Lecture 1: Basic Algebraic Primitives

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com
January 11, 2021

Overview

- Algebraic Primitives
- Basic Algebraic Operations
- Greatest Common Divisor
- Conclusion
- Acknowledgements

Groups

- Group: set G with law of composition $\circ: G \times G \rightarrow G$ such that
(1) associative: $(a \circ b) \circ c=a \circ(b \circ c)$
(2) identity element: $1 \in G$ such that $1 \circ a=a \circ 1=a$, for all $a \in G$
(3) inverse: every element $a \in G$ has an inverse $a^{-1} \in G$ such that

$$
a \circ a^{-1}=a^{-1} \circ a=1
$$

Groups

- Group: set G with law of composition $\circ: G \times G \rightarrow G$ such that
(1) associative: $(a \circ b) \circ c=a \circ(b \circ c)$
(2) identity element: $1 \in G$ such that $1 \circ a=a \circ 1=a$, for all $a \in G$
(3) inverse: every element $a \in G$ has an inverse $a^{-1} \in G$ such that

$$
a \circ a^{-1}=a^{-1} \circ a=1
$$

- Examples:
- Invertible matrices (quintessential example) with matrix multiplication
- Permutations of a set with function composition

Groups

- Group: set G with law of composition $\circ: G \times G \rightarrow G$ such that
(1) associative: $(a \circ b) \circ c=a \circ(b \circ c)$
(2) identity element: $1 \in G$ such that $1 \circ a=a \circ 1=a$, for all $a \in G$
(3) inverse: every element $a \in G$ has an inverse $a^{-1} \in G$ such that

$$
a \circ a^{-1}=a^{-1} \circ a=1
$$

- Examples:
$\{$ - Invertible matrices (quintessential example) with matrix multiplication
- Permutations of a set with function composition
- G is abelian group if the law of composition is commutative

$$
a \circ b=b \circ a, \quad \forall a, b \in G
$$

Groups

- Group: set G with law of composition $\circ: G \times G \rightarrow G$ such that
(1) associative: $(a \circ b) \circ c=a \circ(b \circ c)$
(2) identity element: $1 \in G$ such that $1 \circ a=a \circ 1=a$, for all $a \in G$
(3) inverse: every element $a \in G$ has an inverse $a^{-1} \in G$ such that

$$
a \circ a^{-1}=a^{-1} \circ a=1
$$

- Examples:
- Invertible matrices (quintessential example) with matrix multiplication
- Permutations of a set with function composition
- G is abelian group if the law of composition is commutative

$$
a \circ b=b \circ a, \quad \forall a, b \in G
$$

- Examples of abelian groups
- Integers, with addition operation
- Real numbers, with addition operation
- Integer matrices, with addition operation

Rings ${ }^{1}$

- Ring : set R with laws of composition
- Addition $+: R \times R \rightarrow R$
- Multiplication $\cdot: R \times R \rightarrow R$

Rings ${ }^{1}$

- Ring : set R with laws of composition
- Addition $+: R \times R \rightarrow R$
- Multiplication $\cdot: R \times R \rightarrow R$
- R is abelian group with respect to addition
- $0 \in R$ identity w.r.t. addition

Rings ${ }^{1}$

- Ring : set R with laws of composition
- Addition $+: R \times R \rightarrow R$
- Multiplication $\cdot: R \times R \rightarrow R$
- R is abelian group with respect to addition
- $0 \in R$ identity w.r.t. addition
- Multiplication satisfies following properties
- associative: $a \cdot(b \cdot c)=(a \cdot b) \cdot c$
- commutative: $a \cdot b=b \cdot a$
- identity: $1 \in R$ such that $1 \cdot a=a \cdot 1=a$
- distributive over addition:

$$
a \cdot(b+c)=a \cdot b+a \cdot c \quad \text { and } \quad(a+b) \cdot c=a \cdot c+b \cdot c
$$

