Problem 1

Continued fractions \& Extended Euclidean Algorithm

Let \mathbb{K} be a field, and $f_{1}, \ldots, f_{\ell} \in \mathbb{K}$. Then

$$
f_{1}+\frac{1}{f_{2}+\frac{1}{\cdots \frac{1}{f_{\ell-1}+\frac{1}{f_{\ell}}}}}
$$

is the continued fraction, denoted by $C\left(f_{1}, \ldots, f_{\ell}\right)$. Now assume R is a Euclidean Domain and \mathbb{K} its field of fractions. For $\left(r_{0}, r_{1}\right) \in R^{2}$, let $q_{i} \in R$, for $1 \leq i \leq \ell$, be the quotients in the extended Euclidean algorithm.

1. Show that

$$
\frac{r_{0}}{r_{1}}=C\left(q_{1}, \ldots, q_{l}\right)
$$

2. A convenient way to represent the continued fraction expansion is as a list $\left[q_{1}, q_{2}, \ldots, q_{l}\right]$. Write a Macaulay 2 procedure to compute the continued fraction expansion of two polynomials in $\mathbb{Q}[x]$. Run your algorithm on $r_{0}=x^{20}$ and $r_{1}=x^{19}+2 x^{18}+x \in \mathbb{Q}[x]$.

Problem 2

Binary GCD Algorithm

Consider the following algorithm to compute the GCD of two positive integers.

Algorithm:

Input: $a, b \in \mathbb{Z}_{>0}$
Output: $\operatorname{gcd}(a, b) \in \mathbb{Z}_{>0}$

1. if $a=b$ then return a;
2. if both a and b are even then return $2 \operatorname{gcd}(a / 2, b / 2)$;
3. if exactly one number is even, say a, then return $\operatorname{gcd}(a / 2, b)$;
4. if both a and b are odd, with, say $a>b$, then return $\operatorname{gcd}((a-b) / 2, b)$;
5. Implement the above algorithm in Macaulay 2 (call it binarygcd) and show it works on the pairs (34, 21), $(136,51),(481,325),(8771,3206)$.
6. Prove the algorithm above works correctly. Use induction (you figure out what to base the induction on).
7. Find a good upper bound on the recursion depth, and use this to prove a running time of $O\left(\ell^{2}\right)$ bit operations on inputs of size ℓ (that is, $\lg a, \lg b \leq \ell$).
8. Modify the algorithm so that it additionally computes $s, t \in \mathbb{Z}$ such that $s a+t b=\operatorname{gcd}(a, b)$. Give your answer in the form of a Macaulay 2 function called ebinarygcd and test it on the pairs from part (1).

Problem 3

Polynomial Evaluation

Suppose you are given as input a polynomial $f \in R[y]$ of degree n, together with a matrix $A \in R[x]^{n \times n}$ filled with polynomials bounded in degree by $d>0$.

1. Assuming the naive cost model, derive the cost of computing $f(A)$ using Horner's scheme. Note: You are counting ring operations from R, and your cost estimates should be in terms of the input parameters n and d.
2. Assuming the naive cost model, derive the cost of computing $f(A)$ using the baby-steps/giant-steps approach of Patterson and Stockmeyer.
3. Now assume Karatsuba is used for the polynomial multiplication, and derive the cost of computing $f(A)$ using the baby-steps/giant-steps approach.

Problem 4

Karatsuba's algorithm

Let R be a ring (commutative, with 1) and $f, g \in R[x, y]$ (polynomials in the two variables x and y). Assume that f and g have degrees less than m in y and n in x. Let $h=f \cdot g$ be the product of f and g.

1. Viewing f and g as polynomials in x with coefficients from $R[y]$, bound the cost of operations in R to compute h assuming the classical school method for univariate polynomial multiplication.
2. Now bound the number of operations from R to compute h when Karatsuba's algorithm is used.

Problem 5

Fast Fourier Transform

In this problem, we study another form of FFT. Let n be a positive integer, and assume that n is a power of 2. Let $m:=n / 2$.

1. We know that the roots of unity of order n in \mathbb{C} are the roots of $x^{n}-1$. Show that they can be partitioned into the roots of $x^{m}-1$ and of $x^{m}+1$. Explicitly, what are the roots of these two polynomials?
2. Suppose that P is a polynomial in $\mathbb{C}[x]$ of degree less than n, with $n=2 m$. Show that you can compute $P_{+}:=P \bmod \left(x^{m}-1\right)$ and $P_{-}:=P \bmod \left(x^{m}+1\right)$ in linear time (in $\left.n\right)$.
3. Show that if z is a root of $x^{m}-1$, then $P(z)=P_{+}(z)$, and if z is a root of $x^{m}+1$, then $P(z)=P_{-}(z)$.

Hint: use the Euclidean division equality $P=A_{+} \cdot\left(x^{m}-1\right)+P_{+}$(and its analogue).
4. Let $Q_{-}(x):=P_{-}(x / \omega)$, with $\omega=\exp (i \pi / m)$. Given ω and P_{-}, show how to compute the coefficients of Q_{-}in linear time.
5. Show that z is a root of $x^{m}+1$ if and only if ωz is a root of $x^{m}-1$, and that in this case $P_{-}(z)=Q_{-}(\omega z)$.
6. Put everything together to get another FFT algorithm of cost $O(n \log n)$, for n a power of 2 .

Problem 6

Fast computation of elementary symmetric polynomials.

Consider the elementary symmetric polynomial of degree d in n variables.

$$
E_{d}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{S \subset[n] \\|S|=d}} \prod_{i \in S} x_{i}
$$

Prove that for any pair (n, d) where $n \geq d$ the elementary symmetric polynomial can be computed by a depth-3 circuit of size poly (n, d). That is, the elementary symmetric polynomials can also be computed really fast in the parallel model.

1. Consider the polynomial

$$
p\left(x_{1}, \ldots, x_{n}, t\right)=\prod_{i=1}^{n}\left(t+x_{i}\right)
$$

as a polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right][t]$. For $0 \leq d \leq n$, what is the coefficient of monomial t^{d} in p ?
2. Show how to obtain the elementary symmetric polynomial $E_{d}\left(x_{1}, \ldots, x_{n}\right)$ via interpolation.
3. Conclude by expressing $E_{d}\left(x_{1}, \ldots, x_{n}\right)$ as a poly (n, d)-sized, depth 3 algebraic circuit.

