9 The resultant and a modular ged algorithm in $\mathbb{Z}[x]$

Let F be a field. Then the ring $\mathrm{F}[x]$ of polynomials is a unique factorization domain (UFD), so greatest common divisors exist. Not only is $\mathrm{F}[x]$ a UFD, it a Euclidean domain, so gcds can be computed with the Euclidean algorithm.

But what about $\mathbb{Z}[x]$? Because $\mathbb{Z}[x]$ is not a Euclidean domain the Euclidean algorithm cannot be applied directly. Do gcds over $\mathbb{Z}[x]$ even exist? It turns out that the answer is yes. But then some natural questions arise. How can we compute gcds over $\mathbb{Z}[x]$? What is the relationship of gcds over $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$? This script gives answers to these questions.

Subsection ?? and ?? develop some necessary mathematical background. The last subsection gives an efficient modular algorithms for computing gcds over $\mathbb{Z}[x]$. Because of the established relationship between factorization over $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ in \S ??, the modular algorithm for gcd over $\mathbb{Z}[x]$ will also be useful for gcd computation over $\mathbb{Q}[x]$.

9.1 Gauss' lemma and theorem

To begin we need to define some notation. Let R be a UFD. Recall that a unit of R is an invertible element, and that two elements $a, b \in \mathrm{R}$ are associates if $a=u b$ for $u \in \mathrm{R}$ a unit. Over \mathbb{Z} the only units are ± 1, while over $\mathrm{F}[x]$ the units are the nonzero constant polynomials, that is, elements of $\mathrm{F} \backslash\{0\}$. Gcds over R and $\mathrm{F}[x]$ are unique, but only up to units. To make gcds unique, we define a function lu and normal over R such that for any $a \in \mathrm{R}$ we have $a=\operatorname{lu}(a) \times \operatorname{normal}(a)$. An element $a \in \mathrm{R}$ is normalized if $a=\operatorname{normal}(a)$, or equivalently, if $\operatorname{lu}(a)=1$. For all $a, b \in \mathrm{R}$, by $\operatorname{gcd}(a, b)$ we mean the unique normalized gcd of a and b. Over \mathbb{Z} we define lu $(a)=\operatorname{sign}(a)$, so gcds over \mathbb{Z} are positive; while over $\mathrm{F}[x]$ we define $\operatorname{lu}(a)=\operatorname{lc}(a)$, so gcds over $\mathrm{F}[x]$ are monic. By convention, $\mathrm{lu}(0)=1$ and $\operatorname{normal}(0)=0$.

Now let $f=f_{0}+f_{1} x+\cdots+f_{n} x^{n} \in \mathrm{R}[x]$, R a UFD. The content $\operatorname{cont}(f)$ is defined as $\operatorname{cont}(f)=$ $\operatorname{gcd}\left(f_{0}, \ldots, f_{n}\right) \in \mathrm{R}$. By convention, cont $\left(f_{0}\right)=\operatorname{gcd}\left(f_{0}\right)=\operatorname{normal}\left(f_{0}\right)$. The primitive part $\operatorname{pp}(f)$ of f is defined by $f=\operatorname{cont}(f) \cdot \mathrm{pp}(f)$. A polynomial $f \in \mathrm{R}[x]$ is primitive if $\operatorname{cont}(f)=1$

Example 9.1. Let $f=18 x^{3}-42 x^{2}+30 x-6$. Then $\operatorname{cont}(f)=\operatorname{gcd}(18,-42,30,-6)=6$ and $p p(f)=3 x^{2}-7 x^{2}+30 x-6$.

It is useful to extend the notion of content to polynomials in $\mathrm{F}[x]$. If $f=\left(a_{0} / b\right)+\left(a_{1} / b\right) x+$ $\cdots+\left(a_{n} / b\right) x^{n} \in \mathrm{~F}[x]$ for a common denominator b, then $\operatorname{cont}(f)=\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right) / \operatorname{cont}(b) \in \mathrm{F}$, and $\mathrm{pp}(f)=f / \operatorname{cont}(f)$. With this definition, $\mathrm{pp}(f)$ will be a primitive polynomial in $\mathrm{R}[x]$.