Rings ${ }^{1}$

- Ring : set R with laws of composition
- Addition $+: R \times R \rightarrow R$
- Multiplication $\cdot: R \times R \rightarrow R$
- R is abelian group with respect to addition
- $0 \in R$ identity w.r.t. addition
- Multiplication satisfies following properties
- associative: $a \cdot(b \cdot c)=(a \cdot b) \cdot c$
- commutative: $a \cdot b=b \cdot a$
- identity: $1 \in R$ such that $1 \cdot a=a \cdot 1=a$
- distributive over addition:

$$
a \cdot(b+c)=a \cdot b+a \cdot c \quad \text { and } \quad(a+b) \cdot c=a \cdot c+b \cdot c
$$

- Examples
- Integers with addition and multiplication (quintessential example)
- Real numbers, complex numbers, with usual addition and multiplciation
- Polynomial rings (quintusential example)

Rings - Definitions

- Unit: an element $u \in R$ is a unit if there is $v \in R$ such that $u v=1$

Rings - Definitions

- Unit: an element $u \in R$ is a unit if there is $v \in R$ such that $u v=1$
- Associates: two elements $a, b \in R$ are associates if there is a unit $u \in R$ such that $a=u b$

$$
\begin{aligned}
& \text { units }\{-1,1\} \\
& 3,-3 \quad a,-a
\end{aligned}
$$

Rings - Definitions

- Unit: an element $u \in R$ is a unit if there is $v \in R$ such that $u v=1$
- Associates: two elements $a, b \in R$ are associates if there is a unit $u \in R$ such that $a=u b$
- Zero divisor: a zero divisor in R is an element $a \in R \backslash\{0\}$ such that there is a nonzero $b \in R \backslash\{0\}$ such that $a \cdot b=0$
$a \cdot 0=0 \quad a \mid 0$
$a \cdot b=0$

$$
2 \cdot 3=6 \equiv 0
$$

Rings - Definitions

- Unit: an element $u \in R$ is a unit if there is $v \in R$ such that $u v=1$
- Associates: two elements $a, b \in R$ are associates if there is a unit $u \in R$ such that $a=u b$
- Zero divisor: a zero divisor in R is an element $a \in R \backslash\{0\}$ such that there is a non-zero $b \in R \backslash\{0\}$ such that $a \cdot b=0$
- Integral domain: a ring R is an integral domain if it has no zero divisor.

Rings - Definitions

- Unit: an element $u \in R$ is a unit if there is $v \in R$ such that $u v=1$
- Associates: two elements $a, b \in R$ are associates if there is a unit $u \in R$ such that $a=u b$
- Zero divisor: a zero divisor in R is an element $a \in R \backslash\{0\}$ such that there is a non-zero $b \in R \backslash\{0\}$ such that $a \cdot b=0$
- Integral domain: a ring R is an integral domain if it has no zero divisor.
- Euclidean domain: a ring R is an Euclidean domain if:
- R is an integral domain and there is an Euclidean function $|\cdot|: R \rightarrow \mathbb{N} \cup\{-\infty\}$
- for all $a, b \in R$, with $b \neq 0$, there exists $q, r \in R$ such that

$$
\underline{a}=\underline{q b}+\underline{r} \text { and } \underline{|r|<|b|}
$$

$\mathbb{Q}[x, y]$ not Euclidean domain

Rings - Definitions

- Unit: an element $u \in R$ is a unit if there is $v \in R$ such that $u v=1$
- Associates: two elements $a, b \in R$ are associates if there is a unit $u \in R$ such that $a=u b$
- Zero divisor: a zero divisor in R is an element $a \in R \backslash\{0\}$ such that there is a non-zero $b \in R \backslash\{0\}$ such that $a \cdot b=0$
- Integral domain: a ring R is an integral domain if it has no zero divisor.
- Euclidean domain: a ring R is an Euclidean domain if:
- R is an integral domain and there is an Euclidean function

$$
|\cdot|: R \rightarrow \mathbb{N} \cup\{-\infty\}
$$

- for all $a, b \in R$, with $b \neq 0$, there exists $q, r \in R$ such that

$$
a=q b+r \quad \text { and } \quad|r|<|b|
$$

- Greatest common divisor: the greatest common divisor of $a, b \in R$, denoted by $\operatorname{gcd}(a, b)$ is an element of R which divides both a and b, and if $\underline{c \in R}$ divides \underline{a} and \underline{b}, then \underline{c} divides $\operatorname{gcd}(a, b)$.

