2 Basic algebraic operations

2.1 Division with remainder

Let R be a (commutative) ring. Given $a, b \in \mathrm{R}$, with b nonzero, express $a=q b+r$, where $|r|<|b|$. Note that we assume here that our ring R has some reasonable notion of size (and a few other properties we will discuss below).
For example, over \mathbb{Z} : Given $a=32115$ and $b=123$:

$$
\begin{aligned}
a & =q b+r \text { with }|r|<|b| \\
32115 & =(200 * b)+7515 \\
& =(200 * b+60 * b)+135 \\
& =(200 * b+60 * b+1 * b)+12 \\
& =261 * b+12
\end{aligned}
$$

Over $\mathbb{Z}[x]$ things are similar (and actually easier). Consider

$$
\begin{aligned}
& a=3 x^{5}+2 x^{4}+7 x^{3}-2 x^{2}+3 x-1 \\
& b=x^{2}+3 x-1
\end{aligned}
$$

Then $a=q b+r$ with $\operatorname{deg} r<\operatorname{deg} b$ as follows:

$$
\begin{aligned}
3 x^{5}+2 x^{4}+7 x^{3}-2 x^{2}+3 x-1 & =\left(3 x^{3}\right) b-7 x^{4}+10 x^{3}-2 x^{2}+3 x-1 \\
& =\left(3 x^{3} b-7 x^{2} b\right)+31 x^{3}-9 x^{2}+3 x-1 \\
& =\left(3 x^{3} b-7 x^{2} b+31 x b\right)-102 x^{2}+34 x-1 \\
& =\left(3 x^{3} b-7 x^{2} b+31 x b-102 b\right)+340 x-103
\end{aligned}
$$

We will need the leading coefficient of b (which we denote $\mathrm{lc}(b)$) to be a unit in R . That is, it has an inverse. Why?
Look at some examples in Maple.
\mathbb{Z} : Operations are,,$+- *$, iquo, irem. What about $/$?
$\mathrm{R}[x]$: Operations are,,$+- *$, quo, rem. Again, look at / (which is not a ring operation, but is available). In Maple, the ring R typically consists of (the field of) rational functions in some other variables, with coefficients in \mathbb{Q} (though other coefficient fields are possible).

2.2 Naive cost model

In lecture we considered the standard "school" algorithms for integer and polynomial arithmetic.

Naive upper bound on cost (up to a multiplicative constant)		
operation	nonzero $a, b \in \mathrm{R}[x]$ $n=\operatorname{deg} a, m=\operatorname{deg} b$ operations in R	$a, b \in \mathbb{Z}$ count word operations
$a+b$	$n+m+1$	$\lg a+\lg b$
$a-b$	$n+m+1$	$\lg a+\lg b$
$a \times b$	$(n+1)(m+1)$	$(\lg a)(\lg b)$
$a=q b+r$	$(m+1)(n-m+1)$	$(\lg q)(\lg b)$

Notes:

- Here we define

$$
\lg a= \begin{cases}1 & \text { if } a=0 \\ 1+\left\lfloor\log _{2}|a|\right\rfloor & \text { if } a \neq 0\end{cases}
$$

so that $\lg a$ corresponds to the number of bits required to represent an integer a. Note that $\lg a$ is proportional to the number of words.

- Over $\mathrm{R}[x]$, for $a=q b+r$ we assume that $\mathrm{lc}(b)$ is a unit.
- For $s a+t b=\operatorname{gcd}(a, b)$ we assume R is a field.

2.3 Common operation: reduction modulo many primes

The following operation is common in many algorithms. Given $a \in \mathbb{Z}_{>1}$ and $a<p_{1} p_{2} p_{3} \cdots p_{k}$, where each p_{i} is a prime. What is the cost of computing a rem p_{1}, a rem p_{2}, \cdots, a rem p_{k} ?

$$
a=581869302 \quad \begin{aligned}
P & =30 \times 17017 \times 12673 \\
& =2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& =6469693230 \\
a & \mapsto(0,0,2,0,3,1,0,2,7,20)
\end{aligned}
$$

- Note that we want a cost estimate that's independent of how P is factored.
- Since there are k remainder operations and all numbers are bounded by P, we know that the cost is bounded by $O\left(k(\lg P)^{2}\right)$ word operations.
- We can do much better by looking more closely at the analysis.

