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Groups

@ Group: set G with law of composition o : G X G — G such that
@ associative: (aob)oc=ao(boc)
© identity element: 1 € G such that loa=aol =24, forallaec G
@ inverse: every element a € G has an inverse a~! € G such that

@ Examples:
e Invertible matrices (quintessential example) with matrix multiplication
e Permutations of a set with function composition

o G is abelian group if the law of composition is commutative
aob=boa, VabeG

@ Examples of abelian groups
o Integers, with addition operation
e Real numbers, with addition operation
o Integer matrices, with addition operation
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@ Ring : set R with laws of composition
e Addition +: Rx R— R
o Multiplication - : R x R =+ R
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e 0 € R identity w.r.t. addition
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Rings?

@ Ring : set R with laws of composition
e Addition +: Rx R— R
o Multiplication - : R x R =+ R

@ R is abelian group with respect to addition
e 0 € R identity w.r.t. addition

@ Multiplication satisfies following properties
e associative: a-(b-c)=(a-b)-c
e commutative: a-b=0>b-a
o identity: 1 € Rsuchthatl-a=a-1=a
e distributive over addition:

a-(b+c)=a-b+a-c and (a+b)-c=a-c+b-c

@ Examples

o Integers with addition and multiplication (quintessential example)
o Real numbers, complex numbers, with usual addition and multiplciation

e Polynomial rings (\Aﬂ\\w-\td TRAYND \&.1

!Commutative rings with unit
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@ Unit: an element v € R is a unit if there is v € R such that uv =1
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Rings - Definitions

@ Unit: an element v € R is a unit if there is v € R such that uv =1

@ Associates: two elements a, b € R are associates if there is a unit
u € R such that a = ub

@ Zero divisor: a zero divisor in R is an element a € R\ {0} such that
there is a non-zero b € R\ {0} such that a- b=0

o Integral domain: a ring R is an integral domain if it has no zero
divisor.

@ Euclidean domain: a ring R is an Euclidean domain if:

e R is an integral domain and there is an Euclidean function
[-]: R—=NU{-00}
e for all a,b € R, with b # 0, there exists g, r € R such that

a=gqgb+r and |r| <|b]

o Greatest common divisor: the greatest common divisor of a, b € R,
denoted by gcd(a, b) is an element of R which divides both a and b,
and if ¢ € R divides a and b, then c divides gcd(a, b).
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Fields

o Field: a ring ¥ with addition and multiplication such that
e every non-zero element has a multiplicative inverse
@ Examples

Rational numbers

o Real numbers

o Complex numbers

e Set of integers modulo a prime
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Polynomial Rings

e Given a base ring R, we can construct a polynomial ring R[x] by
“adding a new variable” x to R in the freest way possible

o That is:

ao+81X+'--+adXd:bo—i-le—i-"'—i-beXe, (ad,be;«éO)

if, and onIy if, d = e and ap = bo,al = bl,...,ad = bd
e Can create the polynomial ring R[x1, ..., xn] by adding the variables
X1,...,Xp freely as above.

@ What is our computational model to compute polynomials?

@ How can we measure computational complexity in such base rings?
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Complexity measures in rings

@ 7 — bit complexity of integer

1, ifa=0
e lga:= .
1+ |log|al], otherwise

@ Q — complexity of a/b is the total bit complexity of a and b
o Fq — complexity of element is bit complexity (log q)
e Polynomial rings R[xi, ..., Xn]

@ dense representation

@ sparse representation
© algebraic circuits



@ Basic Algebraic Operations
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Addition and Multiplication over R = Z

Input: two elements a,b € Z

Output: a+ b

Look at the bit representation of a, b — perform addition with carrying.
Running time: O(lga + Ig b)

Input: two elements a,b € Z
Output: a- b
Look at bit representation of a, b

Perform [lg b] additions of multiples of a

Running time: O(lga - Igb)



Naive upper bounds

Operation | over ring Z | over ring Z[x] |

a+b lg(a) + lg(b)
a-b 18(2) - lg(b)
a=qb+r

ged(a, b)

Table: Naive upper bounds

@ over Z we count word operations
@ over Z[x| we count operations in Z

o deg(a) = m, deg(b) =n
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Addition and multiplication over Z[x]