Fields

- Field: a ring \mathbb{F} with addition and multiplication such that - every non-zero element has a multiplicative inverse

Fields

- Field: a ring \mathbb{F} with addition and multiplication such that
- every non-zero element has a multiplicative inverse
- Examples
- Rational numbers
- Real numbers
- Complex numbers
- Set of integers modulo a prime

Polynomial Rings

- Given a base ring R, we can construct a polynomial ring $R[x]$ by "adding a new variable" x to R in the freest way possible

Polynomial Rings

- Given a base ring R, we can construct a polynomial ring $R[x]$ by "adding a new variable" x to R in the freest way possible Leading coff.

$$
\begin{aligned}
& \text { - That is: Leading coff f. } \\
& a(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d}=b_{0}+b_{1} x+\cdots+b_{e} x^{e}, \quad\left(a_{d}, b_{e} \neq 0\right)
\end{aligned}
$$

C leading form
if, and only if, $d=e$ and $a_{0}=b_{0}, a_{1}=b_{1}, \ldots, a_{d}=b_{d}$

Polynomial Rings

- Given a base ring R, we can construct a polynomial ring $R[x]$ by "adding a new variable" x to R in the freest way possible
- That is:

$$
a_{0}+a_{1} x+\cdots+a_{d} x^{d}=b_{0}+b_{1} x+\cdots+b_{e} x^{e}, \quad\left(a_{d}, b_{e} \neq 0\right)
$$

if, and only if, $d=e$ and $a_{0}=b_{0}, a_{1}=b_{1}, \ldots, a_{d}=b_{d}$

- Can create the polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$ by adding the variables x_{1}, \ldots, x_{n} freely as above.

Polynomial Rings

- Given a base ring R, we can construct a polynomial ring $R[x]$ by "adding a new variable" x to R in the freest way possible
- That is:

$$
a_{0}+a_{1} x+\cdots+a_{d} x^{d}=b_{0}+b_{1} x+\cdots+b_{e} x^{e}, \quad\left(a_{d}, b_{e} \neq 0\right)
$$

if, and only if, $d=e$ and $a_{0}=b_{0}, a_{1}=b_{1}, \ldots, a_{d}=b_{d}$

- Can create the polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$ by adding the variables x_{1}, \ldots, x_{n} freely as above.
- What is our computational model to compute polynomials?

Polynomial Rings

- Given a base ring R, we can construct a polynomial ring $R[x]$ by "adding a new variable" x to R in the freest way possible
- That is:

$$
a_{0}+a_{1} x+\cdots+a_{d} x^{d}=b_{0}+b_{1} x+\cdots+b_{e} x^{e}, \quad\left(a_{d}, b_{e} \neq 0\right)
$$

if, and only if, $d=e$ and $a_{0}=b_{0}, a_{1}=b_{1}, \ldots, a_{d}=b_{d}$

- Can create the polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$ by adding the variables x_{1}, \ldots, x_{n} freely as above.
- What is our computational model to compute polynomials?
- How can we measure computational complexity in such base rings?

Complexity measures in rings

- $\mathbb{Z} \rightarrow$ bit complexity of integer
- $\underline{\lg a}:=\left\{\begin{array}{l}1, \text { if } a=0 \\ 1+\lfloor\underline{\log |a|}\rfloor, \text { otherwise }\end{array}\right.$

Complexity measures in rings

- $\mathbb{Z} \rightarrow$ bit complexity of integer
- $\lg a:=\left\{\begin{array}{l}1, \text { if } a=0 \\ 1+\lfloor\log |a|\rfloor, \text { otherwise }\end{array}\right.$
- $\mathbb{Q} \rightarrow$ complexity of a / b is the total bit complexity of a and b

Complexity measures in rings

- $\mathbb{Z} \rightarrow$ bit complexity of integer
- $\lg a:=\left\{\begin{array}{l}1, \text { if } a=0 \\ 1+\lfloor\log |a|\rfloor, \text { otherwise }\end{array}\right.$
- $\mathbb{Q} \rightarrow$ complexity of a / b is the total bit complexity of a and b
- $\mathbb{F}_{q} \rightarrow$ complexity of element is bit complexity $(\log q)$
lg q