Cost is actually bounded by

$$
\sum_{i=1}^{k} c\left(\lg a / p_{i}\right)\left(\lg p_{i}\right) \leq c \sum_{i=1}^{k}\left(\lg a / p_{i}\right)\left(\lg p_{i}\right)
$$

We make the simplification $\lg \left(a / p_{i}\right) \leq \lg a \leq \lg P$ and get

$$
\begin{aligned}
\sum_{i=1}^{k} c\left(\lg a / p_{i}\right)\left(\lg p_{i}\right) & \leq c \lg P \sum_{i=1}^{k} \lg p_{i} \\
& \leq c\left(1+\log _{2} P\right) \sum_{i=1}^{k}\left(1+\log _{2} p_{i}\right) \\
& \leq 4 c\left(\log _{2} P\right) \sum_{i=1}^{k} \log _{2} p_{i} \\
& \leq 4 c\left(\log _{2} P\right)\left(\log _{2} p_{1} p_{2} \cdots p_{k}\right) \\
& =4 c\left(\log _{2} P\right)\left(\log _{2} P\right)
\end{aligned}
$$

Thus the total cost is $O\left((\log P)^{2}\right)$, independent of k.

2.4 Greatest Common Divisors

Let $a, b, c \in \mathrm{R}$. Recall the definition of the Greatest Common Divisor (GCD): $c \in \mathrm{R}$ is the GCD of a and b if
(i) $c \mid a$ and $c \mid b$;
(ii) if $d \mid a$ and $d \mid b$, then $d \mid c$ for all $d \in \mathrm{R}$.

The definition of the least common multiple (LCM) is similar.

- Note that GCDs need not always exist (it depends on the ring)
- Even if R is a ring in which $\operatorname{gcd}(a, b)$ exists for all $a, b \in \mathrm{R}$, there does not necessarily exist an algorithm for computing the GCD in terms of ring operations in R.
- We can always find GCDs in a Euclidean Domain, essentially a ring in which the usual Euclidean algorithm works.
- Many common kinds of rings are Euclidean domains, including \mathbb{Z} and $F[x]$ for a field F.

Recall a few more definitions. R will always be some (commutative) ring.

- A zero divisor in R is an element $a \in \mathrm{R}$ such that there exists a $b \in \mathrm{R} \backslash\{0\}$ with $a b=0$. For example, in \mathbb{Z}_{6}, we have $2 \times 3 \equiv 0 \bmod 6$, so 2 and 3 are zero divisors.
- A unit in R is an element $a \in \mathrm{R}$ such that there exists a $b \in \mathrm{R}$ with $a b=1$. That is, a has an inverse in R. Units in \mathbb{Z} are ± 1. Units in $F[x]$ are $F \backslash\{0\}$.
- An integral domain is a ring with no nonzero zero divisors.
- A field is an integral domain in which every nonzero element is a unit.
- Elements $a, b \in \mathrm{R}$ are associates if there exists a unit $u \in \mathrm{R}$ such that $a=u b$. For example, 3 and -3 are associates in \mathbb{Z}.

We can now define an Euclidean domain R as an integral domain with a Euclidean function $\delta: \mathrm{R} \rightarrow \mathbb{N} \cup\{-\infty\}$ such that for all $a, b \in \mathrm{R}$ with $b \neq 0$, there exist q, r such that

$$
a=q b+r \text { and } \delta(r)<\boldsymbol{\delta}(b) .
$$

Note: $q=a$ quo b and $r=a$ rem b.
For example, if $\mathrm{R}=\mathbb{Z}$ the $\boldsymbol{\delta}(a)=|a|$ and $\boldsymbol{\delta}(0)=0$. The operators quo and rem are not unique (think about it). GCD's are only be unique up to associates.
For $\mathrm{R}=\mathrm{F}[x]$ with F a field (like $\mathrm{F}=\mathbb{Q}$ or $\mathrm{F}=\mathbb{Z} /(p)$), we have $\boldsymbol{\delta}(a)=\operatorname{deg} a$ and $\boldsymbol{\delta}(0)=-\infty$. Here quo and rem are unique. GCDs are only unique up to associates.

