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Short Vectors in a Lattice

Input: linearly independent vectors b1, . . . , bn ∈ Zn, bound M ∈ N

L = {α1b1 + · · ·αnbn | αi ∈ Z}

Output: A vector v ∈ L such that �v� ≤ M
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L = {α1b1 + · · ·αnbn | αi ∈ Z}

Output: A vector v ∈ L such that �v� ≤ M

The problem above is NP-hard, as it would allow us to find the
shortest vector in a lattice (which is an NP-hard problem).
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Short Vectors in a Lattice

Input: linearly independent vectors b1, . . . , bn ∈ Zn, bound M ∈ N

L = {α1b1 + · · ·αnbn | αi ∈ Z}

Output: A vector v ∈ L such that �v� ≤ M

The problem above is NP-hard, as it would allow us to find the
shortest vector in a lattice (which is an NP-hard problem).

So we will settle for the approximation version:
1 Input: linearly independent vectors b1, . . . , bn ∈ Rn, approximation

bound M ∈ N
L = {α1b1 + · · ·αnbm | αi ∈ Z}

2 Output: A vector v ∈ L such that �v� ≤ M · λ(L), where
λ(L) is the length of the shortest vector in L
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Short Vectors in a Lattice

Input: linearly independent vectors b1, . . . , bn ∈ Zn, bound M ∈ N

L = {α1b1 + · · ·αnbn | αi ∈ Z}

Output: A vector v ∈ L such that �v� ≤ M

The problem above is NP-hard, as it would allow us to find the
shortest vector in a lattice (which is an NP-hard problem).

So we will settle for the approximation version:
1 Input: linearly independent vectors b1, . . . , bn ∈ Rn, approximation

bound M ∈ N
L = {α1b1 + · · ·αnbm | αi ∈ Z}

2 Output: A vector v ∈ L such that �v� ≤ M · λ(L), where
λ(L) is the length of the shortest vector in L

Today we will see a polynomial time algorithm when M = 2
n−1
2
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Observations on our Lattice Problem

In previous lecture, we wrote the problem with input vectors

b1, . . . , bm ∈ Zn

where m, n could be distinct. Why isn’t the problem from the
previous slide less general?

1See homework and practice exercises for this.
7 / 82



Observations on our Lattice Problem

In previous lecture, we wrote the problem with input vectors

b1, . . . , bm ∈ Zn

where m, n could be distinct. Why isn’t the problem from the
previous slide less general?

If m < n, can simply make m = n by reducing the dimension of
ambient space orthogonal projections1

1See homework and practice exercises for this.
8 / 82



Observations on our Lattice Problem

In previous lecture, we wrote the problem with input vectors

b1, . . . , bm ∈ Zn

where m, n could be distinct. Why isn’t the problem from the
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If m < n, can simply make m = n by reducing the dimension of
ambient space orthogonal projections1
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Observations on our Lattice Problem

In previous lecture, we wrote the problem with input vectors

b1, . . . , bm ∈ Zn

where m, n could be distinct. Why isn’t the problem from the
previous slide less general?

If m < n, can simply make m = n by reducing the dimension of
ambient space orthogonal projections1

If m > n, we can simply take a linearly independent subset of the
vectors bi which span the lattice.

Given previous bullets, we can indeed assume that m = n.

1See homework and practice exercises for this.
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Reducing to a basis of Rn

Suppose we have b1, . . . , bm ∈ Zn where m > n and we know that
b1, . . . , bm span Rn
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Reducing to a basis of Rn

Suppose we have b1, . . . , bm ∈ Zn where m > n and we know that
b1, . . . , bm span Rn

Let B =
�
b1 b2 · · · bm

�
be matrix with bk ’s as columns. Let

bk = (bk1, bk2, . . . , bkn)
T .
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Reducing to a basis of Rn

Suppose we have b1, . . . , bm ∈ Zn where m > n and we know that
b1, . . . , bm span Rn

Let B =
�
b1 b2 · · · bm

�
be matrix with bk ’s as columns. Let

bk = (bk1, bk2, . . . , bkn)
T .

