
CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 4 Page 1

4 The Discrete Fourier Transform

In this section we will look at the Discrete Fourier Transform, which transforms the representation
of a function from a sequence of coefficients to a (discrete) sequence of values of the function.
Once we understand the transform itself, we will look at how to compute it quickly, and then how
this can be used in polynomial multiplication.

4.1 Theory behind the DFT

Definition 4.1. Let F be a field, n∈N and ω ∈ F. We say ω is a primitive nth root of unity (n-PRU)
if

(1) ωn = 1,

(2) n is a unit in F,

(3) ωk−1 is not zero for 1≤ k < n.

The last condition implies that ωk 6= 1, 1≤ k < n.

Example 4.2. Suppose F= C and ω = e2πi/8. Then ω is an 8-PRU.

Example 4.3. Consider the “Fermat prime”, m = 24 +1. 3 is a 16-PRU in Zm.

Example 4.4. More generally if p is a prime and 2k divides p−1 then Zp has a 2kth primitive root
of unity. Why?

Exercise 4.5. If ω is an n-PRU, then show that ω−1 is also. If n is even, then show that ω2 is a
n
2 -PRU.

Recall the definition of a Vandermonde matrix:

VDM(u1, . . . ,un) =

 u0
1 u1

1 . . . un−1
1

...
...

u0
n u1

n . . . un−1
n

 .

Suppose a = a0 +a1x+a2x2 + · · ·+an−1xn−1 ∈ F[x]. We see that

If a =

a0
a1
...

an−1

 ∈ Fn then VDM(u1, . . . ,un)a =

a(u1)
a(u2)

...
a(un−1

 ∈ Fn.

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 4 Page 2

Now build a Vandermonde matrix on roots of unity. Let V (ω) denote VDM(ω0,ω1, . . . ,ωn−1).
Then

V (ω) = VDM(ω0,ω1, . . . ,ωn−1) =

1 1 · · · 1
1 ω1 · · · ωn−1

1 ω2 · · · ω2(n−1)

...
...

1 ω(n−1) . . . ω(n−1)2

V (ω−1) = VDM(1,ω−1, . . . ,ω−(n−1))

1 1 · · · 1
1 ω−1 · · · ω−(n−1)

1 ω−2 · · · ω−2(n−1)

...
...

1 ω−(n−1) . . . ω−(n−1)2

Theorem 4.6. Let ω be an n-PRU. Then V (ω) ·V (ω−1) = nI, where I is the n×n identity matrix.

Proof. Let

u = (V (ω) ·V (ω−1))i j = ∑
0≤k<n

V (ω)ikV (ω−1)k j

= ∑
0≤k<n

ω
ik

ω
−k j

= ∑
0≤k<n

(ω i− j)k.

If i = j, then u = ∑k 1 = n. If i 6= j then

u = ∑
0≤k<n

ω
(i− j)k =

ω(i− j)n−1
ω i− j−1

= 0,

by the previous lemma.

This makes it particularly easy to compute the inverse of the matrix V (ω) since

(V (ω))−1 = n−1V (ω−1).

Definition 4.7. Let ω ∈ F be an n-PRU. Then the mapping

DFT(ω) : Fn → Fn a0
...

an−1)

 7→

 b0
...

bn−1

 , b j = ∑
0≤k<n

akω
jk,

7→ V (ω)

 a0
...

an−1

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 4 Page 3

is called the Discrete Fourier Transform. For a polynomial a = a0 + a1x+ · · ·+ an−1xn−1 ∈ F[x]
we mean the DFT applied to (a0, . . . ,an−1).

4.2 The Fast Fourier Transform

Evaluating the DFT is simply evaluating the linear map given by the matrix V (ω). Another view
is that it evaluates the polynomial with coefficients a0, . . . ,an−1 at the powers of ω . Below we
discuss an important algorithm that computes the DFT quickly. The relation between the DFT and
the Vandermonde matrix shows that the inverse DFT can then also be computed quickly.

