Lecture 10: Univariate Polynomial Factoring over the Integers

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

February 10, 2021

Overview

- Review from last lecture: Cantor-Zassenhaus
- Today's algorithm: Berlekamp's algorithm (1967)
- Properties of Irreducible Polynomials
- Conclusion
- Acknowledgements

Problem Definition

- We know that $\mathbb{Z}[x]$ is a UFD, by Gauss' lemma. Thus each polynomial $f(x) \in \mathbb{Z}[x]$ can be factored as

$$
f(x)=c_{1} \cdots c_{k} \cdot f_{1}(x) \cdots f_{t}(x)
$$

Problem Definition

- We know that $\mathbb{Z}[x]$ is a UFD, by Gauss' lemma. Thus each polynomial $f(x) \in \mathbb{Z}[x]$ can be factored as

$$
f(x)=c_{1} \cdots c_{k} \cdot f_{1}(x) \cdots f_{t}(x)
$$

- Since integer factoring is hard, we will relax our problem as follows: output

$$
f(x)=c \cdot f_{1}(x) \cdots f_{t}(x)
$$

- Input: polynomial $f(x) \in \mathbb{Z}[x]$
- Output: Either f is irreducible or a non-trivial factorization of f

Problem Definition

- We know that $\mathbb{Z}[x]$ is a UFD, by Gauss' lemma. Thus each polynomial $f(x) \in \mathbb{Z}[x]$ can be factored as

$$
f(x)=c_{1} \cdots c_{k} \cdot f_{1}(x) \cdots f_{t}(x)
$$

- Since integer factoring is hard, we will relax our problem as follows: output

$$
f(x)=c \cdot f_{1}(x) \cdots f_{t}(x)
$$

- Input: polynomial $f(x) \in \mathbb{Z}[x]$
- Output: Either f is irreducible or a non-trivial factorization of f
- Today we will see a deterministic polynomial time algorithm for integer factoring
- Factoring polynomials over the rationals can be reduced to integer factoring, by clearing denominators

Problem Definition

- We know that $\mathbb{Z}[x]$ is a UFD, by Gauss' lemma. Thus each polynomial $f(x) \in \mathbb{Z}[x]$ can be factored as

$$
f(x)=c_{1} \cdots c_{k} \cdot f_{1}(x) \cdots f_{t}(x)
$$

- Since integer factoring is hard, we will relax our problem as follows: output

$$
f(x)=c \cdot f_{1}(x) \cdots f_{t}(x)
$$

- Input: polynomial $f(x) \in \mathbb{Z}[x]$
- Output: Either f is irreducible or a non-trivial factorization of f
- Today we will see a deterministic polynomial time algorithm for integer factoring
- Factoring polynomials over the rationals can be reduced to integer factoring, by clearing denominators
- One approach is to factor $f(x) \bmod p$ for many primes p and then see if these factorizations give us anything about the factorization of f over $\mathbb{Z}[x]$

Problem Definition

- We know that $\mathbb{Z}[x]$ is a UFD, by Gauss' lemma. Thus each polynomial $f(x) \in \mathbb{Z}[x]$ can be factored as

$$
f(x)=c_{1} \cdots c_{k} \cdot f_{1}(x) \cdots f_{t}(x)
$$

- Since integer factoring is hard, we will relax our problem as follows: output

$$
f(x)=c \cdot f_{1}(x) \cdots f_{t}(x)
$$

- Input: polynomial $f(x) \in \mathbb{Z}[x]$
- Output: Either f is irreducible or a non-trivial factorization of f
- Today we will see a deterministic polynomial time algorithm for integer factoring
- Factoring polynomials over the rationals can be reduced to integer factoring, by clearing denominators
- One approach is to factor $f(x) \bmod p$ for many primes p and then see if these factorizations give us anything about the factorization of f over $\mathbb{Z}[x]$
- Counterexample: $f(x)=x^{4}+1$ is irreducible over $\mathbb{Z}[x]$ but factors over $\mathbb{Z}_{p}[x]$ for any prime p

Counterexample to First Approach

- $f(x)=x^{4}+1$
- Eisenstein's criterion over $f(x+1)$ gives us irreducibility
(1) prime p divides all coefficients but leading coefficient
(2) p^{2} does not divide constant term

Counterexample to First Approach

- $f(x)=x^{4}+1$
- Eisenstein's criterion over $f(x+1)$ gives us irreducibility
(1) prime p divides all coefficients but leading coefficient
(2) p^{2} does not divide constant term
- If $p=2$, we have $x^{4}+1=(x+1)^{4}$

Counterexample to First Approach

- $f(x)=x^{4}+1$
- Eisenstein's criterion over $f(x+1)$ gives us irreducibility
(1) prime p divides all coefficients but leading coefficient
(2) p^{2} does not divide constant term
- If $p=2$, we have $x^{4}+1=(x+1)^{4}$
- If p odd, then $8 \mid p^{2}-1$

