: let z = fa+ b, where 5,y € Z. Can assume 3,7 # 0
Case 1: B>~
Case 2: f <~

How do we find such a basis (a, b) with the property from the second
bullet? An orthogonal basis does it.
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Algorithm idea: a good basis will contain a short vector!

Let's work this out for n = 2. Suppose we have a, b € Z? which form
a basis for the lattice £ = Za + Zb. Also, assume ||a|| < |/b]|.

If we have that ||a|| < ||b]| < ||b+ cal| for all a € Z, then we have
that a is the shortest vector in our lattice!

Proof: let z = fa+ b, where 5,y € Z. Can assume 3,7 # 0
Case 1: B>~
Case 2: f <~

How do we find such a basis (a, b) with the property from the second
bullet? An orthogonal basis does it.

It will not always be the case that a lattice has orthogonal basis. For

instance
0 1
3 -1

“Close enough” to orthogonal does it!



Looking at Counterexample
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Gauss' Reduction Algorithm

@ The LLL algorithm is generalization of 2D basis reduction due to
Gauss

@ Idea: given two vectors u, v, s.t. ||u]| < ||v|| subtract off as much of
u's projection from v, while staying in the lattice
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Gauss’ Reduction Algorithm

@ The LLL algorithm is generalization of 2D basis reduction due to
Gauss

@ Idea: given two vectors u, v, s.t. ||ul| < ||v|| subtract off as much of
u's projection from v, while staying in the lattice
@ There is a € Z such that
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(v —au, u) < 5]u]®



Gauss' Reduction Algorithm
@ The LLL algorithm is generalization of 2D basis reduction due to
Gauss

@ Idea: given two vectors u, v, s.t. ||u]| < ||v|| subtract off as much of
u's projection from v, while staying in the lattice
@ There is a € Z such that

1
(v —au, u) < 5]u]®

@ Proof: if § = tu, v) , take av € Z closest to 8. Thus | — 5] < 1/2

lull
o

v — 0w, u)] = v AT u) + (8 = a)u u)] < 5 Jul]?
’b--.'pu t (p- "*)‘*\,
V—Pu_l_ 73



Gauss’ Reduction Algorithm

@ The LLL algorithm is generalization of 2D basis reduction due to
Gauss

@ Idea: given two vectors u, v, s.t. ||ul| < ||v|| subtract off as much of
u's projection from v, while staying in the lattice
@ There is a € Z such that

1
(v —au, u) < 5]u]®

@ Proof: if g = {u, V>, take o € Z closest to 3. Thus |a — 5| < 1/2
[[ull
u

(v —au,u)| = [{v—Bu,u) + (B — a)u,u)| < %HUH2

o If ||v — aul| > ||u|| stop. Otherwise swap the vectors and continue.



Gauss’ Reduction Algorithm

@ The LLL algorithm is generalization of 2D basis reduction due to
Gauss

@ Idea: given two vectors u, v, s.t. ||u]| < ||v|| subtract off as much of
u's projection from v, while staying in the lattice
@ There is a € Z such that

1
(v —au, u) < 5]u]®

@ Proof: if g = {u, V>, take o € Z closest to 3. Thus |a — 5| < 1/2
[[ull
u

(v —au,u)| = [{v—Bu,u) + (B — a)u,u)| < %HUH2

o If ||v — aul| > ||u|| stop. Otherwise swap the vectors and continue.

@ Note that at each iteration we are decreasing the norm of the
smallest basis vector. When we cannot decrease further, previous slide
gives us that u is the shortest vector!



@ Gram-Schmidt Orthogonalization
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instance
0 1
3 -1

But we could still attempt to get something “almost as good”
Let us compare to “the best” we could hope for: Gram-Schmidt
Input: basis by,...,b, € R”
Output: Set of orthogonal basis u1,..., u,

Q Set u; = b



Orthogonal Bases and Short Vectors

o Note that if by, ..., b, € Z" were an orthogonal basis for the lattice,
then one of these vectors must be the shortest!

o It will not always be the case that a lattice has orthogonal basis. For
instance
0 1
3 -1
@ But we could still attempt to get something “almost as good”
@ Let us compare to “the best” we could hope for: Gram-Schmidt
o Input: basis by,...,b, € R”
@ Output: Set of orthogonal basis u1, ..., u,
Q Set u; = b
@ Repeat the following for 2 < k < n
—b = <bk, ul>
k = bk — — - Uj
—_ — |[ujl
7 . H’V\ % bk.
QU,,4>=0° Prsjec

i< k Mt &



Orthogonal Bases and Short Vectors

o Note that if by, ..., b, € Z" were an orthogonal basis for the lattice,
then one of these vectors must be the shortest!