Let’s look at the problem of computing the DFT. To start with, consider the problem of evalu-
ating a polynomial f = ∑k akxk ∈ F[x] at the points at +1,−1.

• Separate the polynomial into its even and odd powered terms.
Then f (x) = feven(x2)+ x fodd(x2), where feven = ∑k a2kxk and fodd = ∑k a2k+1xk.

• Now f (1) = feven(1)+ fodd(1) and f (−1) = feven(1)− fodd(1).

• The process of evaluating f at +1,−1 has been reduced to the problem of evaluating two
polynomials of half the degree of f at 1.

• If we could continue this recursively with the square root of -1 etc., we can evaluate the
polynomial quickly for more distinct points.

This process was discovered by Cooley and Tukey in 1965. The method became known as the
Fast Fourier Transform. It is arguably the second most important algorithm in practice. (The most
important one is fast sorting.)

Theorem 4.8. Let n be a power of 2 and ω ∈ F be an n-PRU. Then DFT(ω) can be computed
using O(n logn) field operations in F.

Proof. We wish to compute

f (ωk) = ∑
0≤ j<n

a jω
k j

= a0 +a2(ω
2k)1 +a4(ω

2k)2 +a6(ω
2k)3 + · · ·

· · ·+ω
k
(

a1 +a3(ω
2k)1 +a5(ω

2k)2 + . . .
)

= feven(ω
2k)+ω

k fodd(ω
2k).

Again, we split the polynomial f = ∑a jx j into polynomials feven, fodd whose coeficients are the
odd numbered and even numbered coeficients of a, respectively:

feven = ∑
0≤ j<n/2

a2 jx j and fodd = ∑
0≤ j<n/2

a2 j+1x j.

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 4 Page 4

so f (x) = feven(x2)+ x fodd(x2). We have thus reduced the problem of computing DFT(ω)(f) to
computing the powers ω2, · · · ,ωn, then DFT(ω2)(feven) and DFT(ω2)(fodd), plus n field multi-
plications and n field additions. If T (n) is the cost for size n, we have T (n) = 2T (n/2)+3n. We
deduce that T (n) = O(n logn).

4.3 Fast polynomial multiplication with the FFT

Theorem 4.9. Let F be a field with characteristic different from two. Let n = 2k for some k ∈ N,
and ω ∈ F an n-PRU. Then multiplication of polynomials in F[x] of degree n/2 can be performed
using O(n logn) field operations.

Proof. Let a,b ∈ F[x] have degree < n/2. We assume that

a = a0 +a1x+a2x2 + · · ·+an/2−1xn/2−1

b = b0 +b1x+b2x2 + · · ·+bn/2−1xn/2−1

The product c = ab has degree less than n, and hence is uniquely determined by its values at n
evaluations. Let

a =

a0
a1
...

an/2−1
0
...
0

∈ Fn b =

b0
b1
...

bn/2−1
0
...
0

Then

DFT(ω)(a) =V (ω)a =

a(ω0)
a(ω1)

...
a(ω2n−1)

 DFT(ω)(b) =V (ω)b =

b(ω0)
b(ω1)

...
b(ω2n−1)

We can compute c(ω i) = a(ω i)b(ω i), for 0≤ i < n with n multiplications in F.

Let w =

c(ω0)
c(ω1)

...
c(ω2n−1).

 . Then w = DFT(ω)(c) = DFT(ω)(a) ·DFT(ω)(b),

where the multiplication (·) is the component-wise product. We can then compute

c = DFT(ω)−1(w) = DFT(ω)−1(DFT(ω)(c)) = (1/n)V (ω−1)w.

This looks a lot like the non-scalar algorithm we described earlier. To conclude, the steps to
compute the multiplication are now:

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 4 Page 5

(1) compute u = DFT(ω)(a) =V (ω)a,

(2) compute v = DFT(ω)(b) =V (ω)b,

(3) compute w = u · v,

(4) compute c = DFT(ω−1)(w) = (1/n)V (ω−1)w.