Counterexample to First Approach

- $f(x)=x^{4}+1$
- Eisenstein's criterion over $f(x+1)$ gives us irreducibility
(1) prime p divides all coefficients but leading coefficient
(2) p^{2} does not divide constant term
- If $p=2$, we have $x^{4}+1=(x+1)^{4}$
- If p odd, then $8 \mid p^{2}-1$
- Take primitive root of unity u over $\mathbb{F}_{p^{2}}$. Let $g=u^{\left(p^{2}-1\right) / 8}$. Must have $g^{4}+1=0$ over $\mathbb{F}_{p^{2}}$

Counterexample to First Approach

- $f(x)=x^{4}+1$
- Eisenstein's criterion over $f(x+1)$ gives us irreducibility
(1) prime p divides all coefficients but leading coefficient
(2) p^{2} does not divide constant term
- If $p=2$, we have $x^{4}+1=(x+1)^{4}$
- If p odd, then $8 \mid p^{2}-1$
- Take primitive root of unity u over $\mathbb{F}_{p^{2}}$. Let $g=u^{\left(p^{2}-1\right) / 8}$. Must have $g^{4}+1=0$ over $\mathbb{F}_{p^{2}}$
- Thus, we have

$$
x^{4}+1=(x-g)\left(x-g^{3}\right)\left(x-g^{5}\right)\left(x-g^{7}\right)
$$

Counterexample to First Approach

- $f(x)=x^{4}+1$
- Eisenstein's criterion over $f(x+1)$ gives us irreducibility
(1) prime p divides all coefficients but leading coefficient
(2) p^{2} does not divide constant term
- If $p=2$, we have $x^{4}+1=(x+1)^{4}$
- If p odd, then $8 \mid p^{2}-1$
- Take primitive root of unity u over $\mathbb{F}_{p^{2}}$. Let $g=u^{\left(p^{2}-1\right) / 8}$. Must have $g^{4}+1=0$ over $\mathbb{F}_{p^{2}}$
- Thus, we have

$$
x^{4}+1=(x-g)\left(x-g^{3}\right)\left(x-g^{5}\right)\left(x-g^{7}\right)
$$

- $g \in \mathbb{F}_{p^{2}}$ implies that the minimal polynomial of g is of degree ≤ 2 and it must divide $x^{4}+1$

Another proof of counterexample

- If $p=2$, we have $x^{4}+1=(x+1)^{4}$
- If p odd, then we have two cases:

Another proof of counterexample

- If $p=2$, we have $x^{4}+1=(x+1)^{4}$
- If p odd, then we have two cases:
- -1 is a square over \mathbb{Z}_{p}, say $-1=a^{2}$

Another proof of counterexample

- If $p=2$, we have $x^{4}+1=(x+1)^{4}$
- If p odd, then we have two cases:
- -1 is a square over \mathbb{Z}_{p}, say $-1=a^{2}$
- In this case $x^{4}+1=\left(x^{2}-a\right)\left(x^{2}+a\right)$

Another proof of counterexample

- If $p=2$, we have $x^{4}+1=(x+1)^{4}$
- If p odd, then we have two cases:
- -1 is a square over \mathbb{Z}_{p}, say $-1=a^{2}$
- In this case $x^{4}+1=\left(x^{2}-a\right)\left(x^{2}+a\right)$
- 2 is a square over \mathbb{Z}_{p}, say $2=b^{2}$

Another proof of counterexample

- If $p=2$, we have $x^{4}+1=(x+1)^{4}$
- If p odd, then we have two cases:
- -1 is a square over \mathbb{Z}_{p}, say $-1=a^{2}$
- In this case $x^{4}+1=\left(x^{2}-a\right)\left(x^{2}+a\right)$
- 2 is a square over \mathbb{Z}_{p}, say $2=b^{2}$
- Thus, we have

$$
\begin{aligned}
x^{4}+1+2 x^{2}=\left(x^{2}+1\right)^{2} \Rightarrow x^{4}+1 & =\left(x^{2}+1\right)^{2}-2 x^{2} \\
& =\left(x^{2}-b x+1\right)\left(x^{2}+b x+1\right)
\end{aligned}
$$

Another proof of counterexample

- If $p=2$, we have $x^{4}+1=(x+1)^{4}$
- If p odd, then we have two cases:
- -1 is a square over \mathbb{Z}_{p}, say $-1=a^{2}$
- In this case $x^{4}+1=\left(x^{2}-a\right)\left(x^{2}+a\right)$
- 2 is a square over \mathbb{Z}_{p}, say $2=b^{2}$
- Thus, we have

$$
\begin{aligned}
x^{4}+1+2 x^{2}=\left(x^{2}+1\right)^{2} \Rightarrow x^{4}+1 & =\left(x^{2}+1\right)^{2}-2 x^{2} \\
& =\left(x^{2}-b x+1\right)\left(x^{2}+b x+1\right)
\end{aligned}
$$