Example 9.2. $\operatorname{cont}((2 / 3) x+1 / 2)=1 / 6$ and $p p((2 / 3) x+1 / 2)=4 x+3$.
If R is a UFD, the following fundamental theorem guarantees that $\mathrm{R}[x]$ is also a UFD, and fully exposes the relationship between the factorization of polynomials in $\mathrm{R}[x]$ and $\mathrm{F}[x]$, where F is the fraction field of R.

Theorem 9.3. Gauss Let R be a UFD. Then the following hold.

- The product of two primitive polynomials in $\mathrm{R}[x]$ is primitive.
- For $f, g \in \mathrm{R}[x], \operatorname{cont}(f g)=\operatorname{cont}(f) \cdot \operatorname{cont}(g)$ and $p p(f g)=p p(f) \cdot p p(g)$.
- $\mathrm{R}[x]$ is UFD, and the unique factorization (up to units and ordering) of an $f \in \mathrm{R}[x]$ is given by

$$
f=\overbrace{p_{1} p_{2} \cdots p_{k}}^{\operatorname{cont}} \cdot \overbrace{p p(f)}^{p p(f) p p\left(f_{2}\right) \cdots p p\left(f_{r}\right)},
$$

where $p_{1} p_{2} \cdots p_{k}$ is the factorization over R of the content of f, and $f_{1} f_{2} \cdots f_{r}$ is the factorization over $\mathrm{F}[x]$ of the primitive part of f.

As a corollary of Theorem ??, since $\mathrm{R}[x]$ is a UFD, any two elements of $\mathrm{R}[x]$ have a gcd. To make gcds in $\mathrm{R}[x]$ unique, we extend lu to $f \in \mathrm{R}[x]$ by $\operatorname{lu}(f)=\operatorname{lu}(\operatorname{lc}(f))$. Then $f=\operatorname{lu}(f)$. $\operatorname{normal}(f)$, where $\operatorname{normal}(f)$ has a normalized leading coefficient from R . As a corollary of Theorem ??, given primitive polynomials $f, g \in \mathbb{Z}[x]$, we know the their $\operatorname{gcd} h$ over $\mathbb{Z}[x]$ will also be primitive, and we can compute h by passing over $\mathbb{Q}[x]$ as follows:

$$
\begin{equation*}
h:=\underset{\mathbb{Z}[x]}{\operatorname{gcd}}(f, g)=\operatorname{pp}(\underset{\mathbb{Q}[x]}{\operatorname{gcd}}(f, g)) \tag{1}
\end{equation*}
$$

The following algorithm modifies this recipe slightly by first scaling the gcd over $\mathbb{Q}[x]$, which may have rational number coefficients, by $\operatorname{gcd}(\operatorname{lc}(f), \operatorname{lc}(g))$, which is guaranteed to clear the denominators.

$$
\begin{equation*}
h:=\underset{\mathbb{Z}[x]}{\operatorname{gcd}}(f, g)=\operatorname{pp}(\overbrace{\mathbb{Z}}^{\operatorname{gcd}(\operatorname{lc}(f), \operatorname{lc}(g)) \cdot \underset{\mathbb{Q}[x]}{\operatorname{gcd}(f, g)})} \underset{\mathbb{Z}[x]}{x} \tag{2}
\end{equation*}
$$

Note that (??) and (??) only hold when $\operatorname{gcd}(f, g)$ is primitive. (A sufficient condition for $\operatorname{gcd}(f, g)$ to be primitive is that at least one of f and g be primitive.) Also, since $\operatorname{gcd}(\operatorname{lc}(f), \operatorname{lc}(g))$ may actually be a proper multiple of $\operatorname{lc}(h)$, we still need to take the primitive part in (??).