It will not always be the case that a lattice has orthogonal basis. For

instance
0 1
3 -1

But we could still attempt to get something “almost as good”
Let us compare to “the best” we could hope for: Gram-Schmidt
Input: basis by,...,b, € R”

Output: Set of orthogonal basis u1,..., u,

Q Set u; = b
@ Repeat the following for 2 < k < n

k-1
Uk:bk—z<bk’u’> " uj

2 (TP

Orthogonal basis not necessarily a basis for our lattice!



Properties of Gram-Schmidt Basis

@ Gram-Schmidt algorithm:
@ Set u; = b
© Repeat the following for 2 < k < n

k—1
by, uj
Uk:bk—z<k’u>.ui

~ luil?




Properties of Gram-Schmidt Basis

e Gram-Schmidt algorithm:
Q Setu;=b
© Repeat the following for 2 < k < n

o Can write

With‘ukk =1. ‘



Properties of Gram-Schmidt Basis

@ Gram-Schmidt algorithm:

@ Set u; = b
© Repeat the following for 2 < k < n

k—1
by, uj
uk:bk—z<k’u>'ui

2 Tul?

o Can write
k

by ZZMM-U;

i=1
with g, = 1.
o If don't change the order but make some by = by + ab; with j < k
the GSO basis stays the same



Properties of Gram-Schmidt Basis

@ Gram-Schmidt algorithm:
@ Set u; = b
© Repeat the following for 2 < k < n

k—1
by, uj
uk:bk—z<k’u>'ui

2 Tul?

o Can write
k
bk = Z Poki - Uj
i=1

with g, = 1.

o If don't change the order but make some by = by + ab; with j < k
the GSO basis stays the same

e If input basis is integral (or rational) then the output basis is rational
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e From now on, given any basis (b1, ..., b,) we can refer to its GSO
(u1,...,up)
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e From now on, given any basis (b1, ..., b,) we can refer to its GSO
(uiy...,up)
@ Relationship between GSO basis and shortest vector in L(by, ..., b,)

Shortest vector in GSO basis lower bounds shortest vector in L.

@ Proof: let v € L. Then we can write v = ayb; + -+ apby, aj € Z

emm——
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e From now on, given any basis (b1, ..., b,) we can refer to its GSO
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Shortest vector & Gram-Schmidt Orthogonalization (GSO)

e From now on, given any basis (b1, ..., b,) we can refer to its GSO

(u1,...,up)
o Relationship between GSO basis and shortest vector in L(b1, ..., bp)

Shortest vector in GSO basis lower bounds shortest vector in L.
@ Proof: let v € L. Then we can write v = ayb; + -+ apby, aj € Z
@ By GSO, we can write by = Zle ki - Ui, With pgge =1
@ Thus, if oy #0 and ay =0 for all £ > t:

v=[prur+ -+ Beur

} °‘+;
With| 3; =4&,/as no other u; depends on u;. By beat

W= ochi+- -+ Xy by e
£ M e
- Z— Plu; \th U{,i‘Q‘ )
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Shortest vector & Gram-Schmidt Orthogonalization (GSO)

e From now on, given any basis (b1, ..., b,) we can refer to its GSO
(uiy...,up)
@ Relationship between GSO basis and shortest vector in L(by, ..., b,)

Shortest vector in GSO basis lower bounds shortest vector in L.
@ Proof: let v € L. Then we can write v = ayb; + -+ apby, aj € Z
@ By GSO, we can write by = fozl ki + Ui, With g =1
@ Thus, if oy #0 and ay =0 for all £ > t:

v= o+ -+ frur

With 5; :Q',’kas no other u; depends on u;.

@ And the norm is given by:

(vl =81l ol + -+ [Be] - [|uell > ||ue]
> O 21 e GO



Reduced Basis

@ Now we are ready to define what a “good basis" is:
o Let (uy,...,un) be the GSO basis from (b1, ..., by)

K
by = E ki Ui
i—1



Reduced Basis

@ Now we are ready to define what a “good basis” is:
o Let (uy,...,un) be the GSO basis from (b1, ..., by)

K
by = Z ki Uj
i—1

@ A basis (b1, ..., by) is a reduced basis if _ by
o eaCthk,‘)S 1/2 when i # k &= G'L{'h:aﬂ'"'-(-'% ‘( ¢

@ For each k, A
Juk])? < 3 k1 + pseuel” G S0
boain
— dys wed
bk_ = (,Qk t 2'___ }(k( u; heve "A‘)ikw“
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Reduced Basis

Now we are ready to define what a “good basis" is:
Let (u1,...,un) be the GSO basis from (b, ..., bp)

K
b =) pkiti
i—1

A basis (b1, ..., by) is a reduced basis if

© each py < 1/2 when i # k
@ For each k,

4
Juk])? < 3 k1 + s el

The LLL basis reduction algorithm will simply construct a reduced
basis iteratively, much like Gauss' reduction algorithm.