- If -1 nor 2 are a square over \mathbb{Z}_{p}, then $-2=c^{2}$

Another proof of counterexample

- If $p=2$, we have $x^{4}+1=(x+1)^{4}$
- If p odd, then we have two cases:
- -1 is a square over \mathbb{Z}_{p}, say $-1=a^{2}$
- In this case $x^{4}+1=\left(x^{2}-a\right)\left(x^{2}+a\right)$
- 2 is a square over \mathbb{Z}_{p}, say $2=b^{2}$
- Thus, we have

$$
\begin{aligned}
x^{4}+1+2 x^{2}=\left(x^{2}+1\right)^{2} \Rightarrow x^{4}+1 & =\left(x^{2}+1\right)^{2}-2 x^{2} \\
& =\left(x^{2}-b x+1\right)\left(x^{2}+b x+1\right)
\end{aligned}
$$

- If -1 nor 2 are a square over \mathbb{Z}_{p}, then $-2=c^{2}$
- Thus we have

$$
\begin{aligned}
x^{4}+1-2 x^{2}=\left(x^{2}-1\right)^{2} \Rightarrow x^{4}+1 & =\left(x^{2}+1\right)^{2}+2 x^{2} \\
& =\left(x^{2}-c x+1\right)\left(x^{2}+c x+1\right)
\end{aligned}
$$

Factoring Algorithm

- Another approach is to pick a good prime p and then factor $f(x)$ modulo p^{k} for large enough k. We can hope that the large modulus will give us a factorization over \mathbb{Z}, if it exists.

Factoring Algorithm

- Another approach is to pick a good prime p and then factor $f(x)$ modulo p^{k} for large enough k. We can hope that the large modulus will give us a factorization over \mathbb{Z}, if it exists.
- Input: polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in \mathbb{Z}[x]$, where a_{i} has ℓ bits
- Output: Either f is irreducible or a non-trivial factorization of f

Factoring Algorithm

- Another approach is to pick a good prime p and then factor $f(x)$ modulo p^{k} for large enough k. We can hope that the large modulus will give us a factorization over \mathbb{Z}, if it exists.
- Input: polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in \mathbb{Z}[x]$, where a_{i} has ℓ bits
- Output: Either f is irreducible or a non-trivial factorization of f
- Reduce to the case f is square-free, by replacing f with $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$

Factoring Algorithm

- Another approach is to pick a good prime p and then factor $f(x)$ modulo p^{k} for large enough k. We can hope that the large modulus will give us a factorization over \mathbb{Z}, if it exists.
- Input: polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in \mathbb{Z}[x]$, where a_{i} has ℓ bits
- Output: Either f is irreducible or a non-trivial factorization of f
- Reduce to the case f is square-free, by replacing f with $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$
- Let p be a prime which does not divide a_{d}

Factoring Algorithm

- Another approach is to pick a good prime p and then factor $f(x)$ modulo p^{k} for large enough k. We can hope that the large modulus will give us a factorization over \mathbb{Z}, if it exists.
- Input: polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in \mathbb{Z}[x]$, where a_{i} has ℓ bits
- Output: Either f is irreducible or a non-trivial factorization of f
- Reduce to the case f is square-free, by replacing f with $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$
- Let p be a prime which does not divide a_{d}
- Factor $f(x)=g_{0}(x) \cdot h_{0}(x) \bmod p$ where g_{0} is irreducible, monic and relatively prime to h_{0}

Factoring Algorithm

- Another approach is to pick a good prime p and then factor $f(x)$ modulo p^{k} for large enough k. We can hope that the large modulus will give us a factorization over \mathbb{Z}, if it exists.
- Input: polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in \mathbb{Z}[x]$, where a_{i} has ℓ bits
- Output: Either f is irreducible or a non-trivial factorization of f
- Reduce to the case f is square-free, by replacing f with $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$
- Let p be a prime which does not divide a_{d}
- Factor $f(x)=g_{0}(x) \cdot h_{0}(x) \bmod p$ where g_{0} is irreducible, monic and relatively prime to h_{0}
- How can we get a consistent factorization modulo p^{2} Hensel's lifting lemma.

