CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 2 Page 1

2 Basic algebraic operations

2.1 Division with remainder

Let R be a (commutative) ring. Given a,b € R, with b nonzero, express a = gb+r, where |r| < |b|.
Note that we assume here that our ring R has some reasonable notion of size (and a few other
properties we will discuss below).

For example, over Z: Given a = 32115 and b = 123:

a = qb—+r with |r| < |b]
32115 = (200 %b) +7515
= (200 b+ 60%b) + 135
= (200%xb+60xb+1xb)+ 12
=261%xb+12

Over Z[x] things are similar (and actually easier). Consider
a=73x+2* +7x° — 22+ 3x— 1
b=x>43x—1.
Then a = gb+ r with degr < degb as follows:
3xb —Tx* +10x° — 262 +3x — 1
33h —7x%h) +31x° —9x? +3x — 1

3x3b — Tx?b +31xb) — 102x% + 34x — 1
3x3h —7x*b 4 31xb — 102b) + 340x — 103

30+ 20+ 7 — 22+ 3x— 1 =

o~ o~ o~ o~

We will need the leading coefficient of b (which we denote Ic(b)) to be a unit in R. That is, it has
an inverse. Why?

Look at some examples in Maple.

Z: Operations are +, —, %, iquo, irem. What about /?
R[x]: Operations are +, —, *, quo, rem. Again, look at / (which is not a ring operation, but is
available). In Maple, the ring R typically consists of (the field of) rational functions in some
other variables, with coefficients in Q (though other coefficient fields are possible).

2.2 Naive cost model

In lecture we considered the standard “school” algorithms for integer and polynomial arithmetic.

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 2 Page 2

Naive upper bound on cost (up to a multiplicative constant)
operation | nonzeroa,b € Rjx] |a,beZ

n =dega, m = degb | count word operations
operations in R

a+b n+m+1 lga+1gb
a—>b n+m+1 lga+1gb
axb (n+1)(m+1) (Iga)(lgb)

a=qgb+r| (m+1)(n—m+1) | (lgq)(lgb)

Notes:

e Here we define

1 ifa=0
lga = .
1+ |log,|al] ifa#0
so that lga corresponds to the number of bits required to represent an integer a. Note that
lga is proportional to the number of words.

e Over R[x|, for a = gb+ r we assume that lc(b) is a unit.
e For sa+tb = gcd(a,b) we assume R is a field.

2.3 Common operation: reduction modulo many primes

The following operation is common in many algorithms. Given a € Z~1 and a < p1p2p3 -+ P,
where each p; is a prime. What is the cost of computing a rem p, arem py, ---, arem p;?

a=581869302 P =30x17017 x 12673
=2Xx3x5x7Tx11x13x17x19%x23x29
= 6469693230

— (0,0,2,0,3,1,0,2,7,20)
e Note that we want a cost estimate that’s independent of how P is factored.
e Since there are k remainder operations and all numbers are bounded by P, we know that the

cost is bounded by O(k(lgP)?) word operations.
e We can do much better by looking more closely at the analysis.

Cost is actually bounded by

||M»

k
lga/pl lgpl <c Z lga/pl 1gpz

We make the simplification 1g(a/p;) <lga < lgP and get

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 2 Page 3

M»

c(lga/pi)(lgpi) < clgPZIgpl

i=1

N
I
—_

<c(1 +log2P) (1+1log, pi)

™=

1

< 4c(log, P Z log, pi

< 4c(log,)(logzplpz'“l?k)
= 4c(log, P)(log, P).

Thus the total cost is O((log P)?), independent of k.

2.4 Greatest Common Divisors

Let a,b,c € R. Recall the definition of the Greatest Common Divisor (GCD): ¢ € R is the GCD of
a and b if

(i) c|aand c|b;

The definition of the least common multiple (LCM) is similar.

e Note that GCDs need not always exist (it depends on the ring)

e Even if R is a ring in which ged(a, b) exists for all a,b € R, there does not necessarily exist
an algorithm for computing the GCD in terms of ring operations in R.

e We can always find GCDs in a Euclidean Domain, essentially a ring in which the usual
Euclidean algorithm works.

e Many common kinds of rings are Euclidean domains, including Z and F|x] for a field F.

Recall a few more definitions. R will always be some (commutative) ring.

e A zero divisor in R is an element a € R such that there exists a b € R\ {0} with ab = 0. For
example, in Zg, we have 2 x 3 =0 mod 6, so 2 and 3 are zero divisors.

e A unitin R is an element a € R such that there exists a b € R with ab = 1. That is, a has an
inverse in R. Units in Z are £1. Units in F[x] are F\ {0}.

e An integral domain is a ring with no nonzero zero divisors.

e A field is an integral domain in which every nonzero element is a unit.

e Elements a,b € R are associates if there exists a unit u € R such that a = ub. For example, 3
and —3 are associates in Z.

