Problem 1

Hensel Lifting and Factoring (20 points)

1. Given

$$
a(x)=x^{4} 2 x^{3} 233 x^{2} 214 x+85
$$

and image polynomials

$$
u_{0}(x)=x^{2} 3 x 2 \quad \text { and } \quad w_{0}(x)=x^{2}+x+3
$$

satisfying $a \equiv u_{0} w_{0} \bmod 7$, lift the image polynomials using Hensel lifting to find (if there exist) $u(x)$ and $w(x)$ in $\mathbb{Z}[x]$ such that $a=u w$.
2. Given

$$
b(x)=48 x^{4} 22 x^{3}+47 x^{2}+144
$$

and an image polynomials

$$
u_{0}(x)=x^{2}+4 x+2 \quad \text { and } \quad w_{0}(x)=x^{2}+4 x+5
$$

satisfying $b \equiv 6 u_{0} w_{0} \bmod 7$, lift the image polynomials using Hensel lifting to find (if there exist) $u(x)$ and $w(x)$ in $\mathbb{Z}[x]$ such that $b=u w$.

Acknowledgment: this problem was given to us by Michael Monagan

Problem 2

Vectors of small norm in lattice (20 points)

Let $g_{1}, \ldots, g_{n} \in \mathbb{R}^{n}$ be linearly independent and $\mathcal{L}=\mathbb{Z} g_{1}+\cdots+\mathbb{Z} g_{n}$ be the lattice they generate. Prove that for any vector $x \in \mathbb{R}^{n}$ there is a vector $g \in \mathcal{L}$ such that

$$
\|x-g\|_{2}^{2} \leq \frac{1}{4} \cdot\left(\left\|g_{1}\right\|_{2}^{2}+\cdots+\left\|g_{n}\right\|_{2}^{2}\right)
$$

Hint: Prove it by induction on n. For the induction step, find $\lambda \in \mathbb{Z}$ such that the vector $x-\lambda g_{n}$ has minimal distance to hyperplane spanned by g_{1}, \ldots, g_{n-1}.

Problem 3

Reducing dimension of a low-dimensional lattice (20 points)

Let $m<n$ be integers. If $b_{1}, \ldots, b_{m} \in \mathbb{R}^{n}$ are linearly independent vectors, then we will show that we can construct vectors $c_{1}, \ldots, c_{m} \in \mathbb{R}^{n-1}$ such that the lattices corresponding to $\mathbb{Z} b_{1}+\cdots+\mathbb{Z} b_{m}$ and to $\mathbb{Z} c_{1}+\cdots+\mathbb{Z} c_{m}$ are essentially equivalent (up to a multiplicative constant).

1. Show that there exists a vector $h_{1} \in \mathbb{R}^{n}$ such that $\left\langle h_{1}, b_{i}\right\rangle=0$, for all $i \in[m]$
2. Use the Gram-Schmidt procedure to construct an orthogonal basis $\left(h_{1}, \ldots, h_{n}\right)$ of \mathbb{R}^{n} with each $h_{i} \in \mathbb{R}^{n}$ and $\left\|h_{i}\right\|_{2}=\left\|h_{j}\right\|_{2}$.
3. Let H be the $n \times n$ matrix given by

$$
H=\left(\begin{array}{c}
h_{1}^{T} \\
h_{2}^{T} \\
\vdots \\
h_{n}^{T}
\end{array}\right) .
$$

Let

$$
\left(\begin{array}{llll}
c_{1} & c_{2} & \cdots & c_{n}
\end{array}\right)=H \cdot\left(\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right)
$$

where the matrix of c_{i} 's and b_{j} 's are column matrices.
If $\alpha=\left\|h_{i}\right\|_{2}$ from the previous part, show that for each $k \in[m]$:

$$
\left\|c_{k}\right\|_{2}=\alpha \cdot\left\|b_{k}\right\|_{2}
$$

4. Show that $H^{T} \cdot H=\alpha^{2} \cdot I$. Show that the lattices $\alpha^{2}\left(\mathbb{Z} b_{1}+\cdots+\mathbb{Z} b_{m}\right)$ and $\alpha^{2}\left(\mathbb{Z} c_{1}+\cdots+\mathbb{Z} c_{m}\right)$ are equivalent, that is:

$$
u \in \alpha^{2}\left(\mathbb{Z} c_{1}+\cdots+\mathbb{Z} c_{m}\right) \Leftrightarrow \frac{1}{\alpha^{2}} \cdot H^{T} u \in \alpha^{2}\left(\mathbb{Z} b_{1}+\cdots+\mathbb{Z} b_{m}\right)
$$