2.5 The Extended Euclidean Algorithm

We can now take a slightly different look at the extended Euclidean algorithm you probably know well.

Input: $a, b \in \mathrm{R}$ with $b \neq 0$ and R a Euclidean domain.
Output: $s, t, g \in \mathrm{R}$ such that $s a+t b=g$, where $g \in \mathrm{R}$ is a GCD of a and b.
Not only do we compute a GCD, but express it as a linear combination of a and b.
For example, compute $\operatorname{gcd}(91,63)$:

$$
\begin{array}{ll}
\underbrace{\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)}_{Q_{1}}\binom{91}{63}=\binom{63}{28} & 28=91 \text { rem } 63, \quad 1=91 \text { quo } 63 \\
\underbrace{\left(\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right)}_{Q_{2}}\binom{63}{28}=\binom{28}{7} & 7=63 \text { rem } 28, \quad 2=63 \text { quo } 28 \\
\underbrace{\left(\begin{array}{cc}
0 & 1 \\
1 & -4
\end{array}\right)}_{Q_{3}}\binom{28}{7}=\binom{7}{0} & 0=28 \text { rem } 7, \quad 4=28 \text { quo } 7
\end{array}
$$

We note that

$$
Q_{3} Q_{2} Q_{1}=\left(\begin{array}{cc}
-2 & 3 \\
9 & -13
\end{array}\right) \text { and }\left(\begin{array}{cc}
-2 & 3 \\
9 & -13
\end{array}\right)\binom{91}{63}=\binom{7}{0} \Longrightarrow-2 \times 91+3 \times 63=7
$$

Now we can formalize this algorithm over a Euclidean domain R.
Input: $a, b \in \mathrm{R}, b \neq 0$, and $\boldsymbol{\delta}(a) \geq \boldsymbol{\delta}(b)$.

- Let $r_{0}=a$ and $r_{1}=b ; \quad$ Let $R_{0}=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$;
- For $i=1,2, \ldots$
- Compute q_{i} and r_{i+1} such that

$$
r_{i-1}=q_{i} r_{i}+r_{i+1}
$$

where $\delta\left(r_{i+1}\right)<\boldsymbol{\delta}\left(r_{i}\right)$.

- We have

$$
\underbrace{\left(\begin{array}{cc}
0 & 1 \\
1 & -q_{i}
\end{array}\right)}_{Q_{i}}\binom{r_{i-1}}{r_{i}}=\binom{r_{i}}{r_{i+1}} .
$$

Let $R_{i}:=Q_{i} R_{i-1}$.

- Stop at smallest $i=\ell$ such that $r_{\ell+1}=0$.

Why do we know it will stop? Because $\boldsymbol{\delta}\left(r_{1}\right)>\boldsymbol{\delta}\left(r_{2}\right)>\boldsymbol{\delta}\left(r_{3}\right)>\ldots>\boldsymbol{\delta}\left(r_{\ell}\right)>0$ and $r_{\ell+1}=0$. At this point we know

$$
R_{\ell}\binom{r_{0}}{r_{1}}=Q_{\ell} Q_{\ell-1} \cdots Q_{2} Q_{1}\binom{r_{0}}{r_{1}}=\left(\begin{array}{cc}
s_{\ell} & t_{\ell} \\
s_{\ell+1} & t_{\ell+1}
\end{array}\right)\binom{r_{0}}{r_{1}}=\binom{r_{\ell}}{0},
$$

so $s_{\ell} r_{0}+t_{\ell} r_{1}=r_{\ell}$.
Claim: r_{ℓ} is a GCD of r_{0} and r_{1}.
Proof: Need to show
(i) $r_{\ell} \mid r_{0}$ and $r_{\ell} \mid r_{1}$;
(ii) if $d \mid r_{0}$ and $d \mid r_{1}$ then $d \mid r_{\ell}$ for all $d \in \mathrm{R}$.

