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Groups

Group: set G with law of composition ◦ : G × G → G such that
1 associative: (a ◦ b) ◦ c = a ◦ (b ◦ c)
2 identity element: 1 ∈ G such that 1 ◦ a = a ◦ 1 = a, for all a ∈ G
3 inverse: every element a ∈ G has an inverse a−1 ∈ G such that

a ◦ a−1 = a−1 ◦ a = 1
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Examples:
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Permutations of a set with function composition

4 / 69



Groups

Group: set G with law of composition ◦ : G × G → G such that
1 associative: (a ◦ b) ◦ c = a ◦ (b ◦ c)
2 identity element: 1 ∈ G such that 1 ◦ a = a ◦ 1 = a, for all a ∈ G
3 inverse: every element a ∈ G has an inverse a−1 ∈ G such that

a ◦ a−1 = a−1 ◦ a = 1

Examples:
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Permutations of a set with function composition

G is abelian group if the law of composition is commutative

a ◦ b = b ◦ a, ∀a, b ∈ G

5 / 69



Groups

Group: set G with law of composition ◦ : G × G → G such that
1 associative: (a ◦ b) ◦ c = a ◦ (b ◦ c)
2 identity element: 1 ∈ G such that 1 ◦ a = a ◦ 1 = a, for all a ∈ G
3 inverse: every element a ∈ G has an inverse a−1 ∈ G such that

a ◦ a−1 = a−1 ◦ a = 1

Examples:

Invertible matrices (quintessential example) with matrix multiplication
Permutations of a set with function composition

G is abelian group if the law of composition is commutative

a ◦ b = b ◦ a, ∀a, b ∈ G

Examples of abelian groups

Integers, with addition operation
Real numbers, with addition operation
Integer matrices, with addition operation
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Rings1

Ring : set R with laws of composition

Addition + : R × R → R
Multiplication · : R × R → R

1Commutative rings with unit
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Rings1

Ring : set R with laws of composition

Addition + : R × R → R
Multiplication · : R × R → R

R is abelian group with respect to addition

0 ∈ R identity w.r.t. addition

Multiplication satisfies following properties

associative: a · (b · c) = (a · b) · c
commutative: a · b = b · a
identity: 1 ∈ R such that 1 · a = a · 1 = a
distributive over addition:

a · (b + c) = a · b + a · c and (a+ b) · c = a · c + b · c

1Commutative rings with unit
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Rings1

Ring : set R with laws of composition

Addition + : R × R → R
Multiplication · : R × R → R

R is abelian group with respect to addition

0 ∈ R identity w.r.t. addition

Multiplication satisfies following properties

associative: a · (b · c) = (a · b) · c
commutative: a · b = b · a
identity: 1 ∈ R such that 1 · a = a · 1 = a
distributive over addition:

a · (b + c) = a · b + a · c and (a+ b) · c = a · c + b · c

Examples

Integers with addition and multiplication (quintessential example)
Real numbers, complex numbers, with usual addition and multiplciation
Polynomial rings

1Commutative rings with unit
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Rings - Definitions

Unit: an element u ∈ R is a unit if there is v ∈ R such that uv = 1
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there is a non-zero b ∈ R \ {0} such that a · b = 0
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u ∈ R such that a = ub

Zero divisor: a zero divisor in R is an element a ∈ R \ {0} such that
there is a non-zero b ∈ R \ {0} such that a · b = 0

Integral domain: a ring R is an integral domain if it has no zero
divisor.
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Rings - Definitions

Unit: an element u ∈ R is a unit if there is v ∈ R such that uv = 1

Associates: two elements a, b ∈ R are associates if there is a unit
u ∈ R such that a = ub

Zero divisor: a zero divisor in R is an element a ∈ R \ {0} such that
there is a non-zero b ∈ R \ {0} such that a · b = 0

Integral domain: a ring R is an integral domain if it has no zero
divisor.

Euclidean domain: a ring R is an Euclidean domain if:
R is an integral domain and there is an Euclidean function
| · | : R → N ∪ {−∞}
for all a, b ∈ R, with b �= 0, there exists q, r ∈ R such that

a = qb + r and |r | < |b|
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Rings - Definitions

Unit: an element u ∈ R is a unit if there is v ∈ R such that uv = 1

Associates: two elements a, b ∈ R are associates if there is a unit
u ∈ R such that a = ub

Zero divisor: a zero divisor in R is an element a ∈ R \ {0} such that
there is a non-zero b ∈ R \ {0} such that a · b = 0

Integral domain: a ring R is an integral domain if it has no zero
divisor.