@ Lenstra-Lenstra-Lovasz (LLL) Basis Reduction Algorithm



LLL Basis Reduction Algorithm

@ A basis (b1,...,by) is a reduced basis if
(1) each‘,uk,-]g 1/2 when i # k
@ For each k,

okl < 5 - o+ presnyenl?
GSO (Uu"lq\fl )
b= W, + 2 e 4

(<l



LLL Basis Reduction Algorithm

@ A basis (b1, ..., by) is a reduced basis if
@ each py < 1/2 when i # k
@ For each k,

4
Jug|? < 3 kg1 + trees 1yt

e Start with input basis (b1, ..., b,) sorted by increasing norm, then get
GSO (u1,...,up)



LLL Basis Reduction Algorithm

@ A basis (b1, ..., by) is a reduced basis if
o each‘uk,-\g 1/2 when i # k
@ For each k,

4
Jug|? < 3 kg1 + trees 1yt

e Start with input basis (b1, ..., b,) sorted by increasing norm, then get
GSO (u1,...,up)
o If condition 1 fails, then apply Gauss’ reduction to the vectors.

\Mui | 7 £ (biibe) Goum'
%o ducchtan

Cick)
bu""" bk— Mb;%j
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LLL Basis Reduction Algorithm

@ A basis (b1, ..., by) is a reduced basis if
@ each py < 1/2 when i # k

@ For each k,
2 4 2
[Juk]|® < 3 Ukt + pgierrye |
e Start with input basis (b1, ..., b,) sorted by increasing norm, then get
GSO (u1,...,up)

o If condition 1 fails, then apply Gauss’ reduction to the vectors.

e If condition 2 fails for k, then swap vectors (b, bxt1) and recompute
the GSO.
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@ For each k,

4
Jug|? < 3 kg1 + trees 1yt

Start with input basis (b1, ..., b,) sorted by increasing norm, then get
GSO (u1,...,up)
If condition 1 fails, then apply Gauss' reduction to the vectors.

If condition 2 fails for k, then swap vectors (b, bx+1) and recompute
the GSO.

@ Check once again both conditions. Stop only when both are satisfied.



LLL Basis Reduction Algorithm

A basis (b1, ..., by) is a reduced basis if
@ each py < 1/2 when i # k
@ For each k,

4
Jug|? < 3 kg1 + trees 1yt

Start with input basis (b1, ..., b,) sorted by increasing norm, then get
GSO (u1,...,up)
If condition 1 fails, then apply Gauss' reduction to the vectors.

If condition 2 fails for k, then swap vectors (b, bx+1) and recompute
the GSO.

Check once again both conditions. Stop only when both are satisfied.

@ We will now take a deeper look into the first routine



Step 1 — Gauss Reduction
W23
e Given basis (b, ..., by) with GSO basis (u1, ..., u,), we can get a
new basis (c1,. .., cs) where
K
Cx = Z'yk,-u,- with |y < 1/2 (<l
i=1
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Step 1 — Gauss Reduction

e Given basis (b1, ..., by) with GSO basis (u1,...,u,), we can get a
new basis (c1,. .., cn) where

k
Ck = Zw,-u,- with |'7ki| < 1/2
i=1

@ If (by1,...,by) does not have desired property, take maximum pair
(k, i) such that |uki| > 1/2.

b} := by — ab; from Gauss reduction

= [ Ml < 28



Step 1 — Gauss Reduction

e Given basis (b1, ..., by) with GSO basis (u1,...,u,), we can get a
new basis (c1,. .., cn) where

k
= Wt with |y <1/2
i=1

@ If (by1,...,by) does not have desired property, take maximum pair
(k, i) such that |uk| > 1/2.

b} := by — ab; from Gauss reduction Sl
omly Chowgon '™ Allny
@ Why maximum? Because we don't mess up the higher u's (but we
may mess up the lower ones)
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Step 1 — Gauss Reduction

e Given basis (b1, ..., by) with GSO basis (u1,...,u,), we can get a
new basis (c1,. .., cn) where

K
k=Y it with |y < 1/2
i=1

@ If (by1,...,by) does not have desired property, take maximum pair
(k, i) such that |uk| > 1/2.

b} := by — ab; from Gauss reduction

@ Why maximum? Because we don't mess up the higher u's (but we
may mess up the lower ones)

