CS 487 / · · · Introduction to Symbolic Computation

University of Waterloo Éric Schost eschost@uwaterloo.ca

The exponent of linear algebra

Main idea

All problems of linear algebra are more or less equivalent.

More precisely

- the **exponent** of a problem P (multiplication, inverse, ...) is a number ω_P such that one can solve problem P for matrices of size n in time $O(n^{\omega_P})$.
- then

```
\omega_{product} = \omega_{inverse} = \omega_{determinant} = \cdots
```

Inverse \implies multiplication

Suppose we want to multiply two matrices *A* and *B*, but all that we have is an algorithm for inverse.

Define

$$D = \left[\begin{array}{ccc} I_n & A & 0 \\ 0 & I_n & B \\ 0 & 0 & I_n \end{array} \right]$$

Then

$$D^{-1} = \left[\begin{array}{ccc} I_n & -A & AB \\ 0 & I_n & -B \\ 0 & 0 & I_n \end{array} \right]$$

So product in size n can be done using inverse in size 3n, so in time

$$O((3n)^{\omega_{\text{inverse}}}) = O(n^{\omega_{\text{inverse}}}).$$

$Multiplication \implies inverse$

Suppose we want to invert a matrix A of size $n = 2^k$. We cut A into blocks of size m = n/2:

$$A = \left[\begin{array}{cc} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{array} \right].$$

and do as if we invert a 2×2 matrix.

$$\begin{bmatrix} I_m & 0 \\ -A_{2,1}A_{1,1}^{-1} & I_m \end{bmatrix} A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ 0 & S \end{bmatrix}, \quad S = A_{2,2} - A_{2,1}A_{1,1}^{-1}A_{1,2},$$

so

$$A^{-1} = \begin{bmatrix} A_{1,1}^{-1} & -A_{1,1}^{-1} A_{1,2} S^{-1} \\ 0 & S^{-1} \end{bmatrix} \begin{bmatrix} I_m & 0 \\ -A_{2,1} A_{1,1}^{-1} & I_m \end{bmatrix}$$

$Multiplication \implies inverse$

Complexity:

$$I(n) < 2I(n/2) + Cn^{\omega_{\text{product}}}$$

implies

$$I(n) < C'n^{\omega_{\text{product}}}$$

Proof: some form of the master theorem.

Remark 1: we need our matrices to be "nice" for this to work: $A_{1,1}$ may be not invertible, even if A is.

Remark 2: this also gives the determinant.

Automatic differentiation

Partial derivatives

Def: if $F(X_1, ..., X_N)$ is a polynomial in N variables, we define the partial derivatives

$$\frac{\partial F}{\partial X_1}, \ldots, \frac{\partial F}{\partial X_N},$$

where

$$\frac{\partial F}{\partial X_i}$$

is obtained by keeping all other X_j constant, and differentiating in X_i .

Example: with

$$F = X_1 X_2 - X_3 X_4,$$

we get

$$\frac{\partial F}{\partial X_1} = X_2, \quad \frac{\partial F}{\partial X_2} = X_1, \quad \frac{\partial F}{\partial X_3} = -X_4, \quad \frac{\partial F}{\partial X_4} = -X_3.$$

Automatic differentiation

Prop.

If F can be computed using L operations +, -, ×, then all partial derivatives

$$\frac{\partial F}{\partial X_1}, \ldots, \frac{\partial F}{\partial X_N},$$

can be computed using 4L operations.

• Independent of *N*.

Remarks

- widely used for optimization (using Newton's iteration in several variables)
- some polynomials (such as $(X-1)^k$) can be computed using few operations $(L = O(\log(k)))$, even though they have a lot of monomials.

Not only in symbolic computation

Journal of Machine Learning Research 18 (2018) 1-43

A naive solution

We are given a program Γ with input variables X_1, \ldots, X_N .

Example:

$$G_1 = X_1 - X_2$$

 $G_2 = G_1^2$
 $G_3 = G_2 X_3$

computes $(X_1 - X_2)^2 X_3$, with L = 3.

A naive solution

We are given a program Γ with input variables X_1, \ldots, X_N .

Example:

$$G_1 = X_1 - X_2$$

 $G_2 = G_1^2$
 $G_3 = G_2 X_3$

computes $(X_1 - X_2)^2 X_3$, with L = 3.

We can follow line-by-line and apply the rules for differentiation. This is called the **direct mode**.

G_{i}	$\partial G_i/\partial X_1$	$\partial G_i/\partial X_2$	$\partial G_i/\partial X_3$
$G_1 = X_1 - X_2$		-1	0
$G_2=G_1^2$	$2G_1\partial G_1/\partial X_1$	$2G_1\partial G_1/\partial X_2$	$2G_1\partial G_1/\partial X_3$
$G_3 = X_3 G_2$	$X_3 \partial G_2 / \partial X_1$	$X_3 \partial G_2 / \partial X_2$	$X_3 \partial G_2 / \partial X_3 + G_2$

Total: O(NL)

Setup.