Hensel Lifting

- If R is a UFD and $I \subseteq R$ be an ideal. For any $f \in R$ and for any factorization $f=g h \bmod /$ such that there are $a, b \in R$ for which

$$
a g+b h=1 \quad \bmod I
$$

then we can find $G, H, A, B \in R$ such that

$$
f=G H \quad \bmod I^{2} \quad \text { and } \quad A G+B H=1 \quad \bmod I^{2}
$$

and

$$
G=g \bmod I \text { and } H=h \bmod I
$$

Hensel Lifting

- If R is a UFD and $I \subseteq R$ be an ideal. For any $f \in R$ and for any factorization $f=g h \bmod I$ such that there are $a, b \in R$ for which

$$
a g+b h=1 \quad \bmod I
$$

then we can find $G, H, A, B \in R$ such that

$$
f=G H \quad \bmod I^{2} \quad \text { and } \quad A G+B H=1 \quad \bmod I^{2}
$$

and

$$
G=g \bmod I \text { and } H=h \bmod I
$$

- Moreover, solution above is unique, in the following sense: if G_{1}, H_{1} also have the properties above, then there exists $u \in I$ such that

$$
G_{1}=G(1+u) \quad \bmod I^{2} \quad \text { and } \quad H_{1}=H(1-u) \bmod I^{2}
$$

Factoring Algorithm

- Input: $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in \mathbb{Z}[x]$, where a_{i} has ℓ bits
- Output: Either f is irreducible or a non-trivial factorization of f

Factoring Algorithm

- Input: $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in \mathbb{Z}[x]$, where a_{i} has ℓ bits
- Output: Either f is irreducible or a non-trivial factorization of f
- Reduce to the case f is square-free, by replacing f with $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$

Factoring Algorithm

- Input: $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in \mathbb{Z}[x]$, where a_{i} has ℓ bits
- Output: Either f is irreducible or a non-trivial factorization of f
- Reduce to the case f is square-free, by replacing f with $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$
- Let p be a prime which does not divide a_{d}

Factoring Algorithm

- Input: $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in \mathbb{Z}[x]$, where a_{i} has ℓ bits
- Output: Either f is irreducible or a non-trivial factorization of f
- Reduce to the case f is square-free, by replacing f with $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$
- Let p be a prime which does not divide a_{d}
- Factor $f(x)=g_{0}(x) \cdot h_{0}(x) \bmod p$ where g_{0} is irreducible, monic and relatively prime to h_{0}

Factoring Algorithm

- Input: $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in \mathbb{Z}[x]$, where a_{i} has ℓ bits
- Output: Either f is irreducible or a non-trivial factorization of f
- Reduce to the case f is square-free, by replacing f with $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$
- Let p be a prime which does not divide a_{d}
- Factor $f(x)=g_{0}(x) \cdot h_{0}(x) \bmod p$ where g_{0} is irreducible, monic and relatively prime to h_{0}
- Iteratively use Hensel Lifting to get factorization $f=g_{k} h_{k} \bmod p^{k}$

Factoring Algorithm

- Input: $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in \mathbb{Z}[x]$, where a_{i} has ℓ bits
- Output: Either f is irreducible or a non-trivial factorization of f
- Reduce to the case f is square-free, by replacing f with $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$
- Let p be a prime which does not divide a_{d}
- Factor $f(x)=g_{0}(x) \cdot h_{0}(x) \bmod p$ where g_{0} is irreducible, monic and relatively prime to h_{0}
- Iteratively use Hensel Lifting to get factorization $f=g_{k} h_{k} \bmod p^{k}$
- Find $p(x)$ and $q_{k}(x)$ such that $p(x)$ has "small coefficients" and:

$$
\begin{aligned}
p(x) & =g_{k}(x) q_{k}(x) \quad \bmod p^{k} \\
\operatorname{deg}(p) & \leq \operatorname{deg}(f)
\end{aligned}
$$

Factoring Algorithm

- Input: $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in \mathbb{Z}[x]$, where a_{i} has ℓ bits
- Output: Either f is irreducible or a non-trivial factorization of f
- Reduce to the case f is square-free, by replacing f with $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$
- Let p be a prime which does not divide a_{d}
- Factor $f(x)=g_{0}(x) \cdot h_{0}(x) \bmod p$ where g_{0} is irreducible, monic and relatively prime to h_{0}
- Iteratively use Hensel Lifting to get factorization $f=g_{k} h_{k} \bmod p^{k}$
- Find $p(x)$ and $q_{k}(x)$ such that $p(x)$ has "small coefficients" and:

$$
\begin{aligned}
p(x) & =g_{k}(x) q_{k}(x) \quad \bmod p^{k} \\
\operatorname{deg}(p) & \leq \operatorname{deg}(f)
\end{aligned}
$$

- if $\operatorname{gcd}(f, p)$ non trivial, output $\operatorname{gcd}(f, p)$ and $\frac{f}{\operatorname{gcd} f, p}$. Otherwise, output irreducible.
- Review from last lecture: Cantor-Zassenhaus
- Today's algorithm: Berlekamp's algorithm (1967)
- Properties of Irreducible Polynomials
- Conclusion
- Acknowledgements

Bounds on coeficient size of factors of f

- If $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in \mathbb{Z}[x]$, where a_{i} has ℓ bits and $g(x) \mid f(x)$ then the coefficients of g have at most poly (d, ℓ) bits