Complexity measures in rings

- $\mathbb{Z} \rightarrow$ bit complexity of integer
- $\lg a:=\left\{\begin{array}{l}1, \text { if } a=0 \\ 1+\lfloor\log |a|\rfloor, \text { otherwise }\end{array}\right.$
- $\mathbb{Q} \rightarrow$ complexity of a / b is the total bit complexity of a and b
- $\mathbb{F}_{q} \rightarrow$ complexity of element is bit complexity $(\log q)$
- Polynomial rings $R\left[x_{1}, \ldots, x_{n}\right]$
(1) dense representation

Complexity measures in rings

- $\mathbb{Z} \rightarrow$ bit complexity of integer
- $\lg a:=\left\{\begin{array}{l}1, \text { if } a=0 \\ 1+\lfloor\log |a|\rfloor, \text { otherwise }\end{array}\right.$
- $\mathbb{Q} \rightarrow$ complexity of a / b is the total bit complexity of a and b
- $\mathbb{F}_{q} \rightarrow$ complexity of element is bit complexity $(\log q)$
- Polynomial rings $R\left[x_{1}, \ldots, x_{n}\right]$
(1) dense representation
(2) sparse representation

Complexity measures in rings

- $\mathbb{Z} \rightarrow$ bit complexity of integer
- $\lg a:=\left\{\begin{array}{l}1, \text { if } a=0 \\ 1+\lfloor\log |a|\rfloor, \text { otherwise }\end{array}\right.$
- $\mathbb{Q} \rightarrow$ complexity of a / b is the total bit complexity of a and b
- $\mathbb{F}_{q} \rightarrow$ complexity of element is bit complexity $(\log q)$
- Polynomial rings $R\left[x_{1}, \ldots, x_{n}\right]$
(1) dense representation
(2) sparse representation
(3) algebraic circuits
- Algebraic Primitives
- Basic Algebraic Operations
- Greatest Common Divisor
- Conclusion
- Acknowledgements

Addition and Multiplication over $R=\mathbb{Z}$

- Input: two elements $a, b \in \mathbb{Z}$
- Output: $a+b$

Addition and Multiplication over $R=\mathbb{Z}$

- Input: two elements $a, b \in \mathbb{Z}$
- Output: $a+b$
- Look at the bit representation of a, b - perform addition with carrying.

Addition and Multiplication over $R=\mathbb{Z}$

- Input: two elements $a, b \in \mathbb{Z}$
- Output: $a+b$
- Look at the bit representation of a, b - perform addition with carrying.
- Running time: $O(\lg a+\lg b) \leq c(\lg a+l g b)$

Addition and Multiplication over $R=\mathbb{Z}$

- Input: two elements $a, b \in \mathbb{Z}$
- Output: $a+b$
- Look at the bit representation of a, b - perform addition with carrying.
- Running time: $O(\lg a+\lg b)$
- Input: two elements $a, b \in \mathbb{Z}$
- Output: $a \cdot b$

Addition and Multiplication over $R=\mathbb{Z}$

- Input: two elements $a, b \in \mathbb{Z}$
- Output: $a+b$
- Look at the bit representation of a, b - perform addition with carrying.
- Running time: $O(\lg a+\lg b)$
- Input: two elements $a, b \in \mathbb{Z}$
- Output: $a \cdot b$
- Look at bit representation of a, b
- Perform $\lceil\lg b\rceil$ additions of multiples of a

Addition and Multiplication over $R=\mathbb{Z}$

- Input: two elements $a, b \in \mathbb{Z}$
- Output: $a+b$
- Look at the bit representation of a, b - perform addition with carrying.
- Running time: $O(\lg a+\lg b)$
- Input: two elements $a, b \in \mathbb{Z}$
- Output: $a \cdot b$
- Look at bit representation of a, b
- Perform $\lceil\lg b\rceil$ additions of multiples of a
- Running time: $O(\lg a \cdot \lg b)$