Algorithm: PrimitiveGCD
Input: - $f, g \in \mathrm{R}[x]$ where R is a UFD and at least one of f and g is primitive.
Output: • $\operatorname{gcd}(f, g) \in \mathrm{R}[x]$
(1) Compute the monic gcd $v \in \mathrm{~F}[x]$ of f and g over $\mathrm{F}[x]$, where F is the field of fractions of R .
(2) $b \leftarrow \operatorname{gcd}(\operatorname{lc}(f), \operatorname{lc}(g))$
(3) Return $\mathrm{pp}(b v) \in \mathrm{R}[x]$

Example 9.4. Let $f=18 x^{3}-42 x^{2}+30 x-6 \in \mathbb{Z}[x]$ and $g=-12 x^{2}+10 x-2 \in \mathbb{Z}[x]$. Then

$$
f=\operatorname{cont}(f) \cdot p p(f)=6 \cdot\left(3 x^{3}-7 x^{2}+5 x-1\right)
$$

and

$$
g=\operatorname{cont}(g) \cdot p p(f)=2 \cdot\left(-6 x^{2}+5 x-1\right)
$$

Over $\mathbb{Q}[x]$ we have

$$
\underset{\mathbb{Q}[x]}{\operatorname{gcd}}(f, g)=\underset{\mathbb{Q}[x]}{\operatorname{gcd}}(p p(f), p p(g))=x-1 / 3 \in \mathbb{Q}[x] .
$$

Over $\mathbb{Z}[x]$ we have

$$
\underset{\mathbb{Z}[x]}{\operatorname{gcd}}(f, g)=\underset{\mathbb{Z}}{\operatorname{gcd}}(\operatorname{cont}(f), \operatorname{cont}(g)) \cdot \underset{\mathbb{Z}[x]}{\operatorname{gcd}}(p p(f), p p(g))=2 \cdot(3 x-1) \in \mathbb{Z}[x] .
$$

Note that $\operatorname{gcd}_{\mathbb{Z}[x]}(p p(f), p p(g))$ is equal to $p p\left(\operatorname{gcd}_{\mathbb{Q}[x]}(f, g)\right)$.

9.2 The resultant

Our goal will be to develop a modular algorithm for computing gcds over $\mathbb{Z}[x]$. The approach will be to choose a prime p and compute the gcd over $\mathbb{Z}_{p}[x]$ of the modular images of the polynomials. If the modular gcd is indeed an image of the gcd over $\mathbb{Z}[x]$, then the gcd over $\mathbb{Z}[x]$ can be recovered provided the prime p is large enough to capture the coefficients. But some primes are bad. The following example illustrates some subtleties with the approach.
Example 9.5. Consider $f=3 x^{3}+3 x-x^{2}-1$ and $g=3 x^{2}+5 x-2$ over $\mathbb{Z}[x]$. These are primitive polynomials with $h=\operatorname{gcd}(f, g)=3 x-1 \in \mathbb{Z}[x]$. Consider the $g c d$ of the modular images of f and g for the primes 3, 5 and 7 .

$$
\begin{aligned}
\operatorname{gcd}(f \bmod 3, g \bmod 3) & =1 \text { degree is too small } \\
\operatorname{gcd}(f \bmod 5, g \bmod 5) & =x^{2}+1 \quad \text { degree is too large } \\
\operatorname{gcd}(f \bmod 7, g \bmod 7) & =x+2 \text { degree is correct }
\end{aligned}
$$

If we multiply the monic gcd modulo 7 by the leading coefficient of the gcd over $\mathbb{Z}[x]$, and reduce in the symmetric range modulo 7 , we obtain $3 x+6 \equiv 3 x-1 \bmod 7$.

As the last example illustrated, not all primes p are good primes in the sense that the gcd of the modular images of the polynomials may not be equal to the modular image of $h / \operatorname{lc}(h)$, where h is the gcd over \mathbb{Z}.

To get a handle on the bad primes we need to introduce the concept of the resultant. Let $f, g \in \mathrm{~F}[x]$ be nonzero, $n=\operatorname{deg} f, m=\operatorname{deg} g$. Then $(-g) f+(f) g=0$, but if we restrict the degrees of s and t in the equation $(s) f+(t) g=0$, then the following lemma gives an interesting relationship between the existence of a solution to $s f+t g=0$ and the existence of a nontrivial gcd of f and g.

Lemma 9.6. $\operatorname{gcd}(f, g) \neq 1$ iff there exist nonzero $s, t \in \mathrm{~F}[x]$ such that $s f+t g=0$ with $\operatorname{deg} s<\operatorname{deg} g$ and $\operatorname{deg} t<\operatorname{deg} f$.