1 compute g = gcd(b11, b21, . . . , bm1) and integers a1, . . . , am such that�m
i=1 aib1i = g
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Reducing to a basis of Rn

Suppose we have b1, . . . , bm ∈ Zn where m > n and we know that
b1, . . . , bm span Rn

Let B =
�
b1 b2 · · · bm

�
be matrix with bk ’s as columns. Let

bk = (bk1, bk2, . . . , bkn)
T .

1 compute g = gcd(b11, b21, . . . , bm1) and integers a1, . . . , am such that�m
i=1 aib1i = g

2 Construct a new basis C = (c1, . . . , cm) as follows:

c1 = a1b1 + · · ·+ ambm

ck = bk −
bk1
g

· c1

Note that new basis also spans the same lattice L and ck1 = 0 for all
k > 1.
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Reducing to a basis of Rn

Suppose we have b1, . . . , bm ∈ Zn where m > n and we know that
b1, . . . , bm span Rn

Let B =
�
b1 b2 · · · bm

�
be matrix with bk ’s as columns. Let

bk = (bk1, bk2, . . . , bkn)
T .

1 compute g = gcd(b11, b21, . . . , bm1) and integers a1, . . . , am such that�m
i=1 aib1i = g

2 Construct a new basis C = (c1, . . . , cm) as follows:

c1 = a1b1 + · · ·+ ambm

ck = bk −
bk1
g

· c1

Note that new basis also spans the same lattice L and ck1 = 0 for all
k > 1.

3 Repeat step (1) for (c2, . . . , cm) recursion
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Reducing to a basis of Rn

Suppose we have b1, . . . , bm ∈ Zn where m > n and we know that
b1, . . . , bm span Rn

Let B =
�
b1 b2 · · · bm

�
be matrix with bk ’s as columns. Let

bk = (bk1, bk2, . . . , bkn)
T .

1 compute g = gcd(b11, b21, . . . , bm1) and integers a1, . . . , am such that�m
i=1 aib1i = g

2 Construct a new basis C = (c1, . . . , cm) as follows:

c1 = a1b1 + · · ·+ ambm

ck = bk −
bk1
g

· c1

Note that new basis also spans the same lattice L and ck1 = 0 for all
k > 1.

3 Repeat step (1) for (c2, . . . , cm) recursion

Note that by the end of this process, we will have a matrix

M =
�
A 0

�

where A ∈ Zn×n is integral, full rank, and the column vectors of A
span the same lattice L.

16 / 82



Example
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Determinant of a Lattice

Now that we clarified the assumption that m = n and that b1, . . . , bn
form a basis of Rn, we can define an invariant of our lattice: the
determinant

det(L) = | det
�
b1 b2 · · · bn

�
|
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form a basis of Rn, we can define an invariant of our lattice: the
determinant

det(L) = | det
�
b1 b2 · · · bn

�
|

The definition above is basis independent: if (c1, c2, . . . , cn) is
another basis for L, we have that
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|
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Determinant of a Lattice

Now that we clarified the assumption that m = n and that b1, . . . , bn
form a basis of Rn, we can define an invariant of our lattice: the
determinant

det(L) = | det
�
b1 b2 · · · bn

�
|

The definition above is basis independent: if (c1, c2, . . . , cn) is
another basis for L, we have that

| det
�
b1 b2 · · · bn

�
| = | det

�
c1 c2 · · · cn

�
|

Proof: invertible linear transformation taking one basis to another.
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Determinant of a Lattice

Now that we clarified the assumption that m = n and that b1, . . . , bn
form a basis of Rn, we can define an invariant of our lattice: the
determinant

det(L) = | det
�
b1 b2 · · · bn

�
|

The definition above is basis independent: if (c1, c2, . . . , cn) is
another basis for L, we have that

| det
�
b1 b2 · · · bn

�
| = | det

�
c1 c2 · · · cn

�
|

Proof: invertible linear transformation taking one basis to another.

