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Problem Definition
We know that Z[x ] is a UFD, by Gauss’ lemma. Thus each
polynomial f (x) ∈ Z[x ] can be factored as

f (x) = c1 · · · ck · f1(x) · · · ft(x)

Since integer factoring is hard, we will relax our problem as follows:
output

f (x) = c · f1(x) · · · ft(x)

Input: polynomial f (x) ∈ Z[x ]
Output: Either f is irreducible or a non-trivial factorization of f
Today we will see a deterministic polynomial time algorithm for
integer factoring
Factoring polynomials over the rationals can be reduced to integer
factoring, by clearing denominators
One approach is to factor f (x) mod p for many primes p and then see
if these factorizations give us anything about the factorization of f
over Z[x ]
Counterexample: f (x) = x4 + 1 is irreducible over Z[x ] but factors
over Zp[x ] for any prime p
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Counterexample to First Approach

f (x) = x4 + 1

Eisenstein’s criterion over f (x + 1) gives us irreducibility
1 prime p divides all coefficients but leading coefficient
2 p2 does not divide constant term

If p = 2, we have x4 + 1 = (x + 1)4

If p odd, then 8 | p2 − 1

Take primitive root of unity u over Fp2 . Let g = u(p
2−1)/8. Must have

g4 + 1 = 0 over Fp2

Thus, we have

x4 + 1 = (x − g)(x − g3)(x − g5)(x − g7)

g ∈ Fp2 implies that the minimal polynomial of g is of degree ≤ 2
and it must divide x4 + 1
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Another proof of counterexample

If p = 2, we have x4 + 1 = (x + 1)4

If p odd, then we have two cases:

−1 is a square over Zp, say −1 = a2

In this case x4 + 1 = (x2 − a)(x2 + a)

2 is a square over Zp, say 2 = b2

Thus, we have

x4 + 1 + 2x2 = (x2 + 1)2 ⇒ x4 + 1 = (x2 + 1)2 − 2x2

= (x2 − bx + 1)(x2 + bx + 1)

If −1 nor 2 are a square over Zp, then −2 = c2

Thus we have

x4 + 1− 2x2 = (x2 − 1)2 ⇒ x4 + 1 = (x2 + 1)2 + 2x2

= (x2 − cx + 1)(x2 + cx + 1)
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Factoring Algorithm

Another approach is to pick a good prime p and then factor f (x)
modulo pk for large enough k . We can hope that the large modulus
will give us a factorization over Z, if it exists.

Input: polynomial f (x) = a0 + a1x + · · ·+ adx
d ∈ Z[x ], where ai has

` bits

Output: Either f is irreducible or a non-trivial factorization of f

Reduce to the case f is square-free, by replacing f with
f

gcd(f , f ′)

Let p be a prime which does not divide ad

Factor f (x) = g0(x) · h0(x) mod p where g0 is irreducible, monic and
relatively prime to h0

How can we get a consistent factorization modulo p2

Hensel’s lifting lemma.
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Hensel Lifting

If R is a UFD and I ⊆ R be an ideal. For any f ∈ R and for any
factorization f = gh mod I such that there are a, b ∈ R for which

ag + bh = 1 mod I

then we can find G ,H,A,B ∈ R such that

f = GH mod I 2 and AG + BH = 1 mod I 2

and
G = g mod I and H = h mod I

Moreover, solution above is unique, in the following sense: if G1,H1

also have the properties above, then there exists u ∈ I such that

G1 = G (1 + u) mod I 2 and H1 = H(1− u) mod I 2
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Factoring Algorithm

Input: f (x) = a0 + a1x + · · ·+ adx
d ∈ Z[x ], where ai has ` bits

Output: Either f is irreducible or a non-trivial factorization of f

Reduce to the case f is square-free, by replacing f with
f

gcd(f , f ′)

Let p be a prime which does not divide ad

Factor f (x) = g0(x) · h0(x) mod p where g0 is irreducible, monic and
relatively prime to h0

Iteratively use Hensel Lifting to get factorization f = gkhk mod pk

Find p(x) and qk(x) such that p(x) has “small coefficients” and:

p(x) = gk(x)qk(x) mod pk

deg(p) ≤ deg(f )

if gcd(f , p) non trivial, output gcd(f , p) and
f

gcd f , p
. Otherwise,

output irreducible.
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Bounds on coeficient size of factors of f

If f (x) = a0 + a1x + · · ·+ adx
d ∈ Z[x ], where ai has ` bits and

g(x) | f (x) then the coefficients of g have at most poly(d , `) bits

To see this, note that any (complex) root of f (x) do not have large
absolute value: if α ∈ C such that f (α) = 0 then |α| ≤ d · 2`