Naive upper bounds

Operation	over ring \mathbb{Z}	over ring $\mathbb{Z}[x]$
$a+b$	$\lg (a)+\lg (b)$	
$a \cdot b$	$\lg (a) \cdot \lg (b)$	
$a=q b+r$		
$\operatorname{gcd}(a, b)$		

Table: Naive upper bounds

- over \mathbb{Z} we count word operations
- over $\mathbb{Z}[x]$ we count operations in \mathbb{Z}
- $\operatorname{deg}(a)=m, \operatorname{deg}(b)=n$

Addition and multiplication over $\mathbb{Z}[x]$

- Input: two elements $a, b \in \mathbb{Z}[x], \operatorname{deg}(a)=m, \operatorname{deg}(b)=n$
- Output: $c=a+b$

Addition and multiplication over $\mathbb{Z}[x]$

- Input: two elements $a, b \in \mathbb{Z}[x], \operatorname{deg}(a)=m, \operatorname{deg}(b)=n$
- Output: $c=a+b$
- $c_{i}=a_{i}+b_{i}$ for $0 \leq i \leq \max (m, n)$

Addition and multiplication over $\mathbb{Z}[x]$

- Input: two elements $a, b \in \mathbb{Z}[x], \operatorname{deg}(a)=m, \operatorname{deg}(b)=n$
- Output: $c=a+b$
- $c_{i}=a_{i}+b_{i}$ for $0 \leq i \leq \max (m, n)$
- Running time: $O(m+n)$

Addition and multiplication over $\mathbb{Z}[x]$

- Input: two elements $a, b \in \mathbb{Z}[x], \operatorname{deg}(a)=m, \operatorname{deg}(b)=n$
- Output: $c=a+b$
- $c_{i}=a_{i}+b_{i}$ for $0 \leq i \leq \max (m, n)$
- Running time: $O(m+n)$
- Input: two elements $a, b \in \mathbb{Z}[x]$
- Output: $a \cdot b$

Addition and multiplication over $\mathbb{Z}[x]$

- Input: two elements $a, b \in \mathbb{Z}[x], \operatorname{deg}(a)=m, \operatorname{deg}(b)=n$
- Output: $c=a+b$
- $c_{i}=a_{i}+b_{i}$ for $0 \leq i \leq \max (m, n)$
- Running time: $O(m+n)$
- Input: two elements $a, b \in \mathbb{Z}[x]$
- Output: $a \cdot b$

$$
\begin{aligned}
& a=a_{0}+a_{1} x+\cdots+a_{m} x^{m} \\
& b=b_{0}+\underline{b_{1} x}+\cdots+b_{n} x^{n} \\
& c_{0}=a_{0} \cdot b_{0} \\
& c_{1}=a_{0} \cdot b_{1}+a_{1} b_{0}
\end{aligned}
$$

- $c_{k}=\sum_{i=0}^{k} a_{i} b_{k-i}$

Addition and multiplication over $\mathbb{Z}[x]$

- Input: two elements $a, b \in \mathbb{Z}[x], \operatorname{deg}(a)=m, \operatorname{deg}(b)=n$
- Output: $c=a+b$
- $c_{i}=a_{i}+b_{i}$ for $0 \leq i \leq \max (m, n)$
- Running time: $O(m+n)$
- Input: two elements $a, b \in \mathbb{Z}[x]$
- Output: $a \cdot b$
- $c_{k}=\sum_{i=0}^{k} a_{i} b_{k-i}$
- Compute all multiplications $a_{i} b_{j}$, there are $(m+1)(n+1)$ of them
- Add them all properly
- Running time: $O(m \cdot n)$

Naive upper bounds

Operation	over ring \mathbb{Z}	over ring $\mathbb{Z}[x]$
$a+b$	$\lg (a)+\lg (b)$	$m+n+1$
$a \cdot b$	$\lg (a) \cdot \lg (b)$	$(m+1)(n+1)$
$a=q b+r$		
$\operatorname{gcd}(a, b)$		

Table: Naive upper bounds

- over \mathbb{Z} we count word operations
- over $\mathbb{Z}[x]$ we count operations in \mathbb{Z}
- $\operatorname{deg}(a)=m, \operatorname{deg}(b)=n$