To go from one basis to another, we can do elementary column
operations, that is, if we have basis b1, . . . , bn then we can do

ck = bk − αbi , α ∈ Z and c� = b� for � �= k
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Short Vectors in a Lattice

Algorithm Idea: Find Good Basis

Gram-Schmidt Orthogonalization

Lenstra-Lenstra-Lovasz (LLL) Basis Reduction Algorithm
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Algorithm idea: a good basis will contain a short vector!

Let’s work this out for n = 2. Suppose we have a, b ∈ Z2 which form
a basis for the lattice L = Za+ Zb. Also, assume �a� ≤ �b�.
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Algorithm idea: a good basis will contain a short vector!

Let’s work this out for n = 2. Suppose we have a, b ∈ Z2 which form
a basis for the lattice L = Za+ Zb. Also, assume �a� ≤ �b�.
If we have that �a� ≤ �b� ≤ �b + αa� for all α ∈ Z, then we have
that a is the shortest vector in our lattice!
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If we have that �a� ≤ �b� ≤ �b + αa� for all α ∈ Z, then we have
that a is the shortest vector in our lattice!

Proof: let z = βa+ γb, where β, γ ∈ Z. Can assume β, γ �= 0
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Algorithm idea: a good basis will contain a short vector!

Let’s work this out for n = 2. Suppose we have a, b ∈ Z2 which form
a basis for the lattice L = Za+ Zb. Also, assume �a� ≤ �b�.
If we have that �a� ≤ �b� ≤ �b + αa� for all α ∈ Z, then we have
that a is the shortest vector in our lattice!

Proof: let z = βa+ γb, where β, γ ∈ Z. Can assume β, γ �= 0

Case 1: β > γ
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Algorithm idea: a good basis will contain a short vector!

Let’s work this out for n = 2. Suppose we have a, b ∈ Z2 which form
a basis for the lattice L = Za+ Zb. Also, assume �a� ≤ �b�.
If we have that �a� ≤ �b� ≤ �b + αa� for all α ∈ Z, then we have
that a is the shortest vector in our lattice!

Proof: let z = βa+ γb, where β, γ ∈ Z. Can assume β, γ �= 0

Case 1: β > γ

Case 2: β ≤ γ
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Algorithm idea: a good basis will contain a short vector!

Let’s work this out for n = 2. Suppose we have a, b ∈ Z2 which form
a basis for the lattice L = Za+ Zb. Also, assume �a� ≤ �b�.
If we have that �a� ≤ �b� ≤ �b + αa� for all α ∈ Z, then we have
that a is the shortest vector in our lattice!

Proof: let z = βa+ γb, where β, γ ∈ Z. Can assume β, γ �= 0

Case 1: β > γ

Case 2: β ≤ γ

How do we find such a basis (a, b) with the property from the second
bullet? An orthogonal basis does it.
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Algorithm idea: a good basis will contain a short vector!

Let’s work this out for n = 2. Suppose we have a, b ∈ Z2 which form
a basis for the lattice L = Za+ Zb. Also, assume �a� ≤ �b�.
If we have that �a� ≤ �b� ≤ �b + αa� for all α ∈ Z, then we have
that a is the shortest vector in our lattice!

Proof: let z = βa+ γb, where β, γ ∈ Z. Can assume β, γ �= 0

Case 1: β > γ

Case 2: β ≤ γ

How do we find such a basis (a, b) with the property from the second
bullet? An orthogonal basis does it.

It will not always be the case that a lattice has orthogonal basis. For
instance �

0 1
3 −1

�

“Close enough” to orthogonal does it!