Euclidean domain: a ring R is an Euclidean domain if:
R is an integral domain and there is an Euclidean function
| · | : R → N ∪ {−∞}
for all a, b ∈ R, with b �= 0, there exists q, r ∈ R such that

a = qb + r and |r | < |b|

Greatest common divisor: the greatest common divisor of a, b ∈ R ,
denoted by gcd(a, b) is an element of R which divides both a and b,
and if c ∈ R divides a and b, then c divides gcd(a, b).

16 / 69



Fields

Field: a ring F with addition and multiplication such that

every non-zero element has a multiplicative inverse
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Fields

Field: a ring F with addition and multiplication such that

every non-zero element has a multiplicative inverse

Examples

Rational numbers
Real numbers
Complex numbers
Set of integers modulo a prime
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Polynomial Rings

Given a base ring R , we can construct a polynomial ring R[x ] by
“adding a new variable” x to R in the freest way possible
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Polynomial Rings

Given a base ring R , we can construct a polynomial ring R[x ] by
“adding a new variable” x to R in the freest way possible

That is:

a0 + a1x + · · ·+ adx
d = b0 + b1x + · · ·+ bex

e , (ad , be �= 0)

if, and only if, d = e and a0 = b0, a1 = b1, . . . , ad = bd
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e , (ad , be �= 0)
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x1, . . . , xn freely as above.
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Polynomial Rings

Given a base ring R , we can construct a polynomial ring R[x ] by
“adding a new variable” x to R in the freest way possible

That is:

a0 + a1x + · · ·+ adx
d = b0 + b1x + · · ·+ bex

e , (ad , be �= 0)

if, and only if, d = e and a0 = b0, a1 = b1, . . . , ad = bd

Can create the polynomial ring R[x1, . . . , xn] by adding the variables
x1, . . . , xn freely as above.

What is our computational model to compute polynomials?

How can we measure computational complexity in such base rings?
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Complexity measures in rings

Z → bit complexity of integer

lg a :=

�
1, if a = 0

1 + �log |a|�, otherwise
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25 / 69



Complexity measures in rings

Z → bit complexity of integer

lg a :=

�
1, if a = 0

1 + �log |a|�, otherwise

Q → complexity of a/b is the total bit complexity of a and b

Fq → complexity of element is bit complexity (log q)
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Complexity measures in rings

Z → bit complexity of integer

lg a :=

�
1, if a = 0

1 + �log |a|�, otherwise

Q → complexity of a/b is the total bit complexity of a and b

Fq → complexity of element is bit complexity (log q)

Polynomial rings R[x1, . . . , xn]
1 dense representation
2 sparse representation
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Complexity measures in rings

Z → bit complexity of integer

lg a :=

�
1, if a = 0

1 + �log |a|�, otherwise

Q → complexity of a/b is the total bit complexity of a and b

Fq → complexity of element is bit complexity (log q)

Polynomial rings R[x1, . . . , xn]
1 dense representation
2 sparse representation
3 algebraic circuits
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Addition and Multiplication over R = Z

Input: two elements a, b ∈ Z
Output: a+ b
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Input: two elements a, b ∈ Z
Output: a+ b

Look at the bit representation of a, b – perform addition with carrying.
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Addition and Multiplication over R = Z

Input: two elements a, b ∈ Z
Output: a+ b

Look at the bit representation of a, b – perform addition with carrying.

Running time: O(lg a+ lg b)
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Output: a+ b

Look at the bit representation of a, b – perform addition with carrying.

Running time: O(lg a+ lg b)
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Output: a · b
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Addition and Multiplication over R = Z

Input: two elements a, b ∈ Z
Output: a+ b

Look at the bit representation of a, b – perform addition with carrying.

Running time: O(lg a+ lg b)

Input: two elements a, b ∈ Z
Output: a · b
Look at bit representation of a, b

Perform �lg b� additions of multiples of a
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Addition and Multiplication over R = Z

Input: two elements a, b ∈ Z
Output: a+ b

Look at the bit representation of a, b – perform addition with carrying.

Running time: O(lg a+ lg b)

Input: two elements a, b ∈ Z
Output: a · b
Look at bit representation of a, b

Perform �lg b� additions of multiples of a

Running time: O(lg a · lg b)
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Naive upper bounds

Operation over ring Z over ring Z[x ]
a+ b lg(a) + lg(b)
a · b lg(a) · lg(b)
a = qb + r
gcd(a, b)

Table: Naive upper bounds

over Z we count word operations

over Z[x ] we count operations in Z
deg(a) = m, deg(b) = n
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Addition and multiplication over Z[x ]

Input: two elements a, b ∈ Z[x ], deg(a) = m, deg(b) = n

Output: c = a+ b

38 / 69



Addition and multiplication over Z[x ]

