CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 9 Page 1

9 The resultant and a modular ged algorithm in 7 x|

Let F be a field. Then the ring F[x] of polynomials is a unique factorization domain (UFD), so
greatest common divisors exist. Not only is F[x] a UFD, it a Euclidean domain, so gcds can be
computed with the Euclidean algorithm.

But what about Z[x]? Because Z|x] is not a Euclidean domain the Euclidean algorithm cannot
be applied directly. Do gcds over Z[x] even exist? It turns out that the answer is yes. But then
some natural questions arise. How can we compute gcds over Z[x]? What is the relationship of
gcds over Z[x] and Q[x]? This script gives answers to these questions.

Subsection ?? and ?? develop some necessary mathematical background. The last subsection
gives an efficient modular algorithms for computing gecds over Z[x]. Because of the established
relationship between factorization over Z[x] and Q[x] in §2?, the modular algorithm for gcd over
Z|x] will also be useful for gcd computation over Q|x].

9.1 Gauss’ lemma and theorem

To begin we need to define some notation. Let R be a UFD. Recall that a unit of R is an invertible
element, and that two elements a,b € R are associates if a = ub for u € R a unit. Over Z the only
units are £1, while over F[x] the units are the nonzero constant polynomials, that is, elements of
F\ {0}. Geds over R and F[x] are unique, but only up to units. To make gcds unique, we define a
function lu and normal over R such that for any a € R we have a = lu(a) x normal(a). An element
a € R is normalized if @ = normal(a), or equivalently, if lu(a) = 1. For all a,b € R, by gcd(a,b)
we mean the unique normalized gcd of a and b. Over Z we define lu(a) = sign(a), so geds over Z
are positive; while over F[x] we define lu(a) = Ic(a), so geds over F[x] are monic. By convention,
lu(0) = I and normal(0) = 0.

Now let f = fo+ fix+---+ fux" € R[x], R a UFD. The content cont(f) is defined as cont(f) =
gcd(fo,- .-, fn) € R. By convention, cont(fy) = ged(fp) = normal(fy). The primitive part pp(f)
of f is defined by f = cont(f) - pp(f). A polynomial f € R[x] is primitive if cont(f) =1

Example 9.1. Let f = 18x® — 42x?> +30x — 6. Then cont(f) = ged(18,—42,30,—6) = 6 and
pp(f) = 3x* —7x* +30x — 6.

It is useful to extend the notion of content to polynomials in Fx|. If f = (ao/b) + (a1 /b)x+
-+ (ay/b)x" € Flx] for a common denominator b, then cont(f) = ged(ay,...,a,)/cont(b) € F,
and pp(f) = f/cont(f). With this definition, pp(f) will be a primitive polynomial in R|x|.

Example 9.2. cont((2/3)x+1/2) =1/6 and pp((2/3)x+1/2) = 4x+3.

If R is a UFD, the following fundamental theorem guarantees that R[x] is also a UFD, and fully
exposes the relationship between the factorization of polynomials in R[x] and F[x], where F is the
fraction field of R.

Theorem 9.3. Gauss Let R be a UFD. Then the following hold.



CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 9 Page 2

e The product of two primitive polynomials in R[x] is primitive.

e For f,g € R[x], cont(fg) = cont(f)-cont(g) and pp(fg) = pp(f) -pr(g)-

e Rlx] is UFD, and the unique factorization (up to units and ordering) of an f € Rx] is given
by
cont(f) pp(f)

A

f=pp2—r-pp(f) pp(f2) - pp(fy)s

where p1p> - - pr is the factorization over R of the content of f, and f1f>--- f, is the factor-
ization over F[x| of the primitive part of f.

As a corollary of Theorem ??, since R[x] is a UFD, any two elements of R[x] have a gcd.
To make gcds in R[x] unique, we extend lu to f € R[x] by lu(f) = lu(lc(f)). Then f = lu(f)-
normal( f), where normal(f) has a normalized leading coefficient from R. As a corollary of The-
orem ??, given primitive polynomials f,g € Z[x]|, we know the their gcd h over Z[x| will also be
primitive, and we can compute & by passing over Qx| as follows:

h:=gcd(f,g) = pp(gcd(f,g)) (1)
Z[x) Q]

The following algorithm modifies this recipe slightly by first scaling the gcd over Q[x], which may
have rational number coefficients, by ged(lc(f),lc(g)), which is guaranteed to clear the denomi-
nators.