32 / 82



Looking at Counterexample
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Gauss’ Reduction Algorithm

The LLL algorithm is generalization of 2D basis reduction due to
Gauss

Idea: given two vectors u, v , s.t. �u� ≤ �v� subtract off as much of
u’s projection from v , while staying in the lattice
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Gauss’ Reduction Algorithm

The LLL algorithm is generalization of 2D basis reduction due to
Gauss

Idea: given two vectors u, v , s.t. �u� ≤ �v� subtract off as much of
u’s projection from v , while staying in the lattice

There is α ∈ Z such that

|�v − αu, u�| ≤ 1

2
�u�2

35 / 82



Gauss’ Reduction Algorithm

The LLL algorithm is generalization of 2D basis reduction due to
Gauss

Idea: given two vectors u, v , s.t. �u� ≤ �v� subtract off as much of
u’s projection from v , while staying in the lattice

There is α ∈ Z such that

|�v − αu, u�| ≤ 1

2
�u�2

Proof: if β =
�u, v�
�u� , take α ∈ Z closest to β. Thus |α− β| ≤ 1/2

|�v − αu, u�| = |�v − βu, u�+ �(β − α)u, u�| ≤ 1

2
�u�2
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Gauss’ Reduction Algorithm

The LLL algorithm is generalization of 2D basis reduction due to
Gauss

Idea: given two vectors u, v , s.t. �u� ≤ �v� subtract off as much of
u’s projection from v , while staying in the lattice

There is α ∈ Z such that

|�v − αu, u�| ≤ 1

2
�u�2

Proof: if β =
�u, v�
�u� , take α ∈ Z closest to β. Thus |α− β| ≤ 1/2

|�v − αu, u�| = |�v − βu, u�+ �(β − α)u, u�| ≤ 1

2
�u�2

If �v − αu� ≥ �u� stop. Otherwise swap the vectors and continue.

37 / 82



Gauss’ Reduction Algorithm

The LLL algorithm is generalization of 2D basis reduction due to
Gauss

Idea: given two vectors u, v , s.t. �u� ≤ �v� subtract off as much of
u’s projection from v , while staying in the lattice

There is α ∈ Z such that

|�v − αu, u�| ≤ 1

2
�u�2

Proof: if β =
�u, v�
�u� , take α ∈ Z closest to β. Thus |α− β| ≤ 1/2

|�v − αu, u�| = |�v − βu, u�+ �(β − α)u, u�| ≤ 1

2
�u�2

If �v − αu� ≥ �u� stop. Otherwise swap the vectors and continue.

Note that at each iteration we are decreasing the norm of the
smallest basis vector. When we cannot decrease further, previous slide
gives us that u is the shortest vector!
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Orthogonal Bases and Short Vectors

Note that if b1, . . . , bn ∈ Zn were an orthogonal basis for the lattice,
then one of these vectors must be the shortest!
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Orthogonal Bases and Short Vectors

Note that if b1, . . . , bn ∈ Zn were an orthogonal basis for the lattice,
then one of these vectors must be the shortest!

It will not always be the case that a lattice has orthogonal basis. For
instance �

0 1
3 −1

�

But we could still attempt to get something “almost as good”

Let us compare to “the best” we could hope for: Gram-Schmidt
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Note that if b1, . . . , bn ∈ Zn were an orthogonal basis for the lattice,
then one of these vectors must be the shortest!

It will not always be the case that a lattice has orthogonal basis. For
instance �

0 1
3 −1

�

But we could still attempt to get something “almost as good”

Let us compare to “the best” we could hope for: Gram-Schmidt

Input: basis b1, . . . , bn ∈ Rn

Output: Set of orthogonal basis u1, . . . , un
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Orthogonal Bases and Short Vectors

Note that if b1, . . . , bn ∈ Zn were an orthogonal basis for the lattice,
then one of these vectors must be the shortest!

It will not always be the case that a lattice has orthogonal basis. For
instance �

0 1
3 −1

�

But we could still attempt to get something “almost as good”

Let us compare to “the best” we could hope for: Gram-Schmidt

Input: basis b1, . . . , bn ∈ Rn

Output: Set of orthogonal basis u1, . . . , un
1 Set u1 = b1
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Orthogonal Bases and Short Vectors

Note that if b1, . . . , bn ∈ Zn were an orthogonal basis for the lattice,
then one of these vectors must be the shortest!