Input: two elements a, b € Z[x], deg(a) = m, deg(b) = n
Output: c=a+ b

¢i = aj + b;j for 0 < i < max(m, n)

Running time: O(m + n)

“

o Input: two elements a, b € Z|[x] Q= Aot Xt b X
n

o Output: a- b b - b_.,* ‘l‘*'«-b“x

K
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Addition and multiplication over Z[x]

Input: two elements a, b € Z[x], deg(a) = m, deg(b) = n
Output: c=a+ b
¢i = aj + b;j for 0 < i < max(m, n)

Running time: O(m + n)

Input: two elements a, b € Z[x]

Output: a-b

Ck = Zf'(:o ajby_;

Compute all multiplications a;bj, there are (m 4+ 1)(n+ 1) of them

— ———

Add them all properly

Running time: O(m - n)



Naive upper bounds

Operation | over ring Z | over ring Z[x] |

a+b lg(a) + lg(b) m+n+1
a-b Ig(a) - Ig(b) | (m+1)(n+1)
a=qgb+r

ged(a, b)

Table: Naive upper bounds

@ over Z we count word operations
@ over Z[x| we count operations in Z

o deg(a) = m, deg(b) =n
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o
@ Input: two elements a, b € Z, with b non-zero
@ Output: g,r € Z such that |[r| < |b|and a=q-b+r
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Division with remainder over 7Z

@ Input: two elements a, b € Z, with b non-zero

@ Output: g,r € Z such that |[r| < |b|and a=q-b+r
o Start with r=a, g=0

e While |r| > |b|:

e g+—qg+1
er+r—»>

i—»

o

o
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@ Output: g,r € Z such that |[r| < |b|and a=q-b+r
e Start with r=2a,g=0
e While |r| > |b|:
e g+—qg+1
er<r—b>b

. . . . algb
@ Analysis: we will perform |a/b] subtractions to r. Total time &




Division with remainder over 7Z 1L ¢©o
—4{ 00 b-4

A0
@ Input: two elements a, b € Z, with b non-zero—t°
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9
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Division with remainder over 7

@ Input: two elements a, b € Z, with b non-zero
@ Output: g,r € Z such that |[r| < |b|and a=q-b+r
e Start with r=2a,g=0
e While |r| > |b|:
e g+—qg+1
er<r—b>b

. . . . algb
@ Analysis: we will perform |a/b] subtractions to r. Total time &

While |r| > |b|:
° g+ q+2|gr—|gb
o r« r—2ler-lgb.p

e Analysis: we will perform Ig(a/b) = lg(q) subtractions to r. Total

time lgq-lgb -




Division with remainder over Z[x]

€eading
Cﬂ(“f\' ciomt
J

o Input: two elements a, b € Z[x], with b non-zero and LC(b) unit in Z
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@ Input: two elements a, b € Z[x], with b non-zero and LC(b) unit in Z
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o Start with r=2a,g=0



Division with remainder over Z[x]

@ Input: two elements a, b € Z[x], with b non-zero and LC(b) unit in Z
e Output: g, r € Z[x] such that deg(r) < deg(b) and a=gq-b+r
o Start with r=a, g=0
e While deg(r) > deg(b): e
o g ¢ q+ xdea(nN—deg(b), T D))
LC(r)

o 1< r— xdea(r)—deg(b) . EELT)

LC(b)
L(;_,Q-Q'N\é L.T (T\)
(ducuening +hn olsgtes
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Division with remainder over Z[x]

Input: two elements a, b € Z[x], with b non-zero and LC(b) unit in Z
Output: g, r € Z[x] such that deg(r) < deg(b) and a=gq-b+r
Start with r=a,g=0
While deg(r) > deg(b):

o g g+ xdea(r)—deg(b)

LC(r)
— xdeg(r)—deg(b) . —— 2 .

@ r<—r—x LC(b)

@ Analysis: we will perform at most deg(a) — deg(b) + 1 subtractions to

r. Total time (deg(a) — deg(b) + 1)(deg(b) + 1).