€ Z[x|
h:=ged(f,g) = pp(ged(le(f),le(g)) - ged(f,8)) 2
Z[x] Z Qlx]
Note that (??) and (??) only hold when ged(f, g) is primitive. (A sufficient condition for ged(f, g)
to be primitive is that at least one of f and g be primitive.) Also, since gcd(le(f),lc(g)) may
actually be a proper multiple of lc(%), we still need to take the primitive part in (2?).

Algorithm: PrimitiveGCD

Input: > f,g € R[x] where R is a UFD and at least one of f and g is primitive.

Output: » ged(f,g) € R[x]

(1) Compute the monic ged v € Flx] of f and g over F[x], where F is the field of fractions of R.

(2) b+ ged(le(f),1e(g))
(3) Return pp(bv) € R[x]

Example 9.4. Let f = 18x> —42x> +30x — 6 € Z[x] and g = —12x> + 10x — 2 € Z[x]. Then

f=cont(f) pp(f) :6-(3x3—7x2+5x—1)

and
g=cont(g) -pp(f) =2-(—6x> +5x—1).



CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 9 Page 3

Over Q|x] we have

ged(f,g) = ged(pp(f),pp(g)) =x—1/3 € Q[x].
Qfx] Q]

Over Z[x] we have

ged(f,g) = ged(cont(f), cont(g)) - ged(pp(f),pp(8)) =2+ (3x—1) € Z[x].
7] Z Zx]

Note that gedy, (pp(f),pp(8)) is equal to pp(gedgyy (f,8))-

9.2 The resultant

Our goal will be to develop a modular algorithm for computing gecds over Z[x|. The approach will
be to choose a prime p and compute the gcd over Zj, x| of the modular images of the polynomials.
If the modular ged is indeed an image of the ged over Z[x|, then the gcd over Z[x| can be recovered
provided the prime p is large enough to capture the coefficients. But some primes are bad. The
following example illustrates some subtleties with the approach.

Example 9.5. Consider f = 3x> +3x—x> — 1 and g = 3x*> + 5x — 2 over Z[x]. These are primitive
polynomials with h = ged(f,g) = 3x— 1 € Z[x]. Consider the gcd of the modular images of f and
g for the primes 3, 5 and 7.

gcd(f mod 3,g mod 3) = 1 degree is too small
ged(f mod 5,gmod 5) = x*>+1 degree is too large
gcd(f mod 7,g mod 7) = x+2 degree is correct

If we multiply the monic gcd modulo 7 by the leading coefficient of the gcd over Z|x|, and reduce
in the symmetric range modulo 7, we obtain 3x+6 = 3x— 1 mod 7.

As the last example illustrated, not all primes p are good primes in the sense that the gcd of the
modular images of the polynomials may not be equal to the modular image of 4/ 1c(h), where h is
the ged over Z.

To get a handle on the bad primes we need to introduce the concept of the resultant. Let
f,& € F[x] be nonzero, n =deg f, m = degg. Then (—g)f+ (f)g = 0, but if we restrict the degrees
of s and ¢ in the equation (s) f + (t)g = 0, then the following lemma gives an interesting relationship
between the existence of a solution to sf +¢g = 0 and the existence of a nontrivial gcd of f and g.

Lemma 9.6. gcd(f,g) # 1 iff there exist nonzero s,t € Flx| such that sf +tg = 0 with degs < degg
and degt < deg f.

Proof. (Only If) Suppose degh = degged(f,g) > 1. Then we can choose s = —g/h and t = f/h.
(If) Assume sf +tg = 0 with ged(f,g) = | and degr < deg f. Then sf = —tg and f | ¢, which is
impossible if degr < deg f. [



CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 9 Page 4

Next, notice that polynomial multiplication is a linear map. For example, if f = fo+ fix+ fox*
and s = s+ 51 + 522, then the coefficient of the product s f =ug+ujx+---+ usx* can be computed
by a matrix X vector product:

WP uy
fi 52 us
fo f1 12 s1 | = | w

fo fi 50 ui

fo uo

By extension, we can view the multiplication

ol

in Lemma ?? as a linear map. We content ourselves with an explicit example.