Proof. (Only If) Suppose $\operatorname{deg} h=\operatorname{deg} \operatorname{gcd}(f, g)>1$. Then we can choose $s=-g / h$ and $t=f / h$. (If) Assume $s f+t g=0$ with $\operatorname{gcd}(f, g)=1$ and $\operatorname{deg} t<\operatorname{deg} f$. Then $s f=-t g$ and $f \mid t$, which is impossible if $\operatorname{deg} t<\operatorname{deg} f$.

Next, notice that polynomial multiplication is a linear map. For example, if $f=f_{0}+f_{1} x+f_{2} x^{2}$ and $s=s_{0}+s_{1}+s_{2} x^{2}$, then the coefficient of the product $s f=u_{0}+u_{1} x+\cdots+u_{4} x^{4}$ can be computed by a matrix \times vector product:

$$
\left[\begin{array}{ccc}
f_{2} & & \\
f_{1} & f_{2} & \\
f_{0} & f_{1} & f_{2} \\
& f_{0} & f_{1} \\
& & f_{0}
\end{array}\right]\left[\begin{array}{l}
s_{2} \\
s_{1} \\
s_{0}
\end{array}\right]=\left[\begin{array}{l}
u_{4} \\
u_{3} \\
u_{2} \\
u_{1} \\
u_{0}
\end{array}\right] .
$$

By extension, we can view the multiplication

$$
\left[\begin{array}{ll}
f & g
\end{array}\right]\left[\begin{array}{l}
s \\
t
\end{array}\right]
$$

in Lemma ?? as a linear map. We content ourselves with an explicit example.
Example 9.7. Let $f=3 x^{3}-x^{2}+3 x-1$ and $g=3 x^{2}+5 x-2$. Define $s:=s_{1} x+s_{0}$ and $t:=$ $t_{2} x^{2}+t_{1} x+t_{0}$, so that $\operatorname{deg} s<\operatorname{deg} g$ and $\operatorname{deg} t<\operatorname{deg} f$. The coefficient vector of $s f+t g$ is given by

$$
\overbrace{\left[\begin{array}{cc|ccc}
3 & & 3 & & \\
-1 & 3 & 5 & 3 & \\
3 & -1 & -2 & 5 & 3 \\
-1 & 3 & & -2 & 5 \\
& -1 & & & -2
\end{array}\right]}^{\operatorname{Syl}(f, g)}\left[\begin{array}{c}
s_{1} \\
s_{0} \\
t_{2} \\
t_{1} \\
t_{0}
\end{array}\right] .
$$

In the above example, the matrix defining the linear map is square of dimension 5. In general, if $f, g \in \mathrm{R}[x]$ with $\operatorname{deg} f=n$ and $\operatorname{deg} g=m$, the $\operatorname{Sylvester~matrix~} \operatorname{Syl}(f, g)$ of f and g is the square $(n+m) \times(n+m)$ matrix with first $\operatorname{deg} m$ columns comprised of shifts of the coefficient vector of f, and last n columns comprised of shifts of the coefficient vector of g.

Theorem 9.8. Let $f, g \in \mathrm{~F}[x]$ be nonzero.

- $\operatorname{gcd}(f, g)=1$ iff $\operatorname{Syl}(f, g)$ is invertible.
- If $\operatorname{gcd}(f, g)=1$ and $n+m \geq 1$, then the EEA computes $v \in \mathrm{~F}^{n+m}$ such that $S y l(f, g) v$ corresponds to the coefficient vector of the constant polynomial 1 .

Proof. The first part of the theorem follows as a corollary of Lemma ??. In particular, $\operatorname{Syl}(f, g)$ is invertible iff there does not exist a vector in the right nullspace of $\operatorname{Syl}(f, g)$; this is true iff there does not exist a solution to $s f+t g=0$ with $\operatorname{deg} s<\operatorname{deg} g$ and $\operatorname{deg} t<\operatorname{deg} f$. For the second part, note that if $\operatorname{Syl}(f, g)$ is invertible, then the solution to $s f+t g=1$ with $\operatorname{deg} s<\operatorname{deg} g$ and $\operatorname{deg} t<\operatorname{deg} f$ is unique.