@ Gauss reduction will make |z4j| < 1/2 but it may change puj for j <i
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Step 1 — Gauss Reduction

Given basis (b, ..., b,) with GSO basis (u1,...,u,), we can get a
new basis (c1,. .., cn) where

K
k=Y it with |y < 1/2
i=1

If (b1,...,bs) does not have desired property, take maximum pair
(k, i) such that |uk| > 1/2.

b, :=(by — ab,-l from Gauss reduction

Why maximum? Because we don't mess up the higher u's (but we
may mess up the lower ones)

Gauss reduction will make || < 1/2 but it may change 4 for j <'i

After we go through all pairs (k, i) in decreasing order, the new
coefficients 7, will satisfy 1 do this O(n?) times



Runtime Analysis

@ We need to prove that our algorithm will terminate, and will do so
quickly



Runtime Analysis

@ We need to prove that our algorithm will terminate, and will do so
quickly
o Let

n

D(by,....by) = [ llui™
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Runtime Analysis

@ We need to prove that our algorithm will terminate, and will do so
quickly
o Let

D(by,....by) = [ llui™
i=1

@ We will show that Gauss reduction does not change the invariant
above, and step 2 only decreases it.
o Step 1 does not change the GSO basis, so D is unchanged
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Runtime Analysis

@ We need to prove that our algorithm will terminate, and will do so
quickly
o Let

D(by, ..., by) =[] luill"™
i=1

@ We will show that Gauss reduction does not change the invariant
above, and step 2 only decreases it.
o Step 1 does not change the GSO basis, so D is unchanged

2
e Step 2 decreases D by at least — exercise/practice problem
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Runtime Analysis

@ We need to prove that our algorithm will terminate, and will do so
quickly
o Let

D(by,....by) = [ llui™
i=1

@ We will show that Gauss reduction does not change the invariant
above, and step 2 only decreases it.
o Step 1 does not change the GSO basis, so D is unchanged
2
i ° §tep 2 decreases D by at least — exercise/practice problem

V3
e Upper bound on D(by, ..., bp): 2

N
D(by,. .., by) < (m’_axHu,-H)”Z <& P(l(h'\\ )

“exp (0 b)



Runtime Analysis

@ We need to prove that our algorithm will terminate, and will do so

quickly
o Let
h n )
Tty = Dlbu.,bo) =] il
g2t - i=1

@ We will show that Gauss reduction does not change the invariant
above, and step 2 only decreases it.
o Step 1 does not change the GSO basis, so D is unchanged

2
o Step 2 decreases D by at least % exercise/practice problem

e Upper bound on D(by, ..., bp):
D(by. ..., by) < (max||u])™ € e*?‘”
@ Lower bound: let B = (biby--- by)

1 < det(B H | wi]|?
inkga
>0
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Finding Short Vector
o If (b1,...,bp) is a reduced basis of £, then

b1 < 2°7° A(£)
—

where A\(L) is the length of the shortest vector in £



Finding Short Vector
o If (b1,...,bp) is a reduced basis of £, then

b1 < 2°7° A(£)

where A\(L) is the length of the shortest vector in £

e By reduced property of our basis, if (u1, ..., u,) is the GSO basis we
have:

4
lu? < 3 e + N(k+1)kuk|’2
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Finding Short Vector
o If (b1,...,bp) is a reduced basis of £, then

b1 < 2°7° A(£)

where A\(L) is the length of the shortest vector in £

@ By reduced property of our basis, if (u1,. .., u,) is the GSO basis we
have:
i 4
Loy ol < 3 Nesn + el

( ) . 2 .
“u.nzg 2‘( Nul = 5'\|Uk+1||2+ §'Mfk+1)k~||uk\|2

l 2 1 2
< = + =
=3 HUk+1|| 3 HukH

= ||UkH2 < 2HUk+1H2 < jnolrc o

@ Then our lemma on GSO basis and shortest vector gives us

1617 < ming {25 g2} < 2771 - ming [Jug||? < 2771 - A(£)?
- G5O




Proof Details



Short Vectors in a Lattice

Algorithm Idea: Find Good Basis

Gram-Schmidt Orthogonalization

Lenstra-Lenstra-Lovasz (LLL) Basis Reduction Algorithm

Conclusion
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Conclusion

In today's lecture, we learned

Finding short vector in a lattice

Finished proof of factoring algorithm over Z[x]

LLL algorithm is useful way beyond factoring!
@ breaking cryptosystems
@ finding simultaneous Diophantine approximations
© refutation of Mertens’ conjecture

Great final projects to explore here!
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