We can now define an Euclidean domain R as an integral domain with a Euclidean function
0 : R — NU{—eo} such that for all a,b € R with b # 0, there exist g, r such that

a=gb+r and d(r) < 6(b).

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 2 Page 4

Note: g =aquo b and r = arem b.

For example, if R = Z the §(a) = |a| and 8(0) = 0. The operators quo and rem are not unique
(think about it). GCD’s are only be unique up to associates.

For R = F[x] with F a field (like F=Q or F =7Z/(p)), we have d(a) = dega and 6(0) = —oo. Here
quo and rem are unique. GCDs are only unique up to associates.

2.5 The Extended Euclidean Algorithm

We can now take a slightly different look at the extended Euclidean algorithm you probably know
well.

Input: a,b € R with b # 0 and R a Euclidean domain.
Output: s,¢, g € R such that sa+1tb = g, where g € Ris a GCD of a and b.

Not only do we compute a GCD, but express it as a linear combination of a and b.
For example, compute gcd(91,63):

0 1 91 63
—
O
0 1 63 28
(1 —2) (28) - (7) 7=63rem28, 2=063quo?28
~—
(0))
0 1 28 7
(1 _4>(7)—(0> 0=28rem7, 4=28quo’7
~—
03

‘We note that
-2 3 -2 3 91 7
030201 = (9 _13) and (9 _13> (63) = (0) — —2x914+3x63=7

Now we can formalize this algorithm over a Euclidean domain R.
Input: a,b € R, b # 0, and 6(a) > o(b).

e letrg=aandri=b; LetRy= ((1) (1)),
e Fori=1,2,...

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 2 Page 5

o Compute ¢g; and r;; such that

ri—1 =qiri+rit+1

0 1 i1\ _ ri
1 —gi ri riv1)
LetR; := O;R; ;.

o Stop at smallest i = ¢ such that ;| = 0.

where 6(rit1) < 8(ri).
o We have

Why do we know it will stop? Because 8(r) > 6(rz2) > 6(r3) > ... > 8(ry) > 0and ry1 =0. At
this point we know

ny _ ro\ [Se¢ Iy oy _ (e
v () =000 (D)= () ()= ()

SO Syro +1tyry = ry.

Claim: r, is a GCD of r(and r;.
Proof: Need to show

(i) r¢|roand rg|ry;
(ii) ifd|roand d | ry thend | ry for all d € R.

For part (i), observe that each Q; is invertible over R:
qi 1 0 1
1 0/)\1 —gq
—_———
0! 0
This implies that each R; is invertible over R:
Ri_l — Ql_le_l) "Qi_l

and in particular

This shows (i). Why?

Part (i) follows since ry = sprg +t,r;. Why?

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 2 Page 6

Cost analysis.

Consider R = F[x| (R = Z is similar, but requires more fiddling). Assume degry > degr.

Cost of computing (g, 7i+1)1<i<¢-

Q: How many divison steps £?
>0

. ~
A: 0 < degr; since —oo =degryy < degry < --- <degr, <degry.

Division with remainder of r;_; by r; costs c(degr; + 1)(degg; + 1) operations from F for some
constant c.

Key observation:

14
Zdegq,- = Z(degri_l —degr;) =ro—ry <rp.
~ e~

Total cost, in terms of operations in F, is thus at most

4

Zc(degr,-+ 1)(deggi+1)
i=1

5
c(degry +1) Z degq;+1) (using the fact that degr; < degry)
i=

< c(degr;+1)(degro+¥¢)
< c(degr; +1)(degro+degr;)
O((degrp)(degr;)) operations in F.

We can now extend our naive cost table to include gcd.

Naive upper bound on cost (up to a multiplicative constant)
operation nonzero a,b € R[x| |a,beZ
n =dega, m = degb | count word operations
operations in R
a+b n+m+1 lga+1gb
a—>b n+m+1 lga+1gb
axb (n+1)(m+1) (Iga)(1gb)
a=qgb+r (m+1)(n—m+1) | (1gq)(1gh)
sa+tb=ged(a,b) | (n+1)(m+1) (lga)(1gb)

Notes:

CS 487/687 / CM 730: Intro. to Symbolic Comp. Winter 2020: A. Storjohann Script 2 Page 7

e Here we define
1 ifa=0,

1+ [log, |a|| ifa#0
so that lga corresponds to the number of bits required to represent an integer a. Note that

lga is proportional to the number of words.
e Over Rx], for a = gb + r we assume that lc(b) is a unit.

lga =