- Let G_1, \ldots, G_L be the polynomials computed by Γ .
- Let Δ the program in variables X_1, \ldots, X_N, Y obtained by removing the first line of Γ and replacing G_1 by Y. Let D_2, \ldots, D_L be the polynomials it computes.

Example: with Γ given by

$$egin{array}{c|c} G_1 = X_1 imes X_2 & G_1 = X_1 X_2 \\ G_2 = G_1 + X_1 & G_2 = X_1 X_2 + X_1 \\ G_3 = G_1 imes G_2 & G_3 = X_1^2 X_2^2 + X_1^2 X_2 \end{array}$$

We get Δ given by

$$D_2 = Y + X_1$$
 $D_2 = Y + X_1$
 $D_3 = Y \times D_2$ $D_3 = Y^2 + YX_1$

Prop.
$$G_L = D_L(X_1, ..., X_N, G_1(X_1, ..., X_N))$$

Prop.
$$G_L = D_L(X_1, ..., X_N, G_1(X_1, ..., X_N))$$

Corollary For all i = 1, ..., N,

$$\frac{\partial G_L}{\partial X_i} = \frac{\partial D_L}{\partial X_i}(X_1, \dots, X_N, G_1) + \frac{\partial D_L}{\partial Y}(X_1, \dots, X_N, G_1) \frac{\partial G_1}{\partial X_i}.$$

Prop. $G_L = D_L(X_1, ..., X_N, G_1(X_1, ..., X_N))$

Corollary For all i = 1, ..., N,

$$\frac{\partial G_L}{\partial X_i} = \frac{\partial D_L}{\partial X_i}(X_1, \dots, X_N, G_1) + \frac{\partial D_L}{\partial Y}(X_1, \dots, X_N, G_1) \frac{\partial G_1}{\partial X_i}.$$

Key remark. G_1 has one of the following shapes

$$X_a + X_b$$
, $X_a X_b$, λX_a , $\lambda + X_a$.

Prop.
$$G_L = D_L(X_1, ..., X_N, G_1(X_1, ..., X_N))$$

Corollary For all i = 1, ..., N,

$$\frac{\partial G_L}{\partial X_i} = \frac{\partial D_L}{\partial X_i}(X_1, \dots, X_N, G_1) + \frac{\partial D_L}{\partial Y}(X_1, \dots, X_N, G_1) \frac{\partial G_1}{\partial X_i}.$$

Key remark. G_1 has one of the following shapes

$$X_a + X_b$$
, $X_a X_b$, λX_a , $\lambda + X_a$.

For
$$i \notin \{a, b\}$$
,

$$\frac{\partial G_L}{\partial X_i} = \frac{\partial D_L}{\partial X_i}.$$

For i = a (same for b)

$$\frac{\partial G_L}{\partial X_a} = \frac{\partial D_L}{\partial X_a} + \frac{\partial D_L}{\partial Y}(X_1, \dots, X_N, G_1) \quad \text{(first - fourth cases)}$$

$$\frac{\partial G_L}{\partial X_a} = \frac{\partial D_L}{\partial X_a} + \frac{\partial D_L}{\partial Y}(X_1, \dots, X_N, G_1)X_b \quad \text{(second case)}$$

$$\frac{\partial G_L}{\partial X_a} = \frac{\partial D_L}{\partial X_a} + \frac{\partial D_L}{\partial Y}(X_1, \dots, X_N, G_1)\lambda \quad \text{(third case)}$$

At most **2** new operations for $\frac{\partial G_L}{\partial X_a}$ and **2** new operations for $\frac{\partial G_L}{\partial X_b}$ (if there is a *b*).

For
$$i = a$$
 (same for b)

$$\frac{\partial G_L}{\partial X_a} = \frac{\partial D_L}{\partial X_a} + \frac{\partial D_L}{\partial Y}(X_1, \dots, X_N, G_1) \quad \text{(first - fourth cases)}$$

$$\frac{\partial G_L}{\partial X_a} = \frac{\partial D_L}{\partial X_a} + \frac{\partial D_L}{\partial Y}(X_1, \dots, X_N, G_1)X_b \quad \text{(second case)}$$

$$\frac{\partial G_L}{\partial X_a} = \frac{\partial D_L}{\partial X_a} + \frac{\partial D_L}{\partial Y}(X_1, \dots, X_N, G_1)\lambda \quad \text{(third case)}$$

At most 2 new operations for $\frac{\partial G_L}{\partial X_a}$ and 2 new operations for $\frac{\partial G_L}{\partial X_b}$ (if there is a b).