It will not always be the case that a lattice has orthogonal basis. For
instance �

0 1
3 −1

�

But we could still attempt to get something “almost as good”

Let us compare to “the best” we could hope for: Gram-Schmidt

Input: basis b1, . . . , bn ∈ Rn

Output: Set of orthogonal basis u1, . . . , un
1 Set u1 = b1
2 Repeat the following for 2 ≤ k ≤ n

uk = bk −
k−1�

i=1

�bk , ui �
�ui�2

· ui
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Orthogonal Bases and Short Vectors

Note that if b1, . . . , bn ∈ Zn were an orthogonal basis for the lattice,
then one of these vectors must be the shortest!

It will not always be the case that a lattice has orthogonal basis. For
instance �

0 1
3 −1

�

But we could still attempt to get something “almost as good”

Let us compare to “the best” we could hope for: Gram-Schmidt

Input: basis b1, . . . , bn ∈ Rn

Output: Set of orthogonal basis u1, . . . , un
1 Set u1 = b1
2 Repeat the following for 2 ≤ k ≤ n

uk = bk −
k−1�

i=1

�bk , ui �
�ui�2

· ui

Orthogonal basis not necessarily a basis for our lattice!
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Properties of Gram-Schmidt Basis

Gram-Schmidt algorithm:
1 Set u1 = b1
2 Repeat the following for 2 ≤ k ≤ n

uk = bk −
k−1�

i=1

�bk , ui �
�ui�2

· ui
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Properties of Gram-Schmidt Basis

Gram-Schmidt algorithm:
1 Set u1 = b1
2 Repeat the following for 2 ≤ k ≤ n

uk = bk −
k−1�

i=1

�bk , ui �
�ui�2

· ui

Can write

bk =
k�

i=1

µki · ui

with µkk = 1.
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Properties of Gram-Schmidt Basis

Gram-Schmidt algorithm:
1 Set u1 = b1
2 Repeat the following for 2 ≤ k ≤ n

uk = bk −
k−1�

i=1

�bk , ui �
�ui�2

· ui

Can write

bk =
k�

i=1

µki · ui

with µkk = 1.

If don’t change the order but make some bk = bk + αbj with j < k
the GSO basis stays the same
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Properties of Gram-Schmidt Basis

Gram-Schmidt algorithm:
1 Set u1 = b1
2 Repeat the following for 2 ≤ k ≤ n

uk = bk −
k−1�

i=1

�bk , ui �
�ui�2

· ui

Can write

bk =
k�

i=1

µki · ui

with µkk = 1.

If don’t change the order but make some bk = bk + αbj with j < k
the GSO basis stays the same

If input basis is integral (or rational) then the output basis is rational
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Shortest vector & Gram-Schmidt Orthogonalization (GSO)

From now on, given any basis (b1, . . . , bn) we can refer to its GSO
(u1, . . . , un)
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Shortest vector & Gram-Schmidt Orthogonalization (GSO)

From now on, given any basis (b1, . . . , bn) we can refer to its GSO
(u1, . . . , un)

Relationship between GSO basis and shortest vector in L(b1, . . . , bn)
Shortest vector in GSO basis lower bounds shortest vector in L.
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Shortest vector & Gram-Schmidt Orthogonalization (GSO)

From now on, given any basis (b1, . . . , bn) we can refer to its GSO
(u1, . . . , un)

Relationship between GSO basis and shortest vector in L(b1, . . . , bn)
Shortest vector in GSO basis lower bounds shortest vector in L.

Proof: let v ∈ L. Then we can write v = α1b1 + · · ·+ αnbn, αj ∈ Z
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Shortest vector & Gram-Schmidt Orthogonalization (GSO)

From now on, given any basis (b1, . . . , bn) we can refer to its GSO
(u1, . . . , un)

Relationship between GSO basis and shortest vector in L(b1, . . . , bn)
Shortest vector in GSO basis lower bounds shortest vector in L.