Division with remainder over \mathbb{Z} Eucliduen domein

$|a|$

- Input: two elements $a, b \in \mathbb{Z}$, with b non-zero
- Output: $q, r \in \mathbb{Z}$ such that $|r|<|b|$ and $a=q \cdot b+r$

Division with remainder over \mathbb{Z}

- Input: two elements $a, b \in \mathbb{Z}$, with b non-zero
- Output: $q, r \in \mathbb{Z}$ such that $|r|<|b|$ and $a=q \cdot b+r$
- Start with $r=a, q=0$

Division with remainder over \mathbb{Z}

- Input: two elements $a, b \in \mathbb{Z}$, with b non-zero
- Output: $q, r \in \mathbb{Z}$ such that $|r|<|b|$ and $a=q \cdot b+r$
- Start with $r=a, q=0$
- While $|r| \geq|b|$: $\}$

$$
a=0 \cdot b+a
$$

- $q \leftarrow q+1$

$$
a=1 \cdot b+(a-b)
$$

- $r \leftarrow r-b$

Division with remainder over \mathbb{Z}

- Input: two elements $a, b \in \mathbb{Z}$, with b non-zero
- Output: $q, r \in \mathbb{Z}$ such that $|r|<|b|$ and $a=q \cdot b+r$
- Start with $r=a, q=0$
- While $|r| \geq|b|$:
- $q \leftarrow q+1$
- $r \leftarrow r-b$
- Analysis: we will perform $\lfloor a / b\rfloor$ subtractions to r. Total time $\frac{a \lg b}{b}$

Division with remainder over \mathbb{Z}

$$
\begin{array}{r}
1110 \\
-1100 \\
\hline 10
\end{array}
$$

- Input: two elements $a, b \in \mathbb{Z}$, with b non-zero- 10
- Output: $q, r \in \mathbb{Z}$ such that $|r|<|b|$ and $a=q \cdot b+r$
- Start with $r=a, q=0$
- While $|r| \geq|b|:$
- $q \leftarrow q+1$
- $r \leftarrow r-\underline{b}$
- Analysis: we will perform $\lfloor a / b\rfloor$ subtractions to r. Total time $\frac{a \lg b}{b}$
 bit of r

Division with remainder over \mathbb{Z}

- Input: two elements $a, b \in \mathbb{Z}$, with b non-zero
- Output: $q, r \in \mathbb{Z}$ such that $|r|<|b|$ and $a=q \cdot b+r$
- Start with $r=a, q=0$
- While $|r| \geq|b|$:
- $q \leftarrow q+1$
- $r \leftarrow r-b$
- Analysis: we will perform $\lfloor a / b\rfloor$ subtractions to r. Total time $\frac{a \lg b}{b}$
- While $|r| \geq|b|$:
- $q \leftarrow q+2^{\lg r-\lg b}$
- $r \leftarrow r-2^{\lg r-\lg b} \cdot b$
- Analysis: we will perform $\lg (a / b)=\lg (q)$ subtractions to r. Total time $\lg q \cdot \lg b$

Division with remainder over $\mathbb{Z}[x]$

eeading
 colfficient
 \downarrow

- Input: two elements $a, b \in \mathbb{Z}[x]$, with $\underline{b \text { non-zero and } L C(b)}$ unit in \mathbb{Z}
- Output: $q, r \in \mathbb{Z}[x]$ such that $\operatorname{deg}(r)<\operatorname{deg}(b)$ and $a=q \cdot b+r$

Division with remainder over $\mathbb{Z}[x]$

- Input: two elements $a, b \in \mathbb{Z}[x]$, with b non-zero and $L C(b)$ unit in \mathbb{Z}
- Output: $q, r \in \mathbb{Z}[x]$ such that $\operatorname{deg}(r)<\operatorname{deg}(b)$ and $a=q \cdot b+r$
- Start with $r=a, q=0$