Conclusion. If we know a program Δ' that augments Δ by computing all partial derivatives of D_L in X_1, \ldots, X_N, Y , we can deduce a program Γ' of length $\leq L(\Delta') + 4$, that computes all partial derivatives of G_L .

Complexity

Corollary. Continuing inductively to remove the first lines, we finally obtain a program of length 1.

- The gradient of such a program is easy to compute.
- Then we can go backward to recover the gradient of G_L , adding a bounded number of operations (at most 4) at each step.

So the gradient of G_L can be computed using 4L operations.

We detail the previous example. Removing the first instruction in Δ gives the program

$$\Phi \quad E_3 = Y \times Z \quad | \quad E_3(X_1, X_2, Y, Z) = YZ.$$

Hence,

$$\frac{\partial E_3}{\partial X_1} = \frac{\partial E_3}{\partial X_2} = 0, \quad \frac{\partial E_3}{\partial Y} = Z, \quad \frac{\partial E_3}{\partial Z} = Y$$

So the program Φ' computes E_3 and its gradient:

$$\Phi' \begin{vmatrix} E_3 = Y \times Z \\ E_{3,X_{12}} = 0 \\ E_{3,Y} = Z \\ E_{3,Z} = Y \end{vmatrix} (\text{gives } \frac{\partial E_3}{\partial X_1} \text{ and } \frac{\partial E_3}{\partial X_2})$$

Recall that $D_3(X_1, X_2, Y) = E_3(X_1, X_2, Y, Y + X_1)$, so

$$\frac{\partial D_3}{\partial X_1, X_2, Y} = \frac{\partial E_3}{\partial X_1, X_2, Y} (X_1, X_2, Y, Y + X_1) + \frac{\partial E_3}{\partial Z} (X_1, X_2, Y, Y + X_1) \frac{\partial (Y + X_1)}{\partial X_1, X_2, Y}$$

Recall that $D_3(X_1, X_2, Y) = E_3(X_1, X_2, Y, Y + X_1)$, so

$$\begin{split} \frac{\partial D_3}{\partial \pmb{X_1}, \pmb{X_2}, \pmb{Y}} &= \frac{\partial E_3}{\partial \pmb{X_1}, \pmb{X_2}, \pmb{Y}} (X_1, X_2, Y, Y + X_1) + \frac{\partial E_3}{\partial Z} (X_1, X_2, Y, Y + X_1) \frac{\partial (Y + X_1)}{\partial \pmb{X_1}, \pmb{X_2}, \pmb{Y}} \\ \text{and thus} & \frac{\frac{\partial D_3}{\partial \pmb{X_1}}}{\frac{\partial D_3}{\partial \pmb{X_2}}} &= \frac{\partial E_3}{\partial \pmb{X_2}} (X_1, X_2, Y, Y + X_1) \\ \frac{\partial D_3}{\partial \pmb{X_2}} &= \frac{\partial E_3}{\partial \pmb{X_2}} (X_1, X_2, Y, Y + X_1) \\ \frac{\partial D_3}{\partial \pmb{Y}} &= \frac{\partial E_3}{\partial \pmb{Y}} (X_1, X_2, Y, Y + X_1) + \frac{\partial E_3}{\partial Z} (X_1, X_2, Y, Y + X_1) \end{split}$$

Recall that $D_3(X_1, X_2, Y) = E_3(X_1, X_2, Y, Y + X_1)$, so

$$\frac{\partial D_3}{\partial X_1, X_2, Y} = \frac{\partial E_3}{\partial X_1, X_2, Y} (X_1, X_2, Y, Y + X_1) + \frac{\partial E_3}{\partial Z} (X_1, X_2, Y, Y + X_1) \frac{\partial (Y + X_1)}{\partial X_1, X_2, Y}$$

and thus
$$\begin{array}{l} \frac{\partial D_3}{\partial \textbf{X}_1} = \frac{\partial E_3}{\partial \textbf{X}_1} (X_1, X_2, Y, Y + X_1) + \frac{\partial E_3}{\partial Z} (X_1, X_2, Y, Y + X_1) \\ \frac{\partial D_3}{\partial X_2} = \frac{\partial E_3}{\partial X_2} (X_1, X_2, Y, Y + X_1) \\ \frac{\partial D_3}{\partial Y} = \frac{\partial E_3}{\partial Y} (X_1, X_2, Y, Y + X_1) + \frac{\partial E_3}{\partial Z} (X_1, X_2, Y, Y + X_1) \end{array}$$

$$\begin{array}{c|c} D_2 = Y + X_1 \\ D_3 = Y \times D_2 \\ E_{3,X_{12}} = 0 \\ E_{3,Y} = D_2 \\ E_{3,Z} = Y \\ D_{3,X_1} = E_{3,X_{1,2}} + E_{3,Z} \\ D_{3,Y} = E_{3,Y} + E_{3,Z} \\ \end{array} \qquad \begin