
CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 6 Page 1

6 The Chinese Remainder Algorithm

Let R be a Euclidean Domain and m0,m1,m2, . . . ,mr−1 ∈ R with gcd(mi,m j) = 1 for i 6= j. Then
let m = m0m1 · · ·mr−1.

Fact 6.1 (The Chinese Remainder Theorem).

R

(m)
∼=

R

(m0)
× R

(m1)
×·· ·× R

(mr−1)

Example 6.2. For R= Z, suppose m0 = 7, m1 = 11 and m2 = 13, so m = 1001, and

Z
(1001)

∼=
Z
(7)
× Z

(11)
× Z

(13)
.

Consider the representation of a = 233 mod m.

233 7→ (2,2,12)

If we had b = 365 mod m, then b 7→ (1,2,1). If we want to compute a + b mod m, we could
compute

(2,2,12)+(1,2,1) = (3,4,0) 7→ 598 mod 1001.

Similarly a ·b can be computed by component-wise product:

(2,2,12)∗ (1,2,1) = (2,4,12) 7→ 961 mod 1001.

What about 1234 mod m?
1234 7→ (2,2,12)

The mapping is only defined modulo m, so 233 and 1234 have the same representation. If we know
that a ∈ Z is between in {0, . . . ,m− 1} then we, then we recover it uniquely from its image in
Z7×Z11×Z13. This is the basis of many so-called “modular” algorithms.

The fact that the Chinese Remainder Theorem provides an isomorphism means that for any
sequence of residues like (2,2,12) there exists a unique element in Zm. How do we find this?

The isomorphism given by the Chinese remainder theorem can be implemented by efficient
algorithms in both directions.

One direction is “easy”: given a (and m0, . . . ,mr−1), compute

a 7→ (a rem m0,a rem m1, . . . ,a rem mr−1).

This maps a to a “small” residue in each of Zm0 , . . . , Zmr−1 . We saw that in the case R = Z that
this was particularly efficient, at least in the naive cost model: when 0≤ a < m we could compute
this with O((logm)2) word operations.

We now consider the other direction: Given v0,v1, . . . ,vr−1 ∈ R, find a such that

a≡ v0 mod m0, a≡ v1 mod m1, . . . , a≡ vr−1 mod mr−1.

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 6 Page 2

The existence of a is guaranteed by the Chinese Remainder Theorem.
We do something very similar to Lagrange interpolation. Find L0, . . . ,Lr−1 such that Li ≡

0 mod m j for i 6= j and Li ≡ 1 mod mi. Then

a = v0L0 + v1L1 + · · ·vr−1Lr−1 ∈ R,

which has the desired properties. But how do we find L0, . . . ,Lr−1?
We assume that gcd(mi,m j) = 1 for i 6= j (we say the m0, . . . ,mr−1 are pairwise relatively

prime). This implies gcd(m/mi,mi) = 1 for 0≤ i < r. Thus, by the extended Euclidean algorithm,
there exists si, ti such that si ·m/mi + timi = 1. In other words, Li = si · (m/mi)≡ 1 mod mi. Also,
since m/mi =m0m1 · · ·mi−1mi+1 · · ·mr−1, we know that m/mi≡ 0 mod m j for i 6= j, so Li≡ 0 mod
m j for i 6= i.

Example 6.3. Again with R = Z and m0 = 7, m1 = 11 and m2 = 13, suppose v0 = 2, v1 = 2 and
v2 = 12. Then

gcd(11 ·13,7) = 1 =−2 · (11 ·13)+41 ·7 =⇒ L0 =−2 ·11 ·13 =−286
gcd(7 ·13,11) = 1 = 4 · (7 ·13)−33 ·11 =⇒ L1 = 4 ·7 ·13 = 364
gcd(7 ·11,13) = 1 =−1 ·7 ·11+41 ·6 ·13 =⇒ L2 =−1 ·7 ·11 =−77

Thus

a≡ v0L0 + v1L1 + v2L2 ≡ 2 · (−286)+2 ·364+12 · (−77)≡−768≡ 233 mod 1001.

