
01/11/2021 CS 487/687, CM 730 Homework 1

Problem 1

Continued fractions & Extended Euclidean Algorithm

Let K be a field, and f1, . . . , f` ∈ K. Then

f1 +
1

f2 +
1

· · ·
f`−1 +

1

f`

is the continued fraction, denoted by C(f1, . . . , f`). Now assume R is a Euclidean Domain and K its field of

fractions. For (r0, r1) ∈ R2, let qi ∈ R, for 1 ≤ i ≤ `, be the quotients in the extended Euclidean algorithm.

1. Show that
r0
r1

= C(q1, . . . , ql).

2. A convenient way to represent the continued fraction expansion is as a list [q1, q2, . . . , ql]. Write a Macaulay

2 procedure to compute the continued fraction expansion of two polynomials in Q[x]. Run your algorithm

on r0 = x20 and r1 = x19 + 2x18 + x ∈ Q[x].

Problem 2

Binary GCD Algorithm

Consider the following algorithm to compute the GCD of two positive integers.

Algorithm:

Input: a, b ∈ Z>0

Output: gcd(a, b) ∈ Z>0

1. if a = b then return a;

2. if both a and b are even then return 2 gcd(a/2, b/2);

3. if exactly one number is even, say a, then return gcd(a/2, b);

4. if both a and b are odd, with, say a > b, then return gcd((a− b)/2, b);

1. Implement the above algorithm in Macaulay 2 (call it binarygcd) and show it works on the pairs (34, 21),

(136, 51), (481, 325), (8771, 3206).

2. Prove the algorithm above works correctly. Use induction (you figure out what to base the induction on).

3. Find a good upper bound on the recursion depth, and use this to prove a running time of O(`2) bit

operations on inputs of size ` (that is, lg a, lg b ≤ `).

4. Modify the algorithm so that it additionally computes s, t ∈ Z such that sa + tb = gcd(a, b). Give your

answer in the form of a Macaulay 2 function called ebinarygcd and test it on the pairs from part (1).

1

01/11/2021 CS 487/687, CM 730 Homework 1

Problem 3

Polynomial Evaluation

Suppose you are given as input a polynomial f ∈ R[y] of degree n, together with a matrix A ∈ R[x]n×n filled

with polynomials bounded in degree by d > 0.

1. Assuming the naive cost model, derive the cost of computing f(A) using Horner’s scheme. Note: You are

counting ring operations from R, and your cost estimates should be in terms of the input parameters n

and d.

2. Assuming the naive cost model, derive the cost of computing f(A) using the baby-steps/giant-steps

approach of Patterson and Stockmeyer.

3. Now assume Karatsuba is used for the polynomial multiplication, and derive the cost of computing f(A)

using the baby-steps/giant-steps approach.

Problem 4

Karatsuba’s algorithm

Let R be a ring (commutative, with 1) and f, g ∈ R[x, y] (polynomials in the two variables x and y). Assume

that f and g have degrees less than m in y and n in x. Let h = f · g be the product of f and g.

1. Viewing f and g as polynomials in x with coefficients from R[y], bound the cost of operations in R to

compute h assuming the classical school method for univariate polynomial multiplication.

2. Now bound the number of operations from R to compute h when Karatsuba’s algorithm is used.

2

01/11/2021 CS 487/687, CM 730 Homework 1

Problem 5

Fast Fourier Transform

In this problem, we study another form of FFT. Let n be a positive integer, and assume that n is a power of

2. Let m := n/2.

1. We know that the roots of unity of order n in C are the roots of xn−1. Show that they can be partitioned

into the roots of xm − 1 and of xm + 1. Explicitly, what are the roots of these two polynomials?

2. Suppose that P is a polynomial in C[x] of degree less than n, with n = 2m. Show that you can compute

P+ := P mod (xm − 1) and P− := P mod (xm + 1) in linear time (in n).

3. Show that if z is a root of xm − 1, then P (z) = P+(z), and if z is a root of xm + 1, then P (z) = P−(z).

Hint: use the Euclidean division equality P = A+ · (xm − 1) + P+ (and its analogue).

4. Let Q−(x) := P−(x/ω), with ω = exp(iπ/m). Given ω and P−, show how to compute the coefficients of

Q− in linear time.

5. Show that z is a root of xm +1 if and only if ωz is a root of xm−1, and that in this case P−(z) = Q−(ωz).

6. Put everything together to get another FFT algorithm of cost O(n log n), for n a power of 2.

Problem 6

Fast computation of elementary symmetric polynomials.

Consider the elementary symmetric polynomial of degree d in n variables.

Ed(x1, . . . , xn) =
∑
S⊂[n]
|S|=d

∏
i∈S

xi

Prove that for any pair (n, d) where n ≥ d the elementary symmetric polynomial can be computed by a

depth-3 circuit of size poly(n, d). That is, the elementary symmetric polynomials can also be computed really

fast in the parallel model.

1. Consider the polynomial

p(x1, . . . , xn, t) =

n∏
i=1

(t+ xi)

as a polynomial in C[x1, . . . , xn][t]. For 0 ≤ d ≤ n, what is the coefficient of monomial td in p?

2. Show how to obtain the elementary symmetric polynomial Ed(x1, . . . , xn) via interpolation.

3. Conclude by expressing Ed(x1, . . . , xn) as a poly(n, d)-sized, depth 3 algebraic circuit.

3