Division with remainder over $\mathbb{Z}[x]$

- Input: two elements $a, b \in \mathbb{Z}[x]$, with b non-zero and $L C(b)$ unit in \mathbb{Z}
- Output: $q, r \in \mathbb{Z}[x]$ such that $\operatorname{deg}(r)<\operatorname{deg}(b)$ and $a=q \cdot b+r$
- Start with $r=a, q=0$
- While $\operatorname{deg}(r) \geq \operatorname{deg}(b)$:
- $q \leftarrow q+x^{\operatorname{deg}(r)-\operatorname{deg}(b)}, \frac{\iota c(n)}{L C(b)}$
- $r \leftarrow r-\underbrace{x^{\operatorname{deg}(r)-\operatorname{deg}(b)} \cdot \frac{L C(r)}{L C(b)} \cdot b}_{\text {killing }} L T(n)$ (decuosing the degree)
of r

Division with remainder over $\mathbb{Z}[x]$

- Input: two elements $a, b \in \mathbb{Z}[x]$, with b non-zero and $L C(b)$ unit in \mathbb{Z}
- Output: $q, r \in \mathbb{Z}[x]$ such that $\operatorname{deg}(r)<\operatorname{deg}(b)$ and $a=q \cdot b+r$
- Start with $r=a, q=0$
- While $\operatorname{deg}(r) \geq \operatorname{deg}(b)$:
- $q \leftarrow q+x^{\operatorname{deg}(r)-\operatorname{deg}(b)}$
- $r \leftarrow r-x^{\operatorname{deg}(r)-\operatorname{deg}(b)} \cdot \frac{L C(r)}{L C(b)} \cdot b$
- Analysis: we will perform at most $\operatorname{deg}(a)-\operatorname{deg}(b)+1$ subtractions to r. Total time $(\operatorname{deg}(a)-\operatorname{deg}(b)+1)(\operatorname{deg}(b)+1)$.

Naive upper bounds

$\left\{\begin{array}{l|c|c|}\text { Operation } & \text { over ring } \mathbb{Z} & \text { over ring } \mathbb{Z}[x] \\ \hline a+b & \lg (a)+\lg (b) & m+n+1 \\ a \cdot b & \lg (a) \cdot \lg (b) & (m+1)(n+1) \\ a=q b+r & \lg (q) \cdot \lg (b) & (n+1)(m-n+1) \\ \operatorname{gcd}(a, b) & & \end{array}\right.$

Table: Naive upper bounds

- over \mathbb{Z} we count word operations
- over $\mathbb{Z}[x]$ we count operations in \mathbb{Z}
- $\operatorname{deg}(a)=m, \operatorname{deg}(b)=n$
- Algebraic Primitives
- Basic Algebraic Operations
- Greatest Common Divisor
- Conclusion
- Acknowledgements

Extended Euclidean Algorithm

- Let R be Euclidean domain, with $|\cdot|$ being its size function.
- Input: two elements $a, b \in R$, with b non-zero
- Output: $s, t \in R$ such that $\operatorname{gcd}(a, b)=a s+b t$

Extended Euclidean Algorithm

- Let R be Euclidean domain, with $|\cdot|$ being its size function.
- Input: two elements $a, b \in R$, with b non-zero
- Output: $s, t \in R$ such that $\operatorname{gcd}(a, b)=a s+b t$
- Not only do we compute the GCD, but we also express it as linear combination of a, b (and we prove that such combination exists via an algorithm!)

Extended Euclidean Algorithm

- Let R be Euclidean domain, with $|\cdot|$ being its size function.
- Input: two elements $a, b \in R$, with b non-zero
- Output: $s, t \in R$ such that $\operatorname{gcd}(a, b)=a s+b t$
- Not only do we compute the GCD, but we also express it as linear combination of a, b (and we prove that such combination exists via an algorithm!)
- Example: $a=77, b=63$

Extended Euclidean Algorithm

- Let R be Euclidean domain, with $|\cdot|$ being its size function.
- Input: two elements $a, b \in R$, with b non-zero
- Output: $s, t \in R$ such that $\operatorname{gcd}(a, b)=a s+b t$
- Not only do we compute the GCD, but we also express it as linear combination of a, b (and we prove that such combination exists via an algorithm!)
- Example: $a=77, b=63$
- $r_{0}=a, r_{1}=b, s=t=0$