Bounds on coeficient size of factors of f

- If $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in \mathbb{Z}[x]$, where a_{i} has ℓ bits and $g(x) \mid f(x)$ then the coefficients of g have at most poly (d, ℓ) bits
- To see this, note that any (complex) root of $f(x)$ do not have large absolute value: if $\alpha \in \mathbb{C}$ such that $f(\alpha)=0$ then $|\alpha| \leq d \cdot 2^{\ell}$

Bounds on coeficient size of factors of f

- If $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in \mathbb{Z}[x]$, where a_{i} has ℓ bits and $g(x) \mid f(x)$ then the coefficients of g have at most poly (d, ℓ) bits
- To see this, note that any (complex) root of $f(x)$ do not have large absolute value: if $\alpha \in \mathbb{C}$ such that $f(\alpha)=0$ then $|\alpha| \leq d \cdot 2^{\ell}$
- Suppose that $|\alpha|>d \cdot 2^{\ell}$. In particular, $|\alpha|>\left|a_{i}\right|$ for any $0 \leq i \leq d$

Bounds on coeficient size of factors of f

- If $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in \mathbb{Z}[x]$, where a_{i} has ℓ bits and $g(x) \mid f(x)$ then the coefficients of g have at most poly (d, ℓ) bits
- To see this, note that any (complex) root of $f(x)$ do not have large absolute value: if $\alpha \in \mathbb{C}$ such that $f(\alpha)=0$ then $|\alpha| \leq d \cdot 2^{\ell}$
- Suppose that $|\alpha|>d \cdot 2^{\ell}$. In particular, $|\alpha|>\left|a_{i}\right|$ for any $0 \leq i \leq d$
- Thus

$$
\begin{aligned}
|f(\alpha)| & =\left|a_{d} \alpha^{d}+\sum_{i=0}^{d-1} a_{i} \alpha^{i}\right| \\
& \geq|\alpha|^{d}-d \cdot 2^{\ell}|\alpha|^{d-1} \\
& =|\alpha|^{d-1} \cdot\left(|\alpha|-d \cdot 2^{\ell}\right)>0
\end{aligned}
$$

Bounds on coeficient size of factors of f

- If $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in \mathbb{Z}[x]$, where a_{i} has ℓ bits and $g(x) \mid f(x)$ then the coefficients of g have at most poly (d, ℓ) bits
- To see this, note that any (complex) root of $f(x)$ do not have large absolute value: if $\alpha \in \mathbb{C}$ such that $f(\alpha)=0$ then $|\alpha| \leq d \cdot 2^{\ell}$
- Suppose that $|\alpha|>d \cdot 2^{\ell}$. In particular, $|\alpha|>\left|a_{i}\right|$ for any $0 \leq i \leq d$
- Thus

$$
\begin{aligned}
|f(\alpha)| & =\left|a_{d} \alpha^{d}+\sum_{i=0}^{d-1} a_{i} \alpha^{i}\right| \\
& \geq|\alpha|^{d}-d \cdot 2^{\ell}|\alpha|^{d-1} \\
& =|\alpha|^{d-1} \cdot\left(|\alpha|-d \cdot 2^{\ell}\right)>0
\end{aligned}
$$

- Since $g(x)=b \cdot \prod_{i \in S}\left(x-\alpha_{i}\right)$ where $b \mid a_{d}$ and S subset of roots of f, we have that coefficients of g are upper bounded in absolute value by $2^{\ell+d} \cdot\left(d \cdot 2^{\ell}\right)^{d}$

Bound on coefficients of g

Factoring Algorithm

- Input: $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in \mathbb{Z}[x]$, where a_{i} has ℓ bits
- Output: Either f is irreducible or a non-trivial factorization of f
- Reduce to the case f is square-free, by replacing f with $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$
- Let p be a prime which does not divide a_{d}
- Factor $f(x)=g_{0}(x) \cdot h_{0}(x) \bmod p$ where g_{0} is irreducible, monic and relatively prime to h_{0}
- Iteratively use Hensel Lifting to get factorization $f=g_{k} h_{k} \bmod p^{k}$
- Find $p(x)$ and $q_{k}(x)$ such that $p(x)$ has "small coefficients" and:

$$
\begin{aligned}
p(x) & =g_{k}(x) q_{k}(x) \quad \bmod p^{k} \\
\operatorname{deg}(p) & \leq \operatorname{deg}(f)
\end{aligned}
$$

- if $\operatorname{gcd}(f, p)$ non trivial, output $\operatorname{gcd}(f, p)$ and $\frac{f}{\operatorname{gcd} f, p}$. Otherwise, output irreducible.