For part (i), observe that each Q_{i} is invertible over R :

$$
\underbrace{\left(\begin{array}{cc}
q_{i} & 1 \\
1 & 0
\end{array}\right)}_{Q_{i}^{-1}} \underbrace{\left(\begin{array}{cc}
0 & 1 \\
1 & -q_{i}
\end{array}\right)}_{Q_{i}}
$$

This implies that each R_{i} is invertible over R :

$$
R_{i}^{-1}=Q_{1}^{-1} Q_{2}^{-1} \cdots Q_{i}^{-1}
$$

and in particular

$$
\binom{r_{0}}{r_{1}}=\underbrace{\left(\begin{array}{ll}
* & * \\
* & *
\end{array}\right)}_{R_{\ell}^{-1}}\binom{r_{\ell}}{0} .
$$

This shows (i). Why?
Part (ii) follows since $r_{\ell}=s_{\ell} r_{0}+t_{\ell} r_{1}$. Why?

Cost analysis.

Consider $\mathrm{R}=\mathrm{F}[x]$ ($\mathrm{R}=\mathbb{Z}$ is similar, but requires more fiddling). Assume $\operatorname{deg} r_{0} \geq \operatorname{deg} r_{1}$.

Cost of computing $\left(q_{i}, r_{i+1}\right)_{1 \leq i \leq \ell}$.
Q: How many divison steps ℓ ?
A: $\ell \leq \operatorname{deg} r_{1}$ since $-\infty=\operatorname{deg} r_{\ell+1}<\overbrace{\operatorname{deg} r_{\ell}}^{\geq 0}<\cdots<\operatorname{deg} r_{2}<\operatorname{deg} r_{1}$.
Division with remainder of r_{i-1} by $r_{i} \operatorname{costs} c\left(\operatorname{deg} r_{i}+1\right)\left(\operatorname{deg} q_{i}+1\right)$ operations from F for some constant c.

Key observation:

$$
\sum_{i=1}^{\ell} \operatorname{deg} q_{i}=\sum_{i=1}^{\ell}\left(\operatorname{deg} r_{i-1}-\operatorname{deg} r_{i}\right)=r_{0}-r_{\ell} \leq r_{0}
$$

Total cost, in terms of operations in F, is thus at most

$$
\begin{aligned}
& \sum_{i=1}^{\ell} c\left(\operatorname{deg} r_{i}+1\right)\left(\operatorname{deg} q_{i}+1\right) \\
& \leq c\left(\operatorname{deg} r_{1}+1\right) \sum_{i=1}^{\ell}\left(\operatorname{deg} q_{i}+1\right) \quad\left(\text { using the fact that } \operatorname{deg} r_{i} \leq \operatorname{deg} r_{1}\right) \\
& \leq c\left(\operatorname{deg} r_{1}+1\right)\left(\operatorname{deg} r_{0}+\ell\right) \\
& \leq c\left(\operatorname{deg} r_{1}+1\right)\left(\operatorname{deg} r_{0}+\operatorname{deg} r_{1}\right) \\
& =O\left(\left(\operatorname{deg} r_{0}\right)\left(\operatorname{deg} r_{1}\right)\right) \text { operations in } F .
\end{aligned}
$$

We can now extend our naive cost table to include gcd.

Naive upper bound on cost (up to a multiplicative constant)		
operation	nonzero $a, b \in \mathrm{R}[x]$ $n=\operatorname{deg} a, m=\operatorname{deg} b$ operations in R	$a, b \in \mathbb{Z}$ count word operations
$a+b$	$n+m+1$	$\lg a+\lg b$
$a-b$	$n+m+1$	$\lg a+\lg b$
$a \times b$	$(n+1)(m+1)$	$(\lg a)(\lg b)$
$a=q b+r$	$(m+1)(n-m+1)$	$(\lg q)(\lg b)$
$s a+t b=\operatorname{gcd}(a, b)$	$(n+1)(m+1)$	$(\lg a)(\lg b)$

Notes:

- Here we define

$$
\lg a= \begin{cases}1 & \text { if } a=0 \\ 1+\left\lfloor\log _{2}|a|\right\rfloor & \text { if } a \neq 0\end{cases}
$$

so that $\lg a$ corresponds to the number of bits required to represent an integer a. Note that $\lg a$ is proportional to the number of words.

- Over $\mathrm{R}[x]$, for $a=q b+r$ we assume that $\mathrm{lc}(b)$ is a unit.