Definition 9.9. $\operatorname{res}(f, g)=\operatorname{det} S y l(f, g)$.

By convention, if $n=m=0$ then $\operatorname{Syl}(f, g)$ is the 0×0 matrix and $\operatorname{res}(f, g)=1$. Also, res $(f, 0)=$ $\operatorname{res}(0, f)=0$ if $f=0$ or f is nonconstant.

Corollary 9.10. Let $f, g \in \mathrm{~F}[x]$. Then $\operatorname{gcd}(f, g)=1$ iff res $(f, g) \neq 0$.
Example 9.11. Let $f=3 x^{3}-x^{2}+3 x-1$ and $g=3 x^{2}+5 x-2$. Then $h=\operatorname{gcd}(f, g)=3 x-1 \in \mathbb{Z}[x]$. Since $\operatorname{deg} h>0$ we have res $(f, g) \neq 0$, but

$$
\operatorname{res}(f / h, g / h)=\operatorname{res}\left(x^{2}+1, x+2\right)=\operatorname{det} \operatorname{Syl}(f, g)=\left|\begin{array}{ccc}
1 & 1 & \\
0 & 2 & 1 \\
1 & & 2
\end{array}\right|=5 .
$$

So far, all discussion regarding $\operatorname{Syl}(f, g)$ and $\operatorname{res}(f, g)$ assumed f and g had coefficient from a field F . The case $\mathrm{F}[x]$ is mathematically simpler because we can use the language of vector spaces over fields for the description of the linear map given by $\operatorname{Syl}(f, g)$. In particular, $\operatorname{Syl}(f, g)$ is an isomorphism iff $\operatorname{Syl}(f, g)$ is invertible iff $\operatorname{det} \operatorname{Syl}(f, g)=\operatorname{res}(f, g) \neq 0$ iff there exist unique s and t in $\mathrm{F}[x]$ with $s f+t g=1, \operatorname{deg} s<\operatorname{deg} g, \operatorname{deg} t<\operatorname{deg} f$. The following is a continuation of the previous example.

Example 9.12. Let $f=x^{2}+1$ and $g=x+2$. Define $s:=s_{0}$ and $t:=t_{1} x+t_{0}$, so that $\operatorname{deg} s<\operatorname{deg} g$ and $\operatorname{deg} t<\operatorname{deg} f$. Considering f and g to live over $\mathbb{Q}[x]$, then the unique solution to $s f+t g=1$ is given by

$$
\left[\begin{array}{l}
s_{0} \\
t_{1} \\
t_{0}
\end{array}\right]=\overbrace{\left[\begin{array}{ccc}
4 / 5 & -2 / 5 & 1 / 5 \\
1 / 5 & 2 / 5 & -1 / 5 \\
-2 / 5 & 1 / 5 & 2 / 5
\end{array}\right]}^{\operatorname{Syl}(f, g)^{-1}}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

Indeed, we have

$$
\overbrace{\left(\frac{1}{5}\right)}^{s}\left(x^{2}+1\right)+\overbrace{\left(\frac{-1}{5} x+\frac{2}{5}\right)}^{t}(x+2)=1 .
$$

But if $f, g \in \mathrm{R}[x], \mathrm{R}$ a UFD, then $\operatorname{Syl}(f, g)$ and $\operatorname{res}(f, g)$ are well defined over R , and res (f, g) can tell us something about the degree of $\operatorname{gcd}(f, g)$ over R .

Corollary 9.13. Let $f, g \in \mathrm{R}[x]$ be nonzero, R a UFD. Then $\operatorname{gcd}(f, g)$ is nonconstant in $\mathrm{R}[x]$ iff $r e s(f, g)=0 \in \mathrm{R}$.

