
CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 5 Page 1

5 Division of Polynomials and Newton Iteration

Let F be a field. Given two polynomials a,b∈ F[x] there exist q,r ∈ F[x] such that a = qb+r where
r = 0 or degr < degb. We have seen that if dega = n and degb = m, we can compute q,r with
O(nm) operations in F. Using the simplifying assumption that m < n, we can then say that we can
do division with remainder with O(n2) operations (which is accurate when m and n are about the
same size).

However, we have also seen that we can multiply polynomials of degree at most n with O(n logn)
operations in F, assuming some special properties of F, or more generally with O(n logn log logn)
operations in F (which we didn’t cover in class, but uses a generalization of the FFT-based method).

Is division with remainder really “harder” than multiplication? Or can we compute division
with remainder with O(n logn) operations in F? Can we use the fast polynomial multiplication
algorithm? The answer to these last two questions is “yes”. Around 1972, Borodin and Moenck,
Strassen, Sieveking, and Kung derived a division algorithm that cost O(n log2 n log logn) field op-
erations.

5.1 Division using Newton Iteration

Let

a = anxn +an−1xn−1 + · · ·+a1x+a0,

b = bmxm +bm−1xm−1 + · · ·+b1x+b0,

with an,bm 6= 0, and assuming m ≤ n. We wish to find q ∈ F[x] and r ∈ F[x] satisfying a = qb+ r
with r = 0 or degr < degb. For convenience we will assume that bm = 1 (why is this not a bad
restriction?).

A useful property of polynomials is the ability to “reverse” them in an algebraically meaningful
way. Substitute 1

y for x in a(x) above, to obtain

a
(

1
y

)
= an

1
yn +an−1

1
yn−1 + · · ·+a1

1
y
+a0

Multiplying both sides by yn, we obtain

yna
(

1
y

)
= an +an−1y+an−2y2 + · · ·+a1yn−1 +a0yn,

the reversal of a. For convenience, we define revk(a) = yk · a(1/y). When a is a degree k poly-
nomial, this is the reversal of a (when a has degree less than k, we introduce extra multiples of y;
when a has degree greater than k, we end up with denominators which are powers of y).

Now substitute 1
y for the variable x in the expression a(x) = q(x)b(x)+ r(x). We obtain

a
(

1
y

)
= q

(
1
y

)
· b

(
1
y

)
+ r

(
1
y

)
.



CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 5 Page 2

Multiplying both sides by yn we get

yna
(

1
y

)
=

(
yn−mq

(
1
y

))(
ymb

(
1
y

))
+ yn−m+1

(
ym−1r

(
1
y

))
, or equivalently

revn(a) = revn−m(q) · revm(b)+ yn−m+1revm−1(r)

It is useful to consider the ring of Taylor series in y. Recall that this is the ring of all infinite
sums

a0 +a1y+a2y2 + · · · where ai ∈ F for i≥ 0,

which we write as F[[y]]. All polynomials in F[y] can be thought of as Taylor series (with all the
higher degree coefficients zero), but there are Taylor series which are not polynomials. We add
and multiply Taylor series much like polynomials, though of course there are an infinite number
of coefficients. One of the many useful facts about Taylor series is that if u ∈ F[[y]] has a non-zero
constant coefficient, then there exists another Taylor series ũ ∈ F[[y]] such that uũ = 1. That is,
ũ = u−1.

Since b is monic of degree m, we know that the constant coefficient of revm(b) is 1. Thus,
revm(b) has an inverse in F[[y]]. Suppose we could compute revm(b)−1 ∈ F[[y]] exactly. Then we
could compute q and r as follows. We have

revn(a) = revn−m(g) · revm(b)+ yn−m+1revm−1(r).

Therefore,
revn(a)≡ revn−m(q) · revm(b) mod yn−m+1,

and
revn(a) · revm(b)−1 ≡ revn−m(q) mod yn−m+1.

We then have q = revn−m(revn−m(q)) and r = a−q ·b.

Example 5.1. Let a = x3 +2x2 + x+2 and b = x2 + x+2 be polynomials in Z3[x]. Then

rev3(a) = 2y3 + y2 +2y+1,

rev2(b) = 2y2 + y+1.

We claim rev2(b)−1 ≡ 2y+1 mod y2. Check:

(2y+1)(2y2 + y+1) = 4y3 +4y2 +3y+1
≡ 1 mod y2.

Now

rev1(q) = (2y3 + y2 +2y+1)(2y+1) mod y2

= y+1,

so q = x+1 and r = a−qb = x.



CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 5 Page 3

We now need a fast method to compute the inverse of revm(b) modulo yn−m+1.

Problem 5.2. Given g∈ F[x] and k∈N, find h∈ F[x] of degree less than k satisfying hg≡ 1 mod xk.

From mathematics and scientific computing courses recall that Newton iteration involves com-
puting successive approximations to solutions of f (t) = 0, generally for some function f : R→R.
From a suitable initial approximation, t0, subsequent approximations are computed using

ti+1 = ti−
f (ti)
f ′(ti)

.

For our problem, we need to find a zero of a function Φ : F[[y]]→ F[[y]], namely the function

Φ(X) =
1
X
−g,

since Φ(g̃) = 0 where g̃ ∈ F[[y]] is such that g̃ · g = 1 (i.e., g̃ is the Taylor series inverse of g).
Clearly

Φ
′(X) =− 1

X2

and our Newton iteration step is

hi+1 = hi−

1
hi
−g

−1/h2
i
= 2hi−gh2

i .

The following theorem tells us a good initial approximation and shows us that this method “con-
verges” quickly to a solution.

Theorem 5.3. Let g,h0,h1, . . . ∈ F[x], with h0 = 1 and

hi+1 ≡ 2hi−gh2
i mod x2i+1

,

for all i. Assume also that the constant coefficient of g is 1 (i.e., g0 = 1). Then, for all i,

ghi ≡ 1 mod x2i
.

Proof. The proof is by induction on i. For i = 0 we have

gh0 ≡ g0h0 ≡ 1 ·1≡ 1 mod x20
.

Assume ghi ≡ 1 mod x2i
, for some i≥ 0. Now

1−ghi+1 ≡ 1−g(2hi−gh2
i )

≡ 1−2ghi +g2h2
i

≡ (1−ghi)
2

≡ 0 mod x2i+1

We conclude that for all i ∈ N we have ghi ≡ 1 mod x2i
.

We can now derive a complete algorithm to compute the inverse of g mod xk.



CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 5 Page 4

Algorithm: InversePolyMod
Input: I g = g0 +g1x+ · · ·+gnxn and k ∈ N;
Output: I u ∈ F[x] satisfying 1−gu≡ 0 mod xk.
(1) h0 = 1, r = dlog2 ke.
(2) for i = 0, . . . ,r−1 do calculate hi+1 = (2hi−gh2

i ) rem x2i

(3) return hr

In our analysis below we will assume that M(n) is the number of field operations required to
multiply together two polynomials of degree at most n. We will assume that M(n) ≥ n and that
M(2n)≥ 2M(n), which are pretty reasonable assumptions.

Theorem 5.4. The algorithm InversePolyMod uses O(M(n)) field operations to correctly com-
pute the reciprocal.

Proof. The number of field operations used for computing hi+1 from hi in Step 2 is at most
2M(2i)+ 2 · 2i, since the arithmetic is performed mod x2i

. Since n < k, the time to compute the
reciprocal is at most

∑
0<i<r

(2M(2i)+2i+1).

Now since M(2n) ≥ 2M(n), clearly M(2 jn) ≥ 2 jM(n) for any j ≥ 0. This means that M(n) ≤
2− jM(2 jn), which is often useful in these sorts of summations. Here, we can see that M(2i) ≤
2i−r+1M(2r−1). So the time to compute is bounded by

∑
0<i<r

(2M(2i)+2i+1) = 2
r−1

∑
i=1

M(2i)+
r

∑
i=2

2i

≤ 2M(2r−1)
r−1

∑
i=1

2i−r+1 +
r

∑
i=0

2i

≤ M(2r)
r−2

∑
i=0

2−i +2r+1

≤ M(2r)
∞

∑
i=0

2−i +2M(2r)

≤ 4M(2r)

Since 2r is less than 2n, the cost of the algorithm is therefore O(M(n)).

We immediately get the desired result on division with remainder.

Corollary 5.5. For polynomials of degree n in F[x], division with remainder requires O(M(n)) field
operations.

It may seem circular to use an algorithm that uses the rem operation to compute division with
remainder (after all, rem is closely related to division). However, we are using the rem operation to



CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 5 Page 5

compute modulo a power of x, and hence to truncate the high powers of x. Thus we are using only
a very simple form of division. It is similar to finding the quotient and remainder of a large number
written in base 10 when divided by 10000. Division in this special case requires no operations.