How do we find g_{k}, h_{k}, p and q_{k}

- If f factors, it must still factor modulo the prime we chose, as p does not divide a_{d}

How do we find g_{k}, h_{k}, p and q_{k}

- If f factors, it must still factor modulo the prime we chose, as p does not divide a_{d}
- We know that g_{k}, h_{k} exist by Hensel Lifting

How do we find g_{k}, h_{k}, p and q_{k}

- If f factors, it must still factor modulo the prime we chose, as p does not divide a_{d}
- We know that g_{k}, h_{k} exist by Hensel Lifting
- How can we find p, q_{k} ?

$$
\begin{aligned}
p(x) & =g_{k}(x) q_{k}(x) \quad \bmod p^{k} \\
\operatorname{deg}(p) & \leq \operatorname{deg}(f)
\end{aligned}
$$

By solving the linear system above.

How do we find g_{k}, h_{k}, p and q_{k}

- If f factors, it must still factor modulo the prime we chose, as p does not divide a_{d}
- We know that g_{k}, h_{k} exist by Hensel Lifting
- How can we find p, q_{k} ?

$$
\begin{aligned}
p(x) & =g_{k}(x) q_{k}(x) \quad \bmod p^{k} \\
\operatorname{deg}(p) & \leq \operatorname{deg}(f)
\end{aligned}
$$

By solving the linear system above.

- Why would such a p with small coefficients exist? In particular, the factor of f which has g_{0} as a factor has "small" coefficients, by our previous lemma.

How do we find g_{k}, h_{k}, p and q_{k}

- If f factors, it must still factor modulo the prime we chose, as p does not divide a_{d}
- We know that g_{k}, h_{k} exist by Hensel Lifting
- How can we find p, q_{k} ?

$$
\begin{aligned}
p(x) & =g_{k}(x) q_{k}(x) \quad \bmod p^{k} \\
\operatorname{deg}(p) & \leq \operatorname{deg}(f)
\end{aligned}
$$

By solving the linear system above.

- Why would such a p with small coefficients exist? In particular, the factor of f which has g_{0} as a factor has "small" coefficients, by our previous lemma.
- How do we find a polynomial p with "small" coefficients though? (will see this next section and lecture)

How do we find g_{k}, h_{k}, p and q_{k}

- If f factors, it must still factor modulo the prime we chose, as p does not divide a_{d}
- We know that g_{k}, h_{k} exist by Hensel Lifting
- How can we find p, q_{k} ?

$$
\begin{aligned}
p(x) & =g_{k}(x) q_{k}(x) \quad \bmod p^{k} \\
\operatorname{deg}(p) & \leq \operatorname{deg}(f)
\end{aligned}
$$

By solving the linear system above.

- Why would such a p with small coefficients exist? In particular, the factor of f which has g_{0} as a factor has "small" coefficients, by our previous lemma.
- How do we find a polynomial p with "small" coefficients though? (will see this next section and lecture)
- Suppose we can find p with small coefficient, do we have non-trivial GCD?

Non-trivial GCD

- If f, p are integer polynomials satisfying the conditions of the algorithm, with coefficients having at most B bits, and $p^{k}>(2 d)!\cdot 2^{2 d B}$ then $\operatorname{gcd}(f, p)$ is non-trivial

Non-trivial GCD

- If f, p are integer polynomials satisfying the conditions of the algorithm, with coefficients having at most B bits, and $p^{k}>(2 d)!\cdot 2^{2 d B}$ then $\operatorname{gcd}(f, p)$ is non-trivial
- Since $\operatorname{deg}(p)<\operatorname{deg}(f)$, we have $\operatorname{gcd}(p, f) \neq f$. Suppose $\operatorname{gcd}(p, f)=1$ over $\mathbb{Q}[x]$, for sake of contradiction

Non-trivial GCD

- If f, p are integer polynomials satisfying the conditions of the algorithm, with coefficients having at most B bits, and $p^{k}>(2 d)!\cdot 2^{2 d B}$ then $\operatorname{gcd}(f, p)$ is non-trivial
- Since $\operatorname{deg}(p)<\operatorname{deg}(f)$, we have $\operatorname{gcd}(p, f) \neq f$. Suppose $\operatorname{gcd}(p, f)=1$ over $\mathbb{Q}[x]$, for sake of contradiction
- Then, there are polynomials $s, t \in \mathbb{Z}[x]$ and $N \in \mathbb{Z} \backslash\{0\}$ such that

$$
s f+t p=N \quad \text { and } \quad N \leq \operatorname{Res}_{x}(f, p)
$$

Non-trivial GCD

- If f, p are integer polynomials satisfying the conditions of the algorithm, with coefficients having at most B bits, and $p^{k}>(2 d)!\cdot 2^{2 d B}$ then $\operatorname{gcd}(f, p)$ is non-trivial
- Since $\operatorname{deg}(p)<\operatorname{deg}(f)$, we have $\operatorname{gcd}(p, f) \neq f$. Suppose $\operatorname{gcd}(p, f)=1$ over $\mathbb{Q}[x]$, for sake of contradiction
- Then, there are polynomials $s, t \in \mathbb{Z}[x]$ and $N \in \mathbb{Z} \backslash\{0\}$ such that

$$
s f+t p=N \quad \text { and } \quad N \leq \operatorname{Res}_{x}(f, p)
$$

- From Lecture 7 's bound, we have $N \leq(2 d)!\cdot 2^{2 d B}$. Thus, $p^{k}>N$, which implies $N \neq 0 \bmod p^{k}$