Proof: let v ∈ L. Then we can write v = α1b1 + · · ·+ αnbn, αj ∈ Z
By GSO, we can write bk =

�k
i=1 µki · ui , with µkk = 1

54 / 82



Shortest vector & Gram-Schmidt Orthogonalization (GSO)

From now on, given any basis (b1, . . . , bn) we can refer to its GSO
(u1, . . . , un)

Relationship between GSO basis and shortest vector in L(b1, . . . , bn)
Shortest vector in GSO basis lower bounds shortest vector in L.

Proof: let v ∈ L. Then we can write v = α1b1 + · · ·+ αnbn, αj ∈ Z
By GSO, we can write bk =

�k
i=1 µki · ui , with µkk = 1

Thus, if αt �= 0 and α� = 0 for all � > t:

v = β1u1 + · · ·+ βtut

With βt = 1, as no other ui depends on ut .
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Shortest vector & Gram-Schmidt Orthogonalization (GSO)

From now on, given any basis (b1, . . . , bn) we can refer to its GSO
(u1, . . . , un)

Relationship between GSO basis and shortest vector in L(b1, . . . , bn)
Shortest vector in GSO basis lower bounds shortest vector in L.

Proof: let v ∈ L. Then we can write v = α1b1 + · · ·+ αnbn, αj ∈ Z
By GSO, we can write bk =

�k
i=1 µki · ui , with µkk = 1

Thus, if αt �= 0 and α� = 0 for all � > t:

v = β1u1 + · · ·+ βtut

With βt = 1, as no other ui depends on ut .

And the norm is given by:

�v� = |β1| · �u1�+ · · ·+ |βt | · �ut� ≥ �ut�
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Reduced Basis

Now we are ready to define what a “good basis” is:

Let (u1, . . . , un) be the GSO basis from (b1, . . . , bn)

bk =
k�

i=1

µkiui
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Reduced Basis

Now we are ready to define what a “good basis” is:

Let (u1, . . . , un) be the GSO basis from (b1, . . . , bn)

bk =
k�

i=1

µkiui

A basis (b1, . . . , bn) is a reduced basis if
1 each µki ≤ 1/2 when i �= k
2 For each k ,

�uk�2 ≤
4

3
· �uk+1 + µ(k+1)kuk�2
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Reduced Basis

Now we are ready to define what a “good basis” is:

Let (u1, . . . , un) be the GSO basis from (b1, . . . , bn)

bk =
k�

i=1

µkiui

A basis (b1, . . . , bn) is a reduced basis if
1 each µki ≤ 1/2 when i �= k
2 For each k ,

�uk�2 ≤
4

3
· �uk+1 + µ(k+1)kuk�2

The LLL basis reduction algorithm will simply construct a reduced
basis iteratively, much like Gauss’ reduction algorithm.
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LLL Basis Reduction Algorithm

A basis (b1, . . . , bn) is a reduced basis if
1 each µki ≤ 1/2 when i �= k
2 For each k ,

�uk�2 ≤
4

3
· �uk+1 + µ(k+1)kuk�2
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LLL Basis Reduction Algorithm

A basis (b1, . . . , bn) is a reduced basis if
1 each µki ≤ 1/2 when i �= k
2 For each k ,

�uk�2 ≤
4

3
· �uk+1 + µ(k+1)kuk�2

Start with input basis (b1, . . . , bn) sorted by increasing norm, then get
GSO (u1, . . . , un)
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LLL Basis Reduction Algorithm

A basis (b1, . . . , bn) is a reduced basis if
1 each µki ≤ 1/2 when i �= k
2 For each k ,

�uk�2 ≤
4

3
· �uk+1 + µ(k+1)kuk�2

Start with input basis (b1, . . . , bn) sorted by increasing norm, then get
GSO (u1, . . . , un)

If condition 1 fails, then apply Gauss’ reduction to the vectors.
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LLL Basis Reduction Algorithm

A basis (b1, . . . , bn) is a reduced basis if
1 each µki ≤ 1/2 when i �= k
2 For each k ,

�uk�2 ≤
4

3
· �uk+1 + µ(k+1)kuk�2

Start with input basis (b1, . . . , bn) sorted by increasing norm, then get
GSO (u1, . . . , un)

If condition 1 fails, then apply Gauss’ reduction to the vectors.