Input: two elements a, b ∈ Z[x ], deg(a) = m, deg(b) = n

Output: c = a+ b

ci = ai + bi for 0 ≤ i ≤ max(m, n)
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Addition and multiplication over Z[x ]

Input: two elements a, b ∈ Z[x ], deg(a) = m, deg(b) = n

Output: c = a+ b

ci = ai + bi for 0 ≤ i ≤ max(m, n)

Running time: O(m + n)
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Addition and multiplication over Z[x ]

Input: two elements a, b ∈ Z[x ], deg(a) = m, deg(b) = n

Output: c = a+ b

ci = ai + bi for 0 ≤ i ≤ max(m, n)

Running time: O(m + n)

Input: two elements a, b ∈ Z[x ]
Output: a · b
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Addition and multiplication over Z[x ]

Input: two elements a, b ∈ Z[x ], deg(a) = m, deg(b) = n

Output: c = a+ b

ci = ai + bi for 0 ≤ i ≤ max(m, n)

Running time: O(m + n)

Input: two elements a, b ∈ Z[x ]
Output: a · b
ck =

�k
i=0 aibk−i
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Addition and multiplication over Z[x ]

Input: two elements a, b ∈ Z[x ], deg(a) = m, deg(b) = n

Output: c = a+ b

ci = ai + bi for 0 ≤ i ≤ max(m, n)

Running time: O(m + n)

Input: two elements a, b ∈ Z[x ]
Output: a · b
ck =

�k
i=0 aibk−i

Compute all multiplications aibj , there are (m + 1)(n + 1) of them

Add them all properly

Running time: O(m · n)
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Naive upper bounds

Operation over ring Z over ring Z[x ]
a+ b lg(a) + lg(b) m + n + 1
a · b lg(a) · lg(b) (m + 1)(n + 1)
a = qb + r
gcd(a, b)

Table: Naive upper bounds

over Z we count word operations

over Z[x ] we count operations in Z
deg(a) = m, deg(b) = n
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Division with remainder over Z

Input: two elements a, b ∈ Z, with b non-zero

Output: q, r ∈ Z such that |r | < |b| and a = q · b + r
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Division with remainder over Z

Input: two elements a, b ∈ Z, with b non-zero

Output: q, r ∈ Z such that |r | < |b| and a = q · b + r

Start with r = a, q = 0
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Division with remainder over Z

Input: two elements a, b ∈ Z, with b non-zero

Output: q, r ∈ Z such that |r | < |b| and a = q · b + r

Start with r = a, q = 0

While |r | ≥ |b|:
q ← q + 1
r ← r − b
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Division with remainder over Z

Input: two elements a, b ∈ Z, with b non-zero

Output: q, r ∈ Z such that |r | < |b| and a = q · b + r

Start with r = a, q = 0

While |r | ≥ |b|:
q ← q + 1
r ← r − b

Analysis: we will perform �a/b� subtractions to r . Total time
a lg b

b
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Division with remainder over Z

Input: two elements a, b ∈ Z, with b non-zero

Output: q, r ∈ Z such that |r | < |b| and a = q · b + r

Start with r = a, q = 0

While |r | ≥ |b|:
q ← q + 1
r ← r − b

Analysis: we will perform �a/b� subtractions to r . Total time
a lg b

b
While |r | ≥ |b|:

q ← q + 2lg r−lg b

r ← r − 2lg r−lg b · b
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Division with remainder over Z

Input: two elements a, b ∈ Z, with b non-zero

Output: q, r ∈ Z such that |r | < |b| and a = q · b + r

Start with r = a, q = 0

While |r | ≥ |b|:
q ← q + 1
r ← r − b

Analysis: we will perform �a/b� subtractions to r . Total time
a lg b

b
While |r | ≥ |b|:

q ← q + 2lg r−lg b

r ← r − 2lg r−lg b · b
Analysis: we will perform lg(a/b) = lg(q) subtractions to r . Total
time lg q · lg b
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Division with remainder over Z[x ]

Input: two elements a, b ∈ Z[x ], with b non-zero and LC (b) unit in Z
Output: q, r ∈ Z[x ] such that deg(r) < deg(b) and a = q · b + r
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Division with remainder over Z[x ]

Input: two elements a, b ∈ Z[x ], with b non-zero and LC (b) unit in Z
Output: q, r ∈ Z[x ] such that deg(r) < deg(b) and a = q · b + r

Start with r = a, q = 0
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Division with remainder over Z[x ]

Input: two elements a, b ∈ Z[x ], with b non-zero and LC (b) unit in Z
Output: q, r ∈ Z[x ] such that deg(r) < deg(b) and a = q · b + r

Start with r = a, q = 0

While deg(r) ≥ deg(b):

q ← q + xdeg(r)−deg(b)

r ← r − xdeg(r)−deg(b) · LC (r)