Suppose that |α| > d · 2`. In particular, |α| > |ai | for any 0 ≤ i ≤ d

Thus

|f (α)| =

∣∣∣∣∣adαd +
d−1∑
i=0

aiα
i

∣∣∣∣∣
≥ |α|d − d · 2`|α|d−1

= |α|d−1 · (|α| − d · 2`) > 0

Since g(x) = b ·
∏

i∈S(x − αi ) where b | ad and S subset of roots of
f , we have that coefficients of g are upper bounded in absolute value
by 2`+d · (d · 2`)d
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Bounds on coeficient size of factors of f
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g(x) | f (x) then the coefficients of g have at most poly(d , `) bits

To see this, note that any (complex) root of f (x) do not have large
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Bound on coefficients of g
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Factoring Algorithm

Input: f (x) = a0 + a1x + · · ·+ adx
d ∈ Z[x ], where ai has ` bits

Output: Either f is irreducible or a non-trivial factorization of f

Reduce to the case f is square-free, by replacing f with
f

gcd(f , f ′)

Let p be a prime which does not divide ad

Factor f (x) = g0(x) · h0(x) mod p where g0 is irreducible, monic and
relatively prime to h0

Iteratively use Hensel Lifting to get factorization f = gkhk mod pk

Find p(x) and qk(x) such that p(x) has “small coefficients” and:

p(x) = gk(x)qk(x) mod pk

deg(p) ≤ deg(f )

if gcd(f , p) non trivial, output gcd(f , p) and
f

gcd f , p
. Otherwise,

output irreducible.
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How do we find gk , hk , p and qk

If f factors, it must still factor modulo the prime we chose, as p does
not divide ad

We know that gk , hk exist by Hensel Lifting

How can we find p, qk?

p(x) = gk(x)qk(x) mod pk

deg(p) ≤ deg(f )

By solving the linear system above.

Why would such a p with small coefficients exist? In particular, the
factor of f which has g0 as a factor has “small” coefficients, by our
previous lemma.

How do we find a polynomial p with “small” coefficients though?
(will see this next section and lecture)

Suppose we can find p with small coefficient, do we have non-trivial
GCD?
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Non-trivial GCD

If f , p are integer polynomials satisfying the conditions of the
algorithm, with coefficients having at most B bits, and
pk > (2d)! · 22dB then gcd(f , p) is non-trivial

Since deg(p) < deg(f ), we have gcd(p, f ) 6= f . Suppose
gcd(p, f ) = 1 over Q[x ], for sake of contradiction

Then, there are polynomials s, t ∈ Z[x ] and N ∈ Z \ {0} such that

sf + tp = N and N ≤ Resx(f , p)

From Lecture 7’s bound, we have N ≤ (2d)! · 22dB . Thus, pk > N,
which implies N 6= 0 mod pk

Thus, we would have

N = sf + tp mod pk

= s(gkhk) + t(gk · qk) mod pk

= gk · (shk + tqk) mod pk

which is a contradiction, since deg(gk) ≥ 1
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Review from last lecture: Cantor-Zassenhaus

Today’s algorithm: Berlekamp’s algorithm (1967)

Properties of Irreducible Polynomials

Conclusion

Acknowledgements
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Factoring Algorithm

Let p be a prime which does not divide ad
Factor f (x) = g0(x) · h0(x) mod p where g0 is irreducible, monic and
relatively prime to h0
Iteratively use Hensel Lifting to get factorization f = gkhk mod pk

Find p(x) and qk(x) such that p(x) has “small coefficients” and:

p(x) = gk(x)qk(x) mod pk

deg(p) ≤ deg(f )

if gcd(f , p) non trivial, output gcd(f , p) and
f

gcd f , p
. Otherwise,

output irreducible.

We know such a factor p must exist, if f factors

All we need (by previous lemma) is to find some solution with small
enough height.

This problem is exactly the problem of finding a small vector in a
lattice
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Small Vectors in a Lattice

Input: linearly independent vectors b1, . . . , bm ∈ Zn, bound M ∈ N

L = {α1b1 + · · ·αnbm | αi ∈ Z}

Output: A vector v ∈ L such that ‖v‖ ≤ M

Note that to finish the factoring problem, compute a basis for the set
of integral solutions (p(x), q(x)) to

p(x) = gk(x)qk(x) mod pk

deg(p) ≤ deg(f )

Make solutions integral by adding βip
kx i for 0 ≤ i ≤ deg(p)

these integral solutions form a lattice, and we can find a basis for this
lattice

the small vectors in a lattice problem above helps us find the
polynomial p that we want.
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Conclusion

In today’s lecture, we learned

Factoring algorithm for integer polynomials

CRT doesn’t work

Need to use Hensel lifting instead (generalization of Newton’s
method)

Reduced factoring problem to the problem of finding a small vector in
a lattice next lecture
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