Steps 1, 2 and 4 take O(n logn) field operations, and Step 3 takes O(n) field operations. Thus
computing the product takes O(n logn) time.

To multiply two arbitrary polynomials of degree less than m, we only need a 2k-PRU, where
2k > 2m.

Definition 4.10. We say that a field F supports the FFT if F has a 2`-PRU for any ` ∈ N.

Of course we can perform FFT-based multiplication of polynomials over a field so long as the
field has a sufficient large 2`th primitive root of unity.

Theorem 4.11. If F supports the FFT, then polynomials in F[x] of degree at most n can be multi-
plied with O(n logn) field operations.

4.4 One prime FFT integer multiplication

Multiplying multi-precision integers is closely related to multiplying polynomials. In fact, we
use polynomial multiplication to do integer multiplication. We assume that the numbers involved
actually do have a reasonble upper bound. We’ll start with a simple version which we’ll call “one-
prime” FFT integer multiplication. This will allow us to multiply numbers up to with less than
49128 bits. Slightly fancier versions allow us to go far beyond this.

Assume that our numbers are written in base 224. That is

a = (−1)sa
(

a0 +a1 ·224 +a2 ·224·2 + · · ·+a`−1 ·224·(`−1)
)

b = (−1)sb
(

b0 +b1 ·224 +b2 ·224·2 + · · ·+b`−1 ·224·(`−1)
)
,

where sa,sb ∈ {0,1} are the sign bits. Let

A = a0 +a1x+a2 · x2 + · · ·+a`−1 · x`−1

B = b0 +b1x+b2 · x2 + · · ·+b`−1 · x`−1

Then ab = (−1)saA(224) ·(−1)sbB(224) = (−1)sa+sb(AB)(224). We start by computing the product
A ·B∈Z[x] and then evaluate to get (A ·B)(224)=±ab. How big are the coefficients of A ·B∈Z[x]?

A ·B = ∑
0≤k≤2`−2

xk
∑

i+ j=k
0≤i, j<`

aib j

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 4 Page 6

We know that 0 ≤ ai < 224 and 0 ≤ bi < 224. Thus 0 ≤ aib j < 248 and the largest coefficient of
A ·B is less than ` ·248. Let’s assume that p is a prime greater than 257. Then any integer less than
257 is uniquely represented modulo p (that is, if we know c mod p and we know 0 ≤ c < p then
we know c). So long as ` ·248 < 257, we can recover A ·B ∈ Z[x] from A ·B mod p ∈ Zp[x]. This is
guaranteed if ` < 257−48 = 29 = 2048. Thus we can handle integers with 2048 digits base 224, or
about 49128 binary digits.

We then choose a special p which allows us to do the FFT quickly. Choose the smallest k such
that p = k · 257 + 1 is a prime. We find k = 29 works, and so p = 4179340454199820289, and
ω = 21 is a 257-PRU. Now we can compute C = AB with O(` log`) operations modulo p (which
are basic machine operations since p < 262). After we have computed the product A ·B, evaluating
C(224) is easy.

4.5 Other results

Again the close relation between integers and polynomials leads us to ask whether these results
can be extended to integer multiplication. In fact, the following result introduced the FFT into
computer algebra.

Theorem 4.12. (Schönhage and Strassen 1971) Integer multiplication can be performed using
O(n logn log logn) bit operations.

The method uses the FFT. The extra factor log logn is caused by the fact that the PRUs are
not available in the ring of integers, but “virtual PRUs” have to be “constructed” within the al-
gorithm. Schönhage and Strassen also applied their method to polynomial multiplication in time
O(n logn log logn), without our assumption that “F supports the FFT”. Schönhage (1974) solved
the additional complication that occurs in characteristic two.

Cantor and Kaltofen (1991) showed:

Theorem 4.13. Over any ring R, polynomials of degree at most n can be multiplied using O(n logn log logn)
operations.

Again, their technique involves adding “virtual” roots of unity to R, if they are not already
present.