Non-trivial GCD

- If f, p are integer polynomials satisfying the conditions of the algorithm, with coefficients having at most B bits, and $p^{k}>(2 d)!\cdot 2^{2 d B}$ then $\operatorname{gcd}(f, p)$ is non-trivial
- Since $\operatorname{deg}(p)<\operatorname{deg}(f)$, we have $\operatorname{gcd}(p, f) \neq f$. Suppose $\operatorname{gcd}(p, f)=1$ over $\mathbb{Q}[x]$, for sake of contradiction
- Then, there are polynomials $s, t \in \mathbb{Z}[x]$ and $N \in \mathbb{Z} \backslash\{0\}$ such that

$$
s f+t p=N \quad \text { and } \quad N \leq \operatorname{Res}_{x}(f, p)
$$

- From Lecture 7 's bound, we have $N \leq(2 d)!\cdot 2^{2 d B}$. Thus, $p^{k}>N$, which implies $N \neq 0 \bmod p^{k}$
- Thus, we would have

$$
\begin{aligned}
N & =s f+t p \bmod p^{k} \\
& =s\left(g_{k} h_{k}\right)+t\left(g_{k} \cdot q_{k}\right) \bmod p^{k} \\
& =g_{k} \cdot\left(s h_{k}+t q_{k}\right) \bmod p^{k}
\end{aligned}
$$

which is a contradiction, since $\operatorname{deg}\left(g_{k}\right) \geq 1$

- Review from last lecture: Cantor-Zassenhaus
- Today's algorithm: Berlekamp's algorithm (1967)
- Properties of Irreducible Polynomials
- Conclusion
- Acknowledgements

Factoring Algorithm

- Let p be a prime which does not divide a_{d}
- Factor $f(x)=g_{0}(x) \cdot h_{0}(x) \bmod p$ where g_{0} is irreducible, monic and relatively prime to h_{0}
- Iteratively use Hensel Lifting to get factorization $f=g_{k} h_{k} \bmod p^{k}$
- Find $p(x)$ and $q_{k}(x)$ such that $p(x)$ has "small coefficients" and:

$$
\begin{aligned}
p(x) & =g_{k}(x) q_{k}(x) \quad \bmod p^{k} \\
\operatorname{deg}(p) & \leq \operatorname{deg}(f)
\end{aligned}
$$

- if $\operatorname{gcd}(f, p)$ non trivial, output $\operatorname{gcd}(f, p)$ and $\frac{f}{\operatorname{gcd} f, p}$. Otherwise, output irreducible.

Factoring Algorithm

- Let p be a prime which does not divide a_{d}
- Factor $f(x)=g_{0}(x) \cdot h_{0}(x) \bmod p$ where g_{0} is irreducible, monic and relatively prime to h_{0}
- Iteratively use Hensel Lifting to get factorization $f=g_{k} h_{k} \bmod p^{k}$
- Find $p(x)$ and $q_{k}(x)$ such that $p(x)$ has "small coefficients" and:

$$
\begin{aligned}
p(x) & =g_{k}(x) q_{k}(x) \quad \bmod p^{k} \\
\operatorname{deg}(p) & \leq \operatorname{deg}(f)
\end{aligned}
$$

- if $\operatorname{gcd}(f, p)$ non trivial, output $\operatorname{gcd}(f, p)$ and $\frac{f}{\operatorname{gcd} f, p}$. Otherwise, output irreducible.
- We know such a factor p must exist, if f factors
- All we need (by previous lemma) is to find some solution with small enough height.

Factoring Algorithm

- Let p be a prime which does not divide a_{d}
- Factor $f(x)=g_{0}(x) \cdot h_{0}(x) \bmod p$ where g_{0} is irreducible, monic and relatively prime to h_{0}
- Iteratively use Hensel Lifting to get factorization $f=g_{k} h_{k} \bmod p^{k}$
- Find $p(x)$ and $q_{k}(x)$ such that $p(x)$ has "small coefficients" and:

$$
\begin{aligned}
p(x) & =g_{k}(x) q_{k}(x) \quad \bmod p^{k} \\
\operatorname{deg}(p) & \leq \operatorname{deg}(f)
\end{aligned}
$$

- if $\operatorname{gcd}(f, p)$ non trivial, output $\operatorname{gcd}(f, p)$ and $\frac{f}{\operatorname{gcd} f, p}$. Otherwise, output irreducible.
- We know such a factor p must exist, if f factors
- All we need (by previous lemma) is to find some solution with small enough height.
- This problem is exactly the problem of finding a small vector in a lattice