If condition 2 fails for k , then swap vectors (bk , bk+1) and recompute
the GSO.
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LLL Basis Reduction Algorithm

A basis (b1, . . . , bn) is a reduced basis if
1 each µki ≤ 1/2 when i �= k
2 For each k ,

�uk�2 ≤
4

3
· �uk+1 + µ(k+1)kuk�2

Start with input basis (b1, . . . , bn) sorted by increasing norm, then get
GSO (u1, . . . , un)

If condition 1 fails, then apply Gauss’ reduction to the vectors.

If condition 2 fails for k , then swap vectors (bk , bk+1) and recompute
the GSO.

Check once again both conditions. Stop only when both are satisfied.
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LLL Basis Reduction Algorithm

A basis (b1, . . . , bn) is a reduced basis if
1 each µki ≤ 1/2 when i �= k
2 For each k ,

�uk�2 ≤
4

3
· �uk+1 + µ(k+1)kuk�2

Start with input basis (b1, . . . , bn) sorted by increasing norm, then get
GSO (u1, . . . , un)

If condition 1 fails, then apply Gauss’ reduction to the vectors.

If condition 2 fails for k , then swap vectors (bk , bk+1) and recompute
the GSO.

Check once again both conditions. Stop only when both are satisfied.

We will now take a deeper look into the first routine
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Step 1 – Gauss Reduction

Given basis (b1, . . . , bn) with GSO basis (u1, . . . , un), we can get a
new basis (c1, . . . , cn) where

ck =
k�

i=1

γkiui with |γki | ≤ 1/2
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Step 1 – Gauss Reduction

Given basis (b1, . . . , bn) with GSO basis (u1, . . . , un), we can get a
new basis (c1, . . . , cn) where

ck =
k�

i=1

γkiui with |γki | ≤ 1/2

If (b1, . . . , bn) does not have desired property, take maximum pair
(k , i) such that |µki | > 1/2.

b�k := bk − αbi from Gauss reduction
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Step 1 – Gauss Reduction

Given basis (b1, . . . , bn) with GSO basis (u1, . . . , un), we can get a
new basis (c1, . . . , cn) where

ck =
k�

i=1

γkiui with |γki | ≤ 1/2

If (b1, . . . , bn) does not have desired property, take maximum pair
(k , i) such that |µki | > 1/2.

b�k := bk − αbi from Gauss reduction

Why maximum? Because we don’t mess up the higher µ’s (but we
may mess up the lower ones)
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Step 1 – Gauss Reduction

Given basis (b1, . . . , bn) with GSO basis (u1, . . . , un), we can get a
new basis (c1, . . . , cn) where

ck =
k�

i=1

γkiui with |γki | ≤ 1/2

If (b1, . . . , bn) does not have desired property, take maximum pair
(k , i) such that |µki | > 1/2.

b�k := bk − αbi from Gauss reduction

Why maximum? Because we don’t mess up the higher µ’s (but we
may mess up the lower ones)

Gauss reduction will make |µki | ≤ 1/2 but it may change µkj for j < i
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Step 1 – Gauss Reduction

Given basis (b1, . . . , bn) with GSO basis (u1, . . . , un), we can get a
new basis (c1, . . . , cn) where

ck =
k�

i=1

γkiui with |γki | ≤ 1/2

If (b1, . . . , bn) does not have desired property, take maximum pair
(k , i) such that |µki | > 1/2.

b�k := bk − αbi from Gauss reduction

Why maximum? Because we don’t mess up the higher µ’s (but we
may mess up the lower ones)

Gauss reduction will make |µki | ≤ 1/2 but it may change µkj for j < i

After we go through all pairs (k , i) in decreasing order, the new
coefficients γki will satisfy 1 do this O(n2) times
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Runtime Analysis
We need to prove that our algorithm will terminate, and will do so
quickly
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Runtime Analysis
We need to prove that our algorithm will terminate, and will do so
quickly
Let

D(b1, . . . , bn) :=
n�

i=1

�ui�n−i

73 / 82



Runtime Analysis
We need to prove that our algorithm will terminate, and will do so
quickly
Let

D(b1, . . . , bn) :=
n�

i=1

�ui�n−i

We will show that Gauss reduction does not change the invariant
above, and step 2 only decreases it.