The following theorem will provide the basis for our modular gcd algorithm over $\mathbb{Z}[x]$.
Theorem 9.14. Let $f, g \in \mathbb{Z}[x]$. Suppose a prime p does not divide $b:=\operatorname{gcd}(l c(f), l c(g))$. Then
(i) $l c\left(\operatorname{gcd}_{\mathbb{Z}}(f, g)\right) \mid b$
(ii) $\operatorname{deg}\left(\operatorname{gcd}_{\mathbb{Z}_{p}[x]}(f \bmod p, g \bmod p)\right) \geq \operatorname{gcd}_{\mathbb{Z}[x]}(f, g)$
(iii) $\left.\operatorname{deg} \operatorname{gcd}_{\mathbb{Z}_{p}[x]}(f \bmod p, g \bmod p)\right)=\operatorname{deg}\left(\operatorname{gcd}_{\mathbb{Z}[x]}(f, g)\right)$

$$
\Longleftrightarrow \quad l c \underset{\mathbb{Z}[x]}{\operatorname{gcd}}(f, g)) \cdot \underset{\mathbb{Z}_{p}[x]}{\operatorname{gcd}}(f \bmod p, g \bmod p) \equiv \underset{\mathbb{Z}[x]}{\operatorname{gcd}}(f, g) \quad(\bmod p)
$$

$\Longleftrightarrow p$ does not divide $\operatorname{res}(f / h, g / h) \in \mathbb{Z}$.
Example 9.15. Consider $f=3 x^{3}+3 x-x^{2}-1, g=3 x^{2}+5 x-2$ and $h=\operatorname{gcd}(f, g)=3 x-1 \in \mathbb{Z}[x]$ from Example ??. We have $b:=\operatorname{gcd}(l c(f), l c(g))=3$, so a priori we can infer nothing about $\operatorname{deg} \operatorname{gcd}(f \bmod 3, g \bmod 3)$ relative to degh. Since $\operatorname{res}(f / h, g / h)=5$, we know that $\operatorname{deg} \operatorname{gcd}(f \bmod$ $5, g \bmod 5)>\operatorname{deg} h$. Since 7 does not divide $\operatorname{res}(f, g)$, we know that $\operatorname{deg} \operatorname{gcd}(f \bmod 7, g \bmod 7)=$ $\operatorname{deg} \operatorname{gcd}(f, g)$, and, moreover, that $\operatorname{gcd}(f \bmod 7, g \bmod 7) \in \mathbb{Z}_{p}[x]$ will be the image of $h / l c(h)$ modulo 7.

The idea for a modular algorithm to compute $\operatorname{gcd}(f, g)$ is now clear. Choose a prime p such that

- p does not divide $b:=\operatorname{gcd}(\operatorname{lc}(f), \operatorname{lc}(g))$,
- p hopefully does not divide $\operatorname{res}(f / h, g / h)$, and
- coefficients of $(b / \alpha) \operatorname{gcd}(f, g)$ can be captured in the symmetric range modulo p.

To fill in the details we need to have a handle on the size of coefficients of factors of a polynomial over $\mathbb{Z}[x]$. Recall that $f=f_{0}+f_{1} x+\cdots+f_{n} x^{n} \in \mathbb{Z}[x]$ we have the following norms:

- $\|f\|_{\infty}=\max _{i}\left|f_{i}\right|$,
- $\|f\|_{1}=\sum_{i}\left|f_{i}\right|$.

Theorem 9.16. Suppose $f, g, h \in \mathbb{Z}[x]$ with $f=g h$ and $\operatorname{deg} f=n$. Then
(i) $\|h\|_{\infty} \leq(n+1)^{1 / 2} 2^{n}\|f\|_{\infty}$
(ii) $\|g\|_{\infty}\|h\|_{\infty} \leq\|g\|_{1}\|h\|_{1} \leq(n+1)^{1 / 2} 2^{n}\|f\|_{\infty}$

What about the size of $\operatorname{res}(f / h, g / h)$? The following bound, based on the above bound for the magnitudes of coefficients of an integeer polynomial, and Hadamard's bound for the determinant, but taking into account the structure of $\operatorname{Syl}(f / h, g / h)$, at least gives us a bound on the magnitude of the product of all bad primes, that is, those primes that divide res $(f / h, g / h)$.
Lemma 9.17. Let $f, g \in \mathbb{Z}[x], n=\operatorname{deg} f \geq \operatorname{deg} g \geq 1$. Let $\|f\|_{\infty},\|g\|_{\infty} \leq A$. Then

$$
|\operatorname{res}(f / h, g / h)| \leq(n+1)^{n} A^{2 n} .
$$

The following example illustrates that it would be too expensive to choose primes that are large enough to guarantee they don't divide $\operatorname{res}(f, g)$.
Example 9.18. Let $f, g \in \mathbb{Z}[x]$ have degrees bounded by $n=1000$ and max-norm bounded by 10^{3}. Then