Small Vectors in a Lattice

- Input: linearly independent vectors $b_{1}, \ldots, b_{m} \in \mathbb{Z}^{n}$, bound $M \in \mathbb{N}$

$$
\mathcal{L}=\left\{\alpha_{1} b_{1}+\cdots \alpha_{n} b_{m} \mid \alpha_{i} \in \mathbb{Z}\right\}
$$

- Output: A vector $v \in \mathcal{L}$ such that $\|v\| \leq M$

Small Vectors in a Lattice

- Input: linearly independent vectors $b_{1}, \ldots, b_{m} \in \mathbb{Z}^{n}$, bound $M \in \mathbb{N}$

$$
\mathcal{L}=\left\{\alpha_{1} b_{1}+\cdots \alpha_{n} b_{m} \mid \alpha_{i} \in \mathbb{Z}\right\}
$$

- Output: A vector $v \in \mathcal{L}$ such that $\|v\| \leq M$
- Note that to finish the factoring problem, compute a basis for the set of integral solutions $(p(x), q(x))$ to

$$
\begin{aligned}
p(x) & =g_{k}(x) q_{k}(x) \quad \bmod p^{k} \\
\operatorname{deg}(p) & \leq \operatorname{deg}(f)
\end{aligned}
$$

Small Vectors in a Lattice

- Input: linearly independent vectors $b_{1}, \ldots, b_{m} \in \mathbb{Z}^{n}$, bound $M \in \mathbb{N}$

$$
\mathcal{L}=\left\{\alpha_{1} b_{1}+\cdots \alpha_{n} b_{m} \mid \alpha_{i} \in \mathbb{Z}\right\}
$$

- Output: A vector $v \in \mathcal{L}$ such that $\|v\| \leq M$
- Note that to finish the factoring problem, compute a basis for the set of integral solutions $(p(x), q(x))$ to

$$
\begin{aligned}
p(x) & =g_{k}(x) q_{k}(x) \quad \bmod p^{k} \\
\operatorname{deg}(p) & \leq \operatorname{deg}(f)
\end{aligned}
$$

- Make solutions integral by adding $\beta_{i} p^{k} x^{i}$ for $0 \leq i \leq \operatorname{deg}(p)$

Small Vectors in a Lattice

- Input: linearly independent vectors $b_{1}, \ldots, b_{m} \in \mathbb{Z}^{n}$, bound $M \in \mathbb{N}$

$$
\mathcal{L}=\left\{\alpha_{1} b_{1}+\cdots \alpha_{n} b_{m} \mid \alpha_{i} \in \mathbb{Z}\right\}
$$

- Output: A vector $v \in \mathcal{L}$ such that $\|v\| \leq M$
- Note that to finish the factoring problem, compute a basis for the set of integral solutions $(p(x), q(x))$ to

$$
\begin{aligned}
p(x) & =g_{k}(x) q_{k}(x) \quad \bmod p^{k} \\
\operatorname{deg}(p) & \leq \operatorname{deg}(f)
\end{aligned}
$$

- Make solutions integral by adding $\beta_{i} p^{k} x^{i}$ for $0 \leq i \leq \operatorname{deg}(p)$
- these integral solutions form a lattice, and we can find a basis for this lattice

Small Vectors in a Lattice

- Input: linearly independent vectors $b_{1}, \ldots, b_{m} \in \mathbb{Z}^{n}$, bound $M \in \mathbb{N}$

$$
\mathcal{L}=\left\{\alpha_{1} b_{1}+\cdots \alpha_{n} b_{m} \mid \alpha_{i} \in \mathbb{Z}\right\}
$$

- Output: A vector $v \in \mathcal{L}$ such that $\|v\| \leq M$
- Note that to finish the factoring problem, compute a basis for the set of integral solutions $(p(x), q(x))$ to

$$
\begin{aligned}
p(x) & =g_{k}(x) q_{k}(x) \quad \bmod p^{k} \\
\operatorname{deg}(p) & \leq \operatorname{deg}(f)
\end{aligned}
$$

- Make solutions integral by adding $\beta_{i} p^{k} x^{i}$ for $0 \leq i \leq \operatorname{deg}(p)$
- these integral solutions form a lattice, and we can find a basis for this lattice
- the small vectors in a lattice problem above helps us find the polynomial p that we want.
－Review from last lecture：Cantor－Zassenhaus
－Today＇s algorithm：Berlekamp＇s algorithm（1967）
－Properties of Irreducible Polynomials
－Conclusion
－Acknowledgements

Conclusion

In today's lecture, we learned

- Factoring algorithm for integer polynomials
- CRT doesn't work
- Need to use Hensel lifting instead (generalization of Newton's method)
- Reduced factoring problem to the problem of finding a small vector in a lattice

Acknowledgement

Based entirely on

- Lecture 10 from Madhu's notes http://people.csail.mit.edu/madhu/FT98/