Step 1 does not change the GSO basis, so D is unchanged
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Runtime Analysis
We need to prove that our algorithm will terminate, and will do so
quickly
Let

D(b1, . . . , bn) :=
n�

i=1

�ui�n−i

We will show that Gauss reduction does not change the invariant
above, and step 2 only decreases it.

Step 1 does not change the GSO basis, so D is unchanged

Step 2 decreases D by at least
2√
3

exercise/practice problem
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Runtime Analysis
We need to prove that our algorithm will terminate, and will do so
quickly
Let

D(b1, . . . , bn) :=
n�

i=1

�ui�n−i

We will show that Gauss reduction does not change the invariant
above, and step 2 only decreases it.

Step 1 does not change the GSO basis, so D is unchanged

Step 2 decreases D by at least
2√
3

exercise/practice problem

Upper bound on D(b1, . . . , bn):

D(b1, . . . , bn) ≤ (max
i

�ui�)n
2
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Runtime Analysis
We need to prove that our algorithm will terminate, and will do so
quickly
Let

D(b1, . . . , bn) :=
n�

i=1

�ui�n−i

We will show that Gauss reduction does not change the invariant
above, and step 2 only decreases it.

Step 1 does not change the GSO basis, so D is unchanged

Step 2 decreases D by at least
2√
3

exercise/practice problem

Upper bound on D(b1, . . . , bn):

D(b1, . . . , bn) ≤ (max
i

�ui�)n
2

Lower bound: let B = (b1b2 · · · bn)

1 ≤ det(BTB) =
n�

i=1

�ui�2
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Finding Short Vector

If (b1, . . . , bn) is a reduced basis of L, then

�b1� ≤ 2
n−1
2 λ(L)

where λ(L) is the length of the shortest vector in L
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Finding Short Vector

If (b1, . . . , bn) is a reduced basis of L, then

�b1� ≤ 2
n−1
2 λ(L)

where λ(L) is the length of the shortest vector in L
By reduced property of our basis, if (u1, . . . , un) is the GSO basis we
have:

�uk�2 ≤
4

3
· �uk+1 + µ(k+1)kuk�2

=
4

3
· �uk+1�2 +

4

3
· µ2

(k+1)k · �uk�2

≤ 4

3
· �uk+1�2 +

1

3
· �uk�2

⇒ �uk�2 ≤ 2�uk+1�2
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Finding Short Vector

If (b1, . . . , bn) is a reduced basis of L, then

�b1� ≤ 2
n−1
2 λ(L)

where λ(L) is the length of the shortest vector in L
By reduced property of our basis, if (u1, . . . , un) is the GSO basis we
have:

�uk�2 ≤
4

3
· �uk+1 + µ(k+1)kuk�2

=
4

3
· �uk+1�2 +

4

3
· µ2

(k+1)k · �uk�2

≤ 4

3
· �uk+1�2 +

1

3
· �uk�2

⇒ �uk�2 ≤ 2�uk+1�2

Then our lemma on GSO basis and shortest vector gives us
�b1�2 ≤ mink{2k−1�uk�2} ≤ 2n−1 ·mink �uk�2 ≤ 2n−1 · λ(L)2
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Proof Details
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Conclusion

In today’s lecture, we learned

Finding short vector in a lattice

Finished proof of factoring algorithm over Z[x ]
LLL algorithm is useful way beyond factoring!

1 breaking cryptosystems
2 finding simultaneous Diophantine approximations
3 refutation of Mertens’ conjecture

Great final projects to explore here!
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