Problem 1

Hensel Lifting and Factoring (20 points)

1. Given

$$a(x) = x^4 2x^3 233x^2 214x + 85$$

and image polynomials

$$u_0(x) = x^2 3x^2$$
 and $w_0(x) = x^2 + x + 3$,

satisfying $a \equiv u_0 w_0 \mod 7$, lift the image polynomials using Hensel lifting to find (if there exist) u(x) and w(x) in $\mathbb{Z}[x]$ such that a = uw.

2. Given

$$b(x) = 48x^4 22x^3 + 47x^2 + 144$$

and an image polynomials

$$u_0(x) = x^2 + 4x + 2$$
 and $w_0(x) = x^2 + 4x + 5$

satisfying $b \equiv 6u_0 w_0 \mod 7$, lift the image polynomials using Hensel lifting to find (if there exist) u(x)and w(x) in $\mathbb{Z}[x]$ such that b = uw.

Acknowledgment: this problem was given to us by Michael Monagan

Problem 2

Vectors of small norm in lattice (20 points)

Let $g_1, \ldots, g_n \in \mathbb{R}^n$ be linearly independent and $\mathcal{L} = \mathbb{Z}g_1 + \cdots + \mathbb{Z}g_n$ be the lattice they generate. Prove that for any vector $x \in \mathbb{R}^n$ there is a vector $g \in \mathcal{L}$ such that

$$|x - g||_2^2 \le \frac{1}{4} \cdot \left(||g_1||_2^2 + \dots + ||g_n||_2^2 \right)$$

Hint: Prove it by induction on n. For the induction step, find $\lambda \in \mathbb{Z}$ such that the vector $x - \lambda g_n$ has minimal distance to hyperplane spanned by g_1, \ldots, g_{n-1} .

Problem 3

Reducing dimension of a low-dimensional lattice (20 points)

Let m < n be integers. If $b_1, \ldots, b_m \in \mathbb{R}^n$ are linearly independent vectors, then we will show that we can construct vectors $c_1, \ldots, c_m \in \mathbb{R}^{n-1}$ such that the lattices corresponding to $\mathbb{Z}b_1 + \cdots + \mathbb{Z}b_m$ and to $\mathbb{Z}c_1 + \cdots + \mathbb{Z}c_m$ are essentially equivalent (up to a multiplicative constant).

- 1. Show that there exists a vector $h_1 \in \mathbb{R}^n$ such that $\langle h_1, b_i \rangle = 0$, for all $i \in [m]$
- 2. Use the Gram-Schmidt procedure to construct an orthogonal basis (h_1, \ldots, h_n) of \mathbb{R}^n with each $h_i \in \mathbb{R}^n$ and $||h_i||_2 = ||h_j||_2$.
- 3. Let H be the $n \times n$ matrix given by

$$H = \begin{pmatrix} h_1^T \\ h_2^T \\ \vdots \\ h_n^T \end{pmatrix}.$$

Let

$$\begin{pmatrix} c_1 & c_2 & \cdots & c_n \end{pmatrix} = H \cdot \begin{pmatrix} b_1 & b_2 & \cdots & b_n \end{pmatrix},$$

where the matrix of c_i 's and b_j 's are column matrices.

If $\alpha = ||h_i||_2$ from the previous part, show that for each $k \in [m]$:

$$||c_k||_2 = \alpha \cdot ||b_k||_2$$

4. Show that $H^T \cdot H = \alpha^2 \cdot I$. Show that the lattices $\alpha^2 (\mathbb{Z}b_1 + \cdots + \mathbb{Z}b_m)$ and $\alpha^2 (\mathbb{Z}c_1 + \cdots + \mathbb{Z}c_m)$ are equivalent, that is:

$$u \in \alpha^2 \left(\mathbb{Z}c_1 + \dots + \mathbb{Z}c_m \right) \Leftrightarrow \frac{1}{\alpha^2} \cdot H^T u \in \alpha^2 \left(\mathbb{Z}b_1 + \dots + \mathbb{Z}b_m \right)$$

Thus, a vector u is a shortest vector in $\alpha^2 (\mathbb{Z}c_1 + \cdots + \mathbb{Z}c_m)$ iff $\frac{1}{\alpha^2} \cdot H^T u$ is a shortest vector in $\alpha^2 (\mathbb{Z}b_1 + \cdots + \mathbb{Z}b_m)$. But notice that each c_i has its last coordinate equal to 0, so the c_i 's are naturally integer vectors in \mathbb{R}^{n-1} .

Problem 4

Issues with the division algorithm - CLO 2.3.5 (20 points)

Let $f(x, y, z) = x^3 - x^2y - x^2z + x$, $f_1(x, y, z) = x^2y - z$, and $f_2(x, y, z) = xy - 1$.

1. Compute using the graded lexicographic order:

$$r_1$$
 = remainder of f on division by (f_1, f_2)
 r_2 = remainder of f on division by (f_2, f_1)

Your results should be *different*. Where in the division algorithm did the difference occur?

- 2. If $r = r_1 r_2$ in the ideal (f_1, f_2) ? If so, find an explicit expression $r = Af_1 + Bf_2$. If not, say why not.
- 3. Compute the remainder of r on division by (f_1, f_2) . Why could you have predicted your answer before doing the division?
- 4. Find another polynomial $g \in (f_1, f_2)$ such that the remainder of division by g by (f_1, f_2) is non-zero.

Hint: $(xy+1) \cdot f_2 = x^2y^2 - 1$ whereas $y \cdot f_1 = x^2y^2 - yz$.

5. Does the division algorithm give us a solution to the ideal membership problem for (f_1, f_2) ? Explain.

Problem 5

Different monomial orders - CLO 2.4.10 (20 points)

The following orders are called weight orders. Let $u = (u_1, \ldots, u_n) \in \mathbb{R}^n$ such that u_1, \ldots, u_n are positive real numbers which are linearly independent over \mathbb{Q} . We say that u is an **independent weight vector**. Then, for $\alpha, \beta \in \mathbb{N}^n$, define:

$$\alpha >_u \beta \Leftrightarrow u \cdot \alpha > u \cdot \beta$$

This is the weight order determined by u.

- 1. Use the corollary of Dickson's lemma from class to prove that $>_u$ is a monomial order.
- 2. Show that $u = (1, \sqrt{2})$ is an independent weight vector, so that $>_u$ is a weight order on \mathbb{N}^2

Problem 6

Monomial Ideals (20 points)

Let $I_1 = (x^{\alpha_1}, \ldots, x^{\alpha_s})$ and $I_2 = (x^{\beta_1}, \ldots, x^{\beta_t})$ be monomial ideals of $\mathbb{C}[x_1, \ldots, x_n]$, where each $\alpha_i, \beta_j \in \mathbb{N}^n$.

- 1. Show that $I_1 \cap I_2$ is generated by the elements $LCM(x^{\alpha_i}, x^{\beta_j})$.
- 2. When is $I_1I_2 = I_1 \cap I_2$? Provide proof of your statement.