- Theorem ?? gives the a priori bound $\|\operatorname{gcd}(f, g)\|_{\infty} \leq 10^{305}$.
- Lemma ?? gives the bound $|\operatorname{res}(f / h, g / h)| \leq 10^{9001}$

9.3 A big prime modular gcd algorithm

Instead, the following algorithm chooses a random prime that is large enough to capture the coefficient of $\operatorname{gcd}(f, g)$, but then checks that a correct image was computed in step (4).

Algorithm: ModularGCD
Input: - Primitive $f, g \in \mathbb{Z}[x], n=\max (\operatorname{deg} f, \operatorname{deg} g), A=\max \left(\|f\|_{\infty},\|g\|_{\infty}\right)$
Output: • $\operatorname{gcd}(f, g) \in \mathbb{Z}[x]$
(1) $b \leftarrow \operatorname{gcd}(\operatorname{lc}(f), \operatorname{lc}(g))$
$B \leftarrow(n+1)^{1 / 2} 2^{n} A b$
(2) Choose a random prime p with $2 B<p \leq 4 B$.
$v \leftarrow \operatorname{gcd}(f \bmod p, g \bmod p)$
(3) Compute $w, f^{*}, g^{*} \in \mathbb{Z}[x]$ with max-norm $<p / 2$ such that

$$
w \equiv b v \bmod p, \quad f^{*} w \equiv b f \bmod p, \quad g^{*} w=b g \bmod p
$$

(4) If $\left\|f^{*}\right\|_{1}\|w\|_{1} \leq B$ and $\left\|g^{*}\right\|_{1}\|w\|_{1} \leq B$ then return $\mathrm{pp}(w)$

Else goto (2)
We will not prove it here, but mention that it can be shown rigourously that the random prime chosen in step (2) will divide $\operatorname{res}(f / h, g / h)$ with probably at most $1 / 2$. In other words, less than half the primes (in the worst case) in the range $2 B<p \leq 4 B$ will divide res $(f / h, g / h)$. It follows that the expected running ime of the algorihm is at most two iterations.

Example 9.19. Consider $f=3 x^{3}-x^{2}+3 x-1$ and $g=3 x^{2}+5 x-2$, both primitive polynomials.

1. We get $b=3$ and $B=240$. Note that B will always be large enough that any prime $>2 B$ will necessarily not divide either of the leading coefficients of f or g.
2. We choose the prime $p=487$ and compute

$$
v=\operatorname{gcd}(f \bmod p, g \bmod p)=x+162 .
$$

3. Here we obtain $w=3 x-1$ and

$$
\overbrace{\left(3 x^{2}+3\right)}^{f^{*}} \overbrace{(3 x-1)}^{w} \equiv \overbrace{9 x^{3}-3 x^{2}+9 x-3}^{b f}(\bmod p), \overbrace{(3 x+6)}^{g^{*}} \overbrace{(3 x-1)}^{w} \equiv \overbrace{9 x^{2}+15 x-6}^{b g}(\bmod p)
$$

4. Now, to verify correctness of the computed image w, we need to check that the congruences in step (3) actually hold without the mod. One way to do this is to do a multiplication over $\mathbb{Z}[x]$. Instead, the algorithm computes the a priori bound $\left\|f^{*} w\right\|_{\infty} \leq\left\|f^{*}\right\|_{1}\|w\|_{1}$ to check if the product $f^{*} g$ over $\mathbb{Z}[x]$ is such that all coefficients of $f^{*} g$ don't change when reduced modulo p in the symmetric range; if this is the case, then $f^{*} w=b f$ over $\mathbb{Z}[x]$ and w is $v e r i f i e d ~ t o ~ b e ~ a ~ f a c t o r ~ o f ~ b f . ~ S i m i l a r ~ f o r ~ b g . ~$