Extended Euclidean Algorithm

- Let R be Euclidean domain, with $|\cdot|$ being its size function.
- Input: two elements $a, b \in R$, with b non-zero
- Output: $s, t \in R$ such that $\operatorname{gcd}(a, b)=a s+b t$
- Not only do we compute the GCD, but we also express it as linear combination of a, b (and we prove that such combination exists via an algorithm!)
- Example: $a=77, b=63$
- $r_{0}=a, r_{1}=b, s=t=0$
- For $1 \leq i$, let q_{i}, r_{i+1} be such that

$$
r_{i-1}=q_{i} r_{i}+r_{i+1}
$$

Extended Euclidean Algorithm

- Let R be Euclidean domain, with $|\cdot|$ being its size function.
- Input: two elements $a, b \in R$, with b non-zero
- Output: $s, t \in R$ such that $\operatorname{gcd}(a, b)=a s+b t$
- Not only do we compute the GCD, but we also express it as linear combination of a, b (and we prove that such combination exists via an algorithm!)
- Example: $a=77, b=63$
- $r_{0}=a, r_{1}=b, s=t=0$
- For $1 \leq i$, let q_{i}, r_{i+1} be such that

$$
r_{i-1}=q_{i} r_{i}+r_{i+1}
$$

- while $r_{i} \neq 0$, continue the procedure above.

Extended Euclidean Algorithm

- Let R be Euclidean domain, with $|\cdot|$ being its size function.
- Input: two elements $a, b \in R$, with b non-zero
- Output: $s, t \in R$ such that $\operatorname{gcd}(a, b)=a s+b t$
- Not only do we compute the GCD, but we also express it as linear combination of a, b (and we prove that such combination exists via an algorithm!)
- Example: $a=77, b=63$
- $r_{0}=a, r_{1}=b, s=t=0$
- For $1 \leq i$, let q_{i}, r_{i+1} be such that

$$
r_{i-1}=q_{i} r_{i}+r_{i+1}
$$

- while $r_{i} \neq 0$, continue the procedure above.
- it will eventually stop because $\left|r_{1}\right|>\left|r_{2}\right|>\cdots$ and size function is well-ordered.

Extended Euclidean Algorithm - Correctness

- $r_{0}=a, r_{1}=b, s=t=0$
- For $1 \leq i$, let q_{i}, r_{i+1} be such that

$$
r_{i-1}=q_{i} r_{i}+r_{i+1}
$$

- Suppose procedure stopped at $r_{\ell+1}=0$. Show that $r_{\ell}=\operatorname{gcd}(a, b)$.

Extended Euclidean Algorithm - Running time I

- $r_{0}=a, r_{1}=b, s=t=0$
- For $1 \leq i$, let q_{i}, r_{i+1} be such that

$$
r_{i-1}=q_{i} r_{i}+r_{i+1}
$$

- Suppose procedure stopped at $r_{\ell+1}=0$.

Extended Euclidean Algorithm - Running time II

- $r_{0}=a, r_{1}=b, s=t=0$
- For $1 \leq i$, let q_{i}, r_{i+1} be such that

$$
r_{i-1}=q_{i} r_{i}+r_{i+1}
$$

- Suppose procedure stopped at $r_{\ell+1}=0$.
- Algebraic Primitives
- Basic Algebraic Operations
- Greatest Common Divisor
- Conclusion
- Acknowledgements

Naive upper bounds

Operation	over ring \mathbb{Z}	over ring $\mathbb{Z}[x]$
$a+b$	$\lg (a)+\lg (b)$	$m+n+1$
$a \cdot b$	$\lg (a) \cdot \lg (b)$	$(m+1)(n+1)$
$a=q b+r$	$\lg (q) \cdot \lg (b)$	$(n+1)(m-n+1)$
$\operatorname{gcd}(a, b)$	$\lg (a) \cdot \lg (b)$	$(m+1)(n+1)$

Table: Naive upper bounds

- over \mathbb{Z} we count word operations
- over $\mathbb{Z}[x]$ we count operations in \mathbb{Z}
- $\operatorname{deg}(a)=m, \operatorname{deg}(b)=n$

Acknowledgement

- Lecture based largely on:
- Lecture 2 from CS 487 Winter 2020 - see references in suggested reading