Example 9.7. Let f = 3x3 —x*> +3x— 1 and g = 3x* + 5x — 2. Define s := s;x+ s and t :=
12x* +t1x + 1o, so that degs < degg and degt < deg f. The coefficient vector of sf +tg is given by

Syl(f,8)
3 3 T s
-1 3|5 3 50
3 —-1|-2 5 3 t
-1 3 -2 5 hH
—1 -2 fo

In the above example, the matrix defining the linear map is square of dimension 5. In general,
if f,g € R[x] with deg f = n and deg g = m, the Sylvester matrix Syl(f,g) of f and g is the square
(n+m) x (n+m) matrix with first degm columns comprised of shifts of the coefficient vector of
f, and last n columns comprised of shifts of the coefficient vector of g.

Theorem 9.8. Let f, g € F[x]| be nonzero.

e gcd(f,g) = 1iff Syl(f,g) is invertible.

o Ifgcd(f,g) =1 and n+m > 1, then the EEA computes v € F"*™ such that Syl(f,g)v corre-
sponds to the coefficient vector of the constant polynomial 1.

Proof. The first part of the theorem follows as a corollary of Lemma ??. In particular, Syl(f,g) is
invertible iff there does not exist a vector in the right nullspace of Syl(f, g); this is true iff there does
not exist a solution to sf +tg = 0 with degs < degg and degr < deg f. For the second part, note
that if Syl(f,g) is invertible, then the solution to sf +7g = 1 with degs < degg and degr < deg f
is unique. [

Definition 9.9. res(f,g) = detSyl(f,g).



CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 9 Page 5

By convention, if n = m = 0 then Syl(f, g) is the 0 x 0 matrix and res(f,g) = 1. Also, res(f,0) =
res(0,f) =0if f =0 or f is nonconstant.

Corollary 9.10. Let f,g € Fx]. Then gcd(f,g) = 1 iff res(f,g) # 0.

Example 9.11. Let f =3x> — x> +3x—l and g = 3x> + 5x —2. Then h=gcd(f,g) = 3x— 1 € Z[x].
Since degh > 0 we have res(f,g) # 0, but

11
res(f/h,g/h) = res(x* + 1,x+2) =detSyl(f,g) =| 0 2 1| =5.
1 2
So far, all discussion regarding Syl(f,g) and res(f,g) assumed f and g had coefficient from a
field F. The case F[x] is mathematically simpler because we can use the language of vector spaces
over fields for the description of the linear map given by Syl(f,g). In particular, Syl(f,g) is an
isomorphism iff Syl(f,g) is invertible iff detSyl(f,g) = res(f,g) # 0 iff there exist unique s and
tin Flx] with sf +rg = 1, degs < degg, degr < degf. The following is a continuation of the
previous example.

Example 9.12. Let f = x>+ 1 and g = x+ 2. Define s := so and t 1= t;x+ 1o, so that degs < degg
and degt < deg f. Considering f and g to live over Q|x|, then the unique solution to sf +tg =1 is
given by

Syl(f,)""!
so] T 4/5 —2/5 1/5 1[0
Hh| = 1/5 2/5 —-1/5 0
to -2/5 1/5 2/5 1
Indeed, we have
S t

—~ = —_—
G) (C+1)+ <%1x+§) (x+2)=1.

But if f,g € R[x], R a UFD, then Syl(f,g) and res(f,g) are well defined over R, and res(f, g)
can tell us something about the degree of ged(f,g) over R.

Corollary 9.13. Let f,g € R[x] be nonzero, R a UFD. Then gcd(f,g) is nonconstant in R[x] iff
res(f,g) =0€R

The following theorem will provide the basis for our modular gcd algorithm over Z|[x].

Theorem 9.14. Let f, g € Z[x]. Suppose a prime p does not divide b := ged(lc(f),lc(g)). Then

(i) le(gedy(f,8)) [ b

(ii) deg(gedy, [(f mod p,g mod p)) > gedyy(f.8)



CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 9 Page 6

(iii) deggedy, (y(f mod p,g mod p)) = deg(gedy,(f8))

<= lc(ged(f,g))- ged(f mod p,g mod p) = ged(f,g) (mod p)
Zix] Zpla] Zix]

<= pdoes not divide res(f/h,g/h) € Z.

Example 9.15. Consider f =3x>+3x—x>—1, g =3x*>+5x—2 and h = ged(f,g) = 3x — 1 € Z[x]
from Example ??. We have b := gcd(lc(f),lc(g)) = 3, so a priori we can infer nothing about
degged(f mod 3, g mod 3) relative to degh. Since res(f/h,g/h) =5, we know that deg gcd(f mod
5,g mod 5) > degh. Since 7 does not divide res(f,g), we know that deggcd(f mod 7,¢ mod 7) =
deggcd(f,g), and, moreover, that ged(f mod 7,¢ mod 7) € Z,[x] will be the image of h/lc(h)
modulo 7.

