Problem 1

Resultants and Polynomial GCD

1. Calculate the resultant of $A=3 x^{2}+3$ and $B=(x-2)(x+5)$ by hand.
2. Let A, B, C be non-constant polynomials in $R[x]$. Show that

$$
\operatorname{Res}_{x}(A, B C)=\operatorname{Res}_{x}(A, B) \cdot \operatorname{Res}_{x}(A, C)
$$

3. Let A, B be two non-zero polynomials in $\mathbb{Z}[x]$. Let $A=G \bar{A}$ and $B=G \bar{B}$ where $G=\operatorname{gcd}(A, B)$. We say that a prime p is unlucky when $p \mid \operatorname{Res}_{x}(\bar{A}, \bar{B}) \in \mathbb{Z}$. Let

$$
\bar{A}=58 x^{4}-415 x^{3}-111 x+213
$$

and

$$
\bar{B}=69 x^{3}-112 x^{2}+413 x+113 .
$$

Write a Macaulay2 program to compute the resultant $\operatorname{Res}_{x}(\bar{A}, \bar{B})$ and identify all unlucky primes. For each unlucky prime p, compute the gcd of the polynomials \bar{A} and \bar{B} modulo p to verify that the primes are unlucky.

Problem 2

Chinese remaindering and interpolation

Let

$$
a=(9 y-7) x+\left(5 y^{2}+12\right)
$$

and

$$
b=(13 y+23) x^{2}+(21 y-11) x+(11 y-13)
$$

be polynomials in $\mathbb{Z}[y][x]$.
In this question you will compute the product $a \times b$ by developing a modular algorithm. First reduce modulo primes p_{1}, \ldots, p_{ℓ}, where you need to determine an $\ell \in \mathbb{N}$. Then, evaluate at points $y=\beta_{1}, \ldots, \beta_{k}$ and $x=\alpha_{1}, \ldots, \alpha_{m}$, where k and m in \mathbb{N} also need to be determined, so that you end up multiplying in $\mathbb{Z}_{p_{1}}, \ldots, \mathbb{Z}_{p_{\ell}}$. Then use Chinese remaindering and polynomial interpolation to reconstruct the product in $\mathbb{Z}[y][x]$.

You can either do this by hand or by writing Macaulay2 code. If you write code, make sure to show all your steps.

Problem 3

Univariate polynomial factoring over finite fields

1. Factor the following polynomials over \mathbb{Z}_{11} using both the Cantor-Zassenhaus algorithm and the Berlekamp algorithm

$$
\begin{gathered}
a_{1}=x^{4}+8 x^{2}+6 x+8 \\
a_{2}=x^{6}+3 x^{5}-x^{4}+2 x^{3}-3 x+3 \\
a_{3}=x^{8}+x^{7}+x^{6}+2 x^{4}+5 x^{3}+2 x^{2}+8
\end{gathered}
$$

You can either do this by hand or by writing Macaulay2 code. If you write code, make sure to show all your steps.

Problem 4

Newton Iteration and Extended Euclidean Algorithm (EEA)

Let $p=101, \mathbb{F}=\mathbb{Z}_{101}, f=30 x^{7}+31 x^{6}+32 x^{5}+33 x^{4}+34 x^{3}+35 x^{2}+36 x+37 \in \mathbb{F}[x]$ and $g=17 x^{3}+18 x^{2}+19 x+20 \in \mathbb{F}[x]$.

1. Compute $\operatorname{rev}_{3}(g)^{-1} \bmod x^{8}$ using Newton iteration. Show the result after each iteration.
2. Use part (1) and the algorithm given in class to find $q, r \in \mathbb{F}[x]$ with $f=q \cdot g+r$ and $\operatorname{deg} r<3$.
3. Use the EEA to find $f^{-1} \bmod g($ that is, find $h \in \mathbb{F}[x]$ with $f \cdot h \equiv 1 \bmod g)$.
4. Now use Newton iteration to find $f^{-1} \bmod g^{4}$. Show each step of the Newton iteration.

Your answer to this question should be in the form of a Macaulay2 session showing the input and output.

Problem 5

Linear Variant of Newton Iteration

Let $\ell \in \mathbb{N}$ and $f=f_{0}+f_{1} x+\cdots+f_{\ell-1} x^{\ell-1} \in \mathbb{F}[x]$ with $f_{0} \neq 0$ be given.
We consider the linear variant of Newton iteration to compute the inverse $g=g_{0}+g_{1} x+\cdots+g_{\ell-1} x^{\ell-1} \in \mathbb{F}[x]$ of f modulo x^{ℓ}.

In this linear variant, we start with the guess $g^{(0)}=f_{0}^{-1}$ and given $g^{(k)}=g_{0}+g_{1} \cdot x+\cdots+g_{k} x^{k}$ such that $f \cdot g^{(k)} \equiv 1 \bmod x^{k+1}$ we want to find $g^{(k+1)}$ of degree $k+1$ such that:

1. $g^{(k+1)} \equiv g^{(k)} \bmod x^{k+1}$
2. $f \cdot g^{(k+1)} \equiv 1 \bmod x^{k+2}$

For $i=0,1, \ldots, \ell-2$, derive an explicit formula for the coefficient g_{i+1} in terms of the coefficients $g_{0}, g_{1}, \ldots, g_{i}$ and the coefficients of the input polynomial f.

Analyze this algorithm, and determine the number of operations in \mathbb{F} to compute g using the method.

Problem 6

Understanding Abnormalities via the Resultant

Let $R=\mathbb{Q}[y]$ and suppose $f, g \in R[x]$ both have $\operatorname{deg}_{x}=10$ and $\operatorname{deg}_{y}=6$, and suppose $h:=\operatorname{gcd}(f, g)$ has $\operatorname{deg}_{x} h=4$ and $\operatorname{deg}_{y} h=2$.

Derive an upper bound (as good as possible) on the number of distinct integers ℓ such that $\operatorname{gcd}(f(x, \ell), g(x, \ell)) \in$ $\mathbb{Q}[x]$ has degree not equal to 4 .