LC (b)
· b
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Division with remainder over Z[x ]

Input: two elements a, b ∈ Z[x ], with b non-zero and LC (b) unit in Z
Output: q, r ∈ Z[x ] such that deg(r) < deg(b) and a = q · b + r

Start with r = a, q = 0

While deg(r) ≥ deg(b):

q ← q + xdeg(r)−deg(b)

r ← r − xdeg(r)−deg(b) · LC (r)

LC (b)
· b

Analysis: we will perform at most deg(a)− deg(b) + 1 subtractions to
r . Total time (deg(a)− deg(b) + 1)(deg(b) + 1).
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Naive upper bounds

Operation over ring Z over ring Z[x ]
a+ b lg(a) + lg(b) m + n + 1
a · b lg(a) · lg(b) (m + 1)(n + 1)
a = qb + r lg(q) · lg(b) (n + 1)(m − n + 1)
gcd(a, b)

Table: Naive upper bounds

over Z we count word operations

over Z[x ] we count operations in Z
deg(a) = m, deg(b) = n
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Extended Euclidean Algorithm

Let R be Euclidean domain, with | · | being its size function.

Input: two elements a, b ∈ R, with b non-zero

Output: s, t ∈ R such that gcd(a, b) = as + bt
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Not only do we compute the GCD, but we also express it as linear
combination of a, b (and we prove that such combination exists via an
algorithm!)
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Input: two elements a, b ∈ R, with b non-zero

Output: s, t ∈ R such that gcd(a, b) = as + bt

Not only do we compute the GCD, but we also express it as linear
combination of a, b (and we prove that such combination exists via an
algorithm!)

Example: a = 77, b = 63

r0 = a, r1 = b, s = t = 0
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Let R be Euclidean domain, with | · | being its size function.

Input: two elements a, b ∈ R, with b non-zero

Output: s, t ∈ R such that gcd(a, b) = as + bt

Not only do we compute the GCD, but we also express it as linear
combination of a, b (and we prove that such combination exists via an
algorithm!)

Example: a = 77, b = 63

r0 = a, r1 = b, s = t = 0

For 1 ≤ i , let qi , ri+1 be such that

ri−1 = qi ri + ri+1
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Let R be Euclidean domain, with | · | being its size function.

Input: two elements a, b ∈ R, with b non-zero

Output: s, t ∈ R such that gcd(a, b) = as + bt

Not only do we compute the GCD, but we also express it as linear
combination of a, b (and we prove that such combination exists via an
algorithm!)

Example: a = 77, b = 63

r0 = a, r1 = b, s = t = 0

For 1 ≤ i , let qi , ri+1 be such that

ri−1 = qi ri + ri+1

while ri �= 0, continue the procedure above.
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Extended Euclidean Algorithm

Let R be Euclidean domain, with | · | being its size function.

Input: two elements a, b ∈ R, with b non-zero

Output: s, t ∈ R such that gcd(a, b) = as + bt

Not only do we compute the GCD, but we also express it as linear
combination of a, b (and we prove that such combination exists via an
algorithm!)

Example: a = 77, b = 63

r0 = a, r1 = b, s = t = 0

For 1 ≤ i , let qi , ri+1 be such that

ri−1 = qi ri + ri+1

while ri �= 0, continue the procedure above.

it will eventually stop because |r1| > |r2| > · · · and size function is
well-ordered.
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Extended Euclidean Algorithm - Correctness

r0 = a, r1 = b, s = t = 0

For 1 ≤ i , let qi , ri+1 be such that

ri−1 = qi ri + ri+1

Suppose procedure stopped at r�+1 = 0. Show that r� = gcd(a, b).
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Extended Euclidean Algorithm - Running time I
r0 = a, r1 = b, s = t = 0

For 1 ≤ i , let qi , ri+1 be such that

ri−1 = qi ri + ri+1

Suppose procedure stopped at r�+1 = 0.
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Extended Euclidean Algorithm - Running time II

r0 = a, r1 = b, s = t = 0

For 1 ≤ i , let qi , ri+1 be such that

ri−1 = qi ri + ri+1

Suppose procedure stopped at r�+1 = 0.
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Naive upper bounds

Operation over ring Z over ring Z[x ]
a+ b lg(a) + lg(b) m + n + 1
a · b lg(a) · lg(b) (m + 1)(n + 1)
a = qb + r lg(q) · lg(b) (n + 1)(m − n + 1)
gcd(a, b) lg(a) · lg(b) (m + 1)(n + 1)

Table: Naive upper bounds

over Z we count word operations

over Z[x ] we count operations in Z
deg(a) = m, deg(b) = n
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