Problem 1

Continued fractions & Extended Euclidean Algorithm

Let \mathbb{K} be a field, and $f_1, \ldots, f_\ell \in \mathbb{K}$. Then

$$f_1 + \frac{1}{f_2 + \frac{1}{\cdots \frac{1}{f_{\ell-1} + \frac{1}{f_{\ell}}}}}$$

is the *continued fraction*, denoted by $C(f_1, \ldots, f_\ell)$. Now assume R is a Euclidean Domain and \mathbb{K} its field of fractions. For $(r_0, r_1) \in \mathbb{R}^2$, let $q_i \in \mathbb{R}$, for $1 \leq i \leq \ell$, be the quotients in the extended Euclidean algorithm.

1. Show that

$$\frac{r_0}{r_1} = C(q_1, \dots, q_l).$$

2. A convenient way to represent the continued fraction expansion is as a list $[q_1, q_2, \dots, q_l]$. Write a Macaulay 2 procedure to compute the continued fraction expansion of two polynomials in $\mathbb{Q}[x]$. Run your algorithm on $r_0 = x^{20}$ and $r_1 = x^{19} + 2x^{18} + x \in \mathbb{Q}[x]$.

Problem 2

Binary GCD Algorithm

Consider the following algorithm to compute the GCD of two positive integers.

Algorithm:

Input: $a, b \in \mathbb{Z}_{>0}$

Output: $gcd(a, b) \in \mathbb{Z}_{>0}$

- 1. if a = b then return a;
- 2. if both a and b are even then return $2 \gcd(a/2, b/2)$;
- 3. if exactly one number is even, say a, then return gcd(a/2, b);
- 4. if both a and b are odd, with, say a > b, then return gcd((a b)/2, b);
 - 1. Implement the above algorithm in Macaulay 2 (call it binarygcd) and show it works on the pairs (34, 21), (136, 51), (481, 325), (8771, 3206).
 - 2. Prove the algorithm above works correctly. Use induction (you figure out what to base the induction on).
 - 3. Find a good upper bound on the recursion depth, and use this to prove a running time of $O(\ell^2)$ bit operations on inputs of size ℓ (that is, $\lg a, \lg b \leq \ell$).
 - 4. Modify the algorithm so that it additionally computes $s, t \in \mathbb{Z}$ such that $sa + tb = \gcd(a, b)$. Give your answer in the form of a Macaulay 2 function called ebinarygcd and test it on the pairs from part (1).

Problem 3

Polynomial Evaluation

Suppose you are given as input a polynomial $f \in R[y]$ of degree n, together with a matrix $A \in R[x]^{n \times n}$ filled with polynomials bounded in degree by d > 0.

- 1. Assuming the naive cost model, derive the cost of computing f(A) using Horner's scheme. Note: You are counting ring operations from R, and your cost estimates should be in terms of the input parameters n and d.
- 2. Assuming the naive cost model, derive the cost of computing f(A) using the baby-steps/giant-steps approach of Patterson and Stockmeyer.
- 3. Now assume Karatsuba is used for the polynomial multiplication, and derive the cost of computing f(A) using the baby-steps/giant-steps approach.

Problem 4

Karatsuba's algorithm

Let R be a ring (commutative, with 1) and $f, g \in R[x, y]$ (polynomials in the two variables x and y). Assume that f and g have degrees less than m in y and n in x. Let $h = f \cdot g$ be the product of f and g.

- 1. Viewing f and g as polynomials in x with coefficients from R[y], bound the cost of operations in R to compute h assuming the classical school method for univariate polynomial multiplication.
- 2. Now bound the number of operations from R to compute h when Karatsuba's algorithm is used.

Problem 5

Fast Fourier Transform

In this problem, we study another form of FFT. Let n be a positive integer, and assume that n is a power of 2. Let m := n/2.

- 1. We know that the roots of unity of order n in \mathbb{C} are the roots of $x^n 1$. Show that they can be partitioned into the roots of $x^m 1$ and of $x^m + 1$. Explicitly, what are the roots of these two polynomials?
- 2. Suppose that P is a polynomial in $\mathbb{C}[x]$ of degree less than n, with n=2m. Show that you can compute $P_+ := P \mod (x^m 1)$ and $P_- := P \mod (x^m + 1)$ in linear time (in n).
- 3. Show that if z is a root of $x^m 1$, then $P(z) = P_+(z)$, and if z is a root of $x^m + 1$, then $P(z) = P_-(z)$.

Hint: use the Euclidean division equality $P = A_+ \cdot (x^m - 1) + P_+$ (and its analogue).

- 4. Let $Q_{-}(x) := P_{-}(x/\omega)$, with $\omega = \exp(i\pi/m)$. Given ω and P_{-} , show how to compute the coefficients of Q_{-} in linear time.
- 5. Show that z is a root of $x^m + 1$ if and only if ωz is a root of $x^m 1$, and that in this case $P_-(z) = Q_-(\omega z)$.
- 6. Put everything together to get another FFT algorithm of cost $O(n \log n)$, for n a power of 2.

Problem 6

Fast computation of elementary symmetric polynomials.

Consider the elementary symmetric polynomial of degree d in n variables.

$$E_d(x_1, \dots, x_n) = \sum_{\substack{S \subset [n] \\ |S| = d}} \prod_{i \in S} x_i$$

Prove that for any pair (n, d) where $n \ge d$ the elementary symmetric polynomial can be computed by a depth-3 circuit of size poly(n, d). That is, the elementary symmetric polynomials can also be computed really fast in the parallel model.

1. Consider the polynomial

$$p(x_1, \dots, x_n, t) = \prod_{i=1}^{n} (t + x_i)$$

as a polynomial in $\mathbb{C}[x_1,\ldots,x_n][t]$. For $0 \leq d \leq n$, what is the coefficient of monomial t^d in p?

- 2. Show how to obtain the elementary symmetric polynomial $E_d(x_1,\ldots,x_n)$ via interpolation.
- 3. Conclude by expressing $E_d(x_1,\ldots,x_n)$ as a poly(n,d)-sized, depth 3 algebraic circuit.