
CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 2 Page 1

2 Basic algebraic operations

2.1 Division with remainder

Let R be a (commutative) ring. Given a,b ∈ R, with b nonzero, express a = qb+ r, where |r|< |b|.
Note that we assume here that our ring R has some reasonable notion of size (and a few other
properties we will discuss below).
For example, over Z: Given a = 32115 and b = 123:

a = qb+ r with |r|< |b|
32115 = (200∗b)+7515

= (200∗b+60∗b)+135
= (200∗b+60∗b+1∗b)+12
= 261∗b+12

Over Z[x] things are similar (and actually easier). Consider

a = 3x5 +2x4 +7x3−2x2 +3x−1

b = x2 +3x−1.

Then a = qb+ r with degr < degb as follows:

3x5 +2x4 +7x3−2x2 +3x−1 = (3x3)b−7x4 +10x3−2x2 +3x−1

= (3x3b−7x2b)+31x3−9x2 +3x−1

= (3x3b−7x2b+31xb)−102x2 +34x−1

= (3x3b−7x2b+31xb−102b)+340x−103

We will need the leading coefficient of b (which we denote lc(b)) to be a unit in R. That is, it has
an inverse. Why?
Look at some examples in Maple.

Z: Operations are +, −, ∗, iquo, irem. What about /?
R[x]: Operations are +, −, ∗, quo, rem. Again, look at / (which is not a ring operation, but is

available). In Maple, the ring R typically consists of (the field of) rational functions in some
other variables, with coefficients in Q (though other coefficient fields are possible).

2.2 Naive cost model

In lecture we considered the standard “school” algorithms for integer and polynomial arithmetic.

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 2 Page 2

Naive upper bound on cost (up to a multiplicative constant)
operation nonzero a,b ∈ R[x] a,b ∈ Z

n = dega, m = degb count word operations
operations in R

a+b n+m+1 lga+ lgb
a−b n+m+1 lga+ lgb
a×b (n+1)(m+1) (lga)(lgb)
a = qb+ r (m+1)(n−m+1) (lgq)(lgb)

Notes:

• Here we define

lga =

{
1 if a = 0,
1+ blog2 |a|c if a 6= 0

so that lga corresponds to the number of bits required to represent an integer a. Note that
lga is proportional to the number of words.
• Over R[x], for a = qb+ r we assume that lc(b) is a unit.
• For sa+ tb = gcd(a,b) we assume R is a field.

2.3 Common operation: reduction modulo many primes

The following operation is common in many algorithms. Given a ∈ Z>1 and a < p1 p2 p3 · · · pk,
where each pi is a prime. What is the cost of computing a rem p1, a rem p2, · · · , a rem pk?

a = 581869302 P = 30×17017×12673
= 2×3×5×7×11×13×17×19×23×29
= 6469693230

a 7→ (0,0,2,0,3,1,0,2,7,20)

• Note that we want a cost estimate that’s independent of how P is factored.
• Since there are k remainder operations and all numbers are bounded by P, we know that the

cost is bounded by O(k(lgP)2) word operations.
• We can do much better by looking more closely at the analysis.

Cost is actually bounded by

k

∑
i=1

c(lga/pi)(lg pi)≤ c
k

∑
i=1

(lga/pi)(lg pi)

We make the simplification lg(a/pi)≤ lga≤ lgP and get

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 2 Page 3

k

∑
i=1

c(lga/pi)(lg pi)≤ c lgP
k

∑
i=1

lg pi

≤ c(1+ log2 P)
k

∑
i=1

(1+ log2 pi)

≤ 4c(log2 P)
k

∑
i=1

log2 pi

≤ 4c(log2 P)(log2 p1 p2 · · · pk)

= 4c(log2 P)(log2 P).

Thus the total cost is O((logP)2), independent of k.

2.4 Greatest Common Divisors

Let a,b,c ∈ R. Recall the definition of the Greatest Common Divisor (GCD): c ∈ R is the GCD of
a and b if

(i) c | a and c | b;
(ii) if d | a and d | b, then d | c for all d ∈ R.

The definition of the least common multiple (LCM) is similar.

• Note that GCDs need not always exist (it depends on the ring)
• Even if R is a ring in which gcd(a,b) exists for all a,b ∈ R, there does not necessarily exist

an algorithm for computing the GCD in terms of ring operations in R.
• We can always find GCDs in a Euclidean Domain, essentially a ring in which the usual

Euclidean algorithm works.
• Many common kinds of rings are Euclidean domains, including Z and F[x] for a field F.

Recall a few more definitions. R will always be some (commutative) ring.

• A zero divisor in R is an element a ∈ R such that there exists a b ∈ R\{0} with ab = 0. For
example, in Z6, we have 2×3≡ 0 mod 6, so 2 and 3 are zero divisors.
• A unit in R is an element a ∈ R such that there exists a b ∈ R with ab = 1. That is, a has an

inverse in R. Units in Z are ±1. Units in F[x] are F\{0}.
• An integral domain is a ring with no nonzero zero divisors.
• A field is an integral domain in which every nonzero element is a unit.
• Elements a,b ∈ R are associates if there exists a unit u ∈ R such that a = ub. For example, 3

and −3 are associates in Z.

We can now define an Euclidean domain R as an integral domain with a Euclidean function
δ : R→ N∪{−∞} such that for all a,b ∈ R with b 6= 0, there exist q,r such that

a = qb+ r and δ (r)< δ (b).