Now consider the cost of computing a. First, we need to compute m = m0m1 · · ·mr−1 in case
this is not given as part of the input. Assuming that each mi ≥ 2 so that we can make the simpli-
fication lgmi ≤ 1+ log2 mi ≤ 2logmi, we simply compute m0m1, (m0m1)m2, . . . in succession for
an overall cost of

c
r−1

∑
i=1

(lgm0m1 . . .mi−1)(lgmi) ≤ c(lgm)
r−1

∑
i=1

(lgmi)

≤ c2(log2 m)
r−1

∑
i=1

2(log2 mi)

< c2(log2 m)
r−1

∑
i=0

2(log2 mi)

= c4(log2 m)(log2 m)

word operations, for some constant c. The cost of computing m/mi for 0 ≤ i ≤ r− 1 is bounded
by c∑

r−1
i=0 (lgm/mi)(lgmi)≤ c(lgm)∑

r−1
i=0 (lgmi), which can be simplified to O((logm)2) word op-

erations. Next we compute gcd(m/mi,mi) = si(m/mi)+ timi at a cost of O((lgm/mi)(lgmi)) for
0≤ i≤ r−1. This again simplifies to O((logm)2) word operations. Finally, computing the prod-
ucts Li = si(m/mi) and viLi can be shown to have cost O((logm)2), using the fact that |si| ≤mi and
lgm/mi < lgm.

In summary, both directions of the Chinese Remainder theorem can be computed with O((logm)2)
word operations.

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 6 Page 3

6.1 Variants of Chinese Remaindering

There are a number of useful variants of the Chinese remainder theorem and algorithm. First we
consider the mixed radix representation.

Mixed radix representation

Suppose 0≤ a≤M =m0m1 · · ·mr, where mi ∈Z are all at least 2 (and are not necessarily relatively
prime).
Claim: We can write a uniquely as

a = a0 +a1m0 +a2m0m1 + · · ·+arm0...mr−1

with 0≤ ai < mi for all i. This is called the mixed radix representation of a.
For example, if m0 = 7, m1 = 11, m2 = 13, then

233 = 2+(0)(7)+(3)(7×11)

We should prove that such a representation always exists. We use weak induction on r.
If r = 0 then a = a0, which covers the base case.
Assume the inductive hypothesis that there is a mixed modulus representation of a for m0, . . . ,mr−1.

Now show it for m0, . . . ,mr.
Let ǎ = a rem m0m1 · · ·mr−1. Then by induction we know we can write

ǎ = a0 +a1m0 +a2m0m1 + · · ·ar−1m0 · · ·mr−2.

Define ar = (a− ǎ)/(m0m1...mr−1). Then

a = a0 +a1m0 + · · ·+ar−1m0m1...mr−2 +arm0m1 · · ·mr−1.

We know ar is unique since the other quantities are unique, and 0≤ ar < mr follows from the fact
that 0≤ a < m0m1...mr−1.

Incremental Chinese Remaindering

Incremental Chinese remaindering computes rem(a,m0), rem(a,m0m1), rem(a,m0m1m2), More
precisely, given two relatively prime moduli M,m ∈ Z>1, and two images V,v ∈ Z such that
0 ≤ V < M and 0 ≤ v < m, our goal is to reconstruct an a ∈ Z such that a ≡ V mod M and
a ≡ v mod m. Here we think of M as big (for example, M = m0m1 · · ·mr−1) and mr as small
(for example, m = mr). The obvious way to do this is to use the EEA to compute s, t ∈ Z such that
sM+ tm = 1, and then set a = tV m+ svM. In assignment 2 you are asked to analyze this method,
and then derive a better method based on the mixed-radix representation of a.

Incremental Chinese remaindering can be used for so-called “output sensitive” algorithms.
Sometimes we don’t know how big the (integer) output is in advance. Therefore we compute the

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 6 Page 4

result modulo more and more primes. When we recover the same a modulo a few prime, we
“guess” that we have the correct integer result. For some problems it is possible to prove that the
output is correct if the result does not change for a few primes. Often we just prove this is true with
high probability for randomly chosen primes.