Naive upper bounds

Operation | over ring 7Z | over ring Z[x]
a+b lg(a) + lg(b) m+n+1

i a-b lg(a) - Ig(b) (m+1)(n+1)
a=qb+r | lg(q) lg(b) | (n+1)(m—n+1)
ged(a, b)

Table: Naive upper bounds

@ over Z we count word operations
@ over Z[x| we count operations in Z

o deg(a) = m, deg(b) =n



@ Greatest Common Divisor



Extended Euclidean Algorithm

@ Let R be Euclidean domain, with | - | being its size function.
@ Input: two elements a, b € R, with b non-zero
@ Output: s, t € R such that ged(a, b) = as + bt



Extended Euclidean Algorithm

@ Let R be Euclidean domain, with | - | being its size function.
@ Input: two elements a, b € R, with b non-zero

@ Output: s, t € R such that ged(a, b) = as + bt

@ Not only do we compute the GCD, but we also express it as linear

combination of a, b (and we prove that such combination exists via an
algorithm!)



Extended Euclidean Algorithm

Let R be Euclidean domain, with | - | being its size function.
Input: two elements a, b € R, with b non-zero
Output: s, t € R such that gecd(a, b) = as + bt

Not only do we compute the GCD, but we also express it as linear
combination of a, b (and we prove that such combination exists via an
algorithm!)

o Example: a=77,b=163



Extended Euclidean Algorithm

Let R be Euclidean domain, with | - | being its size function.

Input: two elements a, b € R, with b non-zero

Output: s, t € R such that gecd(a, b) = as + bt

Not only do we compute the GCD, but we also express it as linear
combination of a, b (and we prove that such combination exists via an
algorithm!)

@ Example: a=77,b =63

enn=an=bs=t=0



Extended Euclidean Algorithm

Let R be Euclidean domain, with | - | being its size function.

Input: two elements a, b € R, with b non-zero

Output: s, t € R such that gecd(a, b) = as + bt

Not only do we compute the GCD, but we also express it as linear
combination of a, b (and we prove that such combination exists via an
algorithm!)

@ Example: a=77,b =63

enn=an=bs=t=0

o For 1 <, let gj, ris1 be such that

ri—1 = qifi + rit1



Extended Euclidean Algorithm

Let R be Euclidean domain, with | - | being its size function.

Input: two elements a, b € R, with b non-zero

Output: s, t € R such that gecd(a, b) = as + bt

Not only do we compute the GCD, but we also express it as linear
combination of a, b (and we prove that such combination exists via an
algorithm!)

@ Example: a=77,b =63

enn=an=bs=t=0

o For 1 <, let gj, ris1 be such that
ri—1=qiti + ri+1

@ while r; # 0, continue the procedure above.



Extended Euclidean Algorithm

Let R be Euclidean domain, with | - | being its size function.

Input: two elements a, b € R, with b non-zero

Output: s, t € R such that gecd(a, b) = as + bt

Not only do we compute the GCD, but we also express it as linear
combination of a, b (and we prove that such combination exists via an
algorithm!)

@ Example: a=77,b =63

enn=an=bs=t=0

e 66 o6 ¢

o For 1 <, let gj, ris1 be such that
ri—1=qiti + ri+1

@ while r; # 0, continue the procedure above.

o it will eventually stop because |r1| > |r2| > --- and size function is
well-ordered.



Extended Euclidean Algorithm - Correctness
en=an=bs=t=0

o For 1 <, let gj, ris1 be such that
ri—1=qiti + ri+1

@ Suppose procedure stopped at ryy1 = 0. Show that r, = gcd(a, b).



Extended Euclidean Algorithm - Running time |
en=an=bs=t=0

o For 1 <, let gj, ri;1 be such that
ri—1 = qiti +ri+1

@ Suppose procedure stopped at rpy; = 0.



Extended Euclidean Algorithm - Running time I
ern=an=bs=t=0

@ For 1 <, let gj, ri+1 be such that
ri-1 = qifi + riy1

@ Suppose procedure stopped at rpy; = 0.
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@ Conclusion



Naive upper bounds

Operation | overringZ | overring Z[x] |
a+b lg(a) + lg(b) m+n+1
a-b lg(a) - Ig(b) (m+1)(n+1)

a=qb+r | lg(q) lg(b) | (n+1)(m—n+1)
ged(a, b) lg(a) - Ig(b) (m+1)(n+1)

Table: Naive upper bounds

@ over Z we count word operations
@ over Z[x| we count operations in Z

o deg(a) = m, deg(b) =n
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