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 2 Page 4

Note: q = a quo b and r = a rem b.
For example, if R = Z the δ (a) = |a| and δ (0) = 0. The operators quo and rem are not unique
(think about it). GCD’s are only be unique up to associates.
For R= F[x] with F a field (like F=Q or F= Z/(p)), we have δ (a) = dega and δ (0) =−∞. Here
quo and rem are unique. GCDs are only unique up to associates.

2.5 The Extended Euclidean Algorithm

We can now take a slightly different look at the extended Euclidean algorithm you probably know
well.

Input: a,b ∈ R with b 6= 0 and R a Euclidean domain.
Output: s, t,g ∈ R such that sa+ tb = g, where g ∈ R is a GCD of a and b.

Not only do we compute a GCD, but express it as a linear combination of a and b.
For example, compute gcd(91,63):

(
0 1
1 −1

)
︸ ︷︷ ︸

Q1

(
91
63

)
=

(
63
28

)
28 = 91 rem 63, 1 = 91 quo 63

(
0 1
1 −2

)
︸ ︷︷ ︸

Q2

(
63
28

)
=

(
28
7

)
7 = 63 rem 28, 2 = 63 quo 28

(
0 1
1 −4

)
︸ ︷︷ ︸

Q3

(
28
7

)
=

(
7
0

)
0 = 28 rem 7, 4 = 28 quo 7

We note that

Q3Q2Q1 =

(
−2 3
9 −13

)
and

(
−2 3
9 −13

)(
91
63

)
=

(
7
0

)
=⇒ −2×91+3×63 = 7

Now we can formalize this algorithm over a Euclidean domain R.

Input: a,b ∈ R, b 6= 0, and δ (a)≥ δ (b).

• Let r0 = a and r1 = b; Let R0 =

(
1 0
0 1

)
;

• For i = 1,2, . . .

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 2 Page 5

◦ Compute qi and ri+1 such that

ri−1 = qiri + ri+1

where δ (ri+1)< δ (ri).
◦ We have (

0 1
1 −qi

)
︸ ︷︷ ︸

Qi

(
ri−1
ri

)
=

(
ri

ri+1

)
.

Let Ri := QiRi−1.
◦ Stop at smallest i = ` such that r`+1 = 0.

Why do we know it will stop? Because δ (r1)> δ (r2)> δ (r3)> ... > δ (r`)> 0 and r`+1 = 0. At
this point we know

R`

(
r0
r1

)
= Q`Q`−1 · · ·Q2Q1

(
r0
r1

)
=

(
s` t`

s`+1 t`+1

)(
r0
r1

)
=

(
r`
0

)
,

so s`r0 + t`r1 = r`.

Claim: r` is a GCD of r0 and r1.
Proof: Need to show

(i) r` | r0 and r` | r1;
(ii) if d | r0 and d | r1 then d | r` for all d ∈ R.

For part (i), observe that each Qi is invertible over R:(
qi 1
1 0

)
︸ ︷︷ ︸

Q−1
i

(
0 1
1 −qi

)
︸ ︷︷ ︸

Qi

This implies that each Ri is invertible over R:

R−1
i = Q−1

1 Q−1
2 · · ·Q

−1
i

and in particular (
r0
r1

)
=

(
∗ ∗
∗ ∗

)
︸ ︷︷ ︸

R−1
`

(
r`
0

)
.

This shows (i). Why?

Part (ii) follows since r` = s`r0 + t`r1. Why?

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 2 Page 6

Cost analysis.

Consider R= F[x] (R= Z is similar, but requires more fiddling). Assume degr0 ≥ degr1.

Cost of computing (qi,ri+1)1≤i≤`.

Q: How many divison steps `?

A: `≤ degr1 since −∞ = degr`+1 <

≥0︷ ︸︸ ︷
degr` < · · ·< degr2 < degr1.

Division with remainder of ri−1 by ri costs c(degri + 1)(degqi + 1) operations from F for some
constant c.

Key observation:
`

∑
i=1

degqi =
`

∑
i=1

(degri−1−degri) = r0− r` ≤ r0.

Total cost, in terms of operations in F, is thus at most

`

∑
i=1

c(degri +1)(degqi +1)

≤ c(degr1 +1)
`

∑
i=1

(degqi +1) (using the fact that degri ≤ degr1)

≤ c(degr1 +1)(degr0 + `)

≤ c(degr1 +1)(degr0 +degr1)

= O((degr0)(degr1)) operations in F.

We can now extend our naive cost table to include gcd.

Naive upper bound on cost (up to a multiplicative constant)
operation nonzero a,b ∈ R[x] a,b ∈ Z

n = dega, m = degb count word operations
operations in R

a+b n+m+1 lga+ lgb
a−b n+m+1 lga+ lgb
a×b (n+1)(m+1) (lga)(lgb)
a = qb+ r (m+1)(n−m+1) (lgq)(lgb)
sa+ tb = gcd(a,b) (n+1)(m+1) (lga)(lgb)

Notes:

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 2 Page 7

• Here we define

lga =

{
1 if a = 0,
1+ blog2 |a|c if a 6= 0

so that lga corresponds to the number of bits required to represent an integer a. Note that
lga is proportional to the number of words.
• Over R[x], for a = qb+ r we assume that lc(b) is a unit.