The idea for a modular algorithm to compute ged(f,g) is now clear. Choose a prime p such
that

e p does not divide b := ged(lc(f),lc(g)),
e p hopefully does not divide res(f/h,g/h), and
e coefficients of (b/a)gcd(f,g) can be captured in the symmetric range modulo p.

To fill in the details we need to have a handle on the size of coefficients of factors of a polyno-
mial over Z[x]. Recall that f = fy+ fix+ -+ fux" € Z[x] we have the following norms:

o [|fl]eo = max;|fi,
o [[flli=Xilfil-
Theorem 9.16. Suppose f,g,h € Z[x] with f = gh and deg f = n. Then
(i) (1Al < (m+1)"7227(| ]|
(ii) |18][esl|lleo < gl 1111 < (n41)1227] | £]]on

What about the size of res(f/h,g/h)? The following bound, based on the above bound for the
magnitudes of coefficients of an integeer polynomial, and Hadamard’s bound for the determinant,
but taking into account the structure of Syl(f/h,g/h), at least gives us a bound on the magnitude
of the product of all bad primes, that is, those primes that divide res(f/h,g/h).

Lemma 9.17. Let f,g € Z[x], n=deg f > degg > 1. Let || f]|w, ||g||c < A. Then
|res(f/h,g/h)| < (n+1)"A%".

The following example illustrates that it would be too expensive to choose primes that are large
enough to guarantee they don’t divide res(f, g).

Example 9.18. Let f, g € Z[x]| have degrees bounded by n = 1000 and max-norm bounded by 103.
Then

e Theorem ?? gives the a priori bound || gcd(f,g)||- < 103%,

o Lemma ?? gives the bound |res(f/h,g/h)| < 10°00!



CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 9 Page 7

9.3 A big prime modular gcd algorithm

Instead, the following algorithm chooses a random prime that is large enough to capture the coef-
ficient of ged(f, g), but then checks that a correct image was computed in step (4).

Algorithm: ModularGCD
Input: > Primitive f,g € Z[x], n = max(deg f,degg), A = max (|| f||e, ||g||)
Output: > ged(f,g) € Z[«]
(1) b« ged(le(f),lc(g))
B+« (n+1)/22"4b
(2) Choose a random prime p with 2B < p < 4B.
v« ged(f mod p,g mod p)
(3) Compute w, f*,g* € Z[x] with max-norm < p/2 such that

w=bvmod p, ffw=bf modp, g'w=bgmodp

@ I [l [Nalwlls < B and [[g*|[1|w[[1 < B then return pp(w)
Else goto (2)

We will not prove it here, but mention that it can be shown rigourously that the random prime
chosen in step (2) will divide res(f/h,g/h) with probably at most 1/2. In other words, less than
half the primes (in the worst case) in the range 2B < p < 4B will divide res(f/h,g/h). It follows
that the expected running ime of the algorihm is at most two iterations.

Example 9.19. Consider f = 3x> — x>+ 3x — 1 and g = 3x> + 5x — 2, both primitive polynomials.

1. We get b =3 and B = 240. Note that B will always be large enough that any prime > 2B
will necessarily not divide either of the leading coefficients of f or g.

2. We choose the prime p = 487 and compute

v =ged(f mod p,g mod p) = x+ 162.

3. Here we obtain w = 3x— 1 and

I w bf g" w bg
f—;\ﬂ,—M — ? ~ —_— N —— /2—/\—\
(Bx"4+3)Bx—1)=9%" —3x"+9%x—3 (mod p), (Bx+6)(3x—1)=9%%"+15x—6 (mod p)

4. Now, to verify correctness of the computed image w, we need to check that the congruences
in step (3) actually hold without the mod. One way to do this is to do a multiplication over
Z|x). Instead, the algorithm computes the a priori bound ||f*wl||e < ||f*|[1]||W||1 to check
if the product f*g over Z|x| is such that all coefficients of f*g don’t change when reduced
modulo p in the symmetric range; if this is the case, then f*w = bf over Z[x] and w is
verified to be a factor of bf. Similar for bg.