Thus, a vector u is a shortest vector in $\alpha^{2}\left(\mathbb{Z} c_{1}+\cdots+\mathbb{Z} c_{m}\right)$ iff $\frac{1}{\alpha^{2}} \cdot H^{T} u$ is a shortest vector in $\alpha^{2}\left(\mathbb{Z} b_{1}+\cdots+\mathbb{Z} b_{m}\right)$.
But notice that each c_{i} has its last coordinate equal to 0 , so the c_{i} 's are naturally integer vectors in \mathbb{R}^{n-1}.

Problem 4

Issues with the division algorithm - CLO 2.3.5 (20 points)

Let $f(x, y, z)=x^{3}-x^{2} y-x^{2} z+x, f_{1}(x, y, z)=x^{2} y-z$, and $f_{2}(x, y, z)=x y-1$.

1. Compute using the graded lexicographic order:

$$
\begin{aligned}
& r_{1}=\text { remainder of } f \text { on division by }\left(f_{1}, f_{2}\right) \\
& r_{2}=\text { remainder of } f \text { on division by }\left(f_{2}, f_{1}\right)
\end{aligned}
$$

Your results should be different. Where in the division algorithm did the difference occur?
2. If $r=r_{1}-r_{2}$ in the ideal $\left(f_{1}, f_{2}\right)$? If so, find an explicit expression $r=A f_{1}+B f_{2}$. If not, say why not.
3. Compute the remainder of r on division by $\left(f_{1}, f_{2}\right)$. Why could you have predicted your answer before doing the division?
4. Find another polynomial $g \in\left(f_{1}, f_{2}\right)$ such that the remainder of division by g by $\left(f_{1}, f_{2}\right)$ is non-zero.

Hint: $\quad(x y+1) \cdot f_{2}=x^{2} y^{2}-1$ whereas $y \cdot f_{1}=x^{2} y^{2}-y z$.
5. Does the division algorithm give us a solution to the ideal membership problem for $\left(f_{1}, f_{2}\right)$? Explain.

Problem 5

Different monomial orders - CLO 2.4.10 (20 points)

The following orders are called weight orders. Let $u=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{n}$ such that u_{1}, \ldots, u_{n} are positive real numbers which are linearly independent over \mathbb{Q}. We say that u is an independent weight vector. Then, for $\alpha, \beta \in \mathbb{N}^{n}$, define:

$$
\alpha>_{u} \beta \Leftrightarrow u \cdot \alpha>u \cdot \beta
$$

This is the weight order determined by u.

1. Use the corollary of Dickson's lemma from class to prove that $>_{u}$ is a monomial order.
2. Show that $u=(1, \sqrt{2})$ is an independent weight vector, so that $>_{u}$ is a weight order on \mathbb{N}^{2}

Problem 6

Monomial Ideals (20 points)

Let $I_{1}=\left(x^{\alpha_{1}}, \ldots, x^{\alpha_{s}}\right)$ and $I_{2}=\left(x^{\beta_{1}}, \ldots, x^{\beta_{t}}\right)$ be monomial ideals of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, where each $\alpha_{i}, \beta_{j} \in \mathbb{N}^{n}$.

1. Show that $I_{1} \cap I_{2}$ is generated by the elements $\operatorname{LCM}\left(x^{\alpha_{i}}, x^{\beta_{j}}\right)$.
2. When is $I_{1} I_{2}=I_{1} \cap I_{2}$? Provide proof of your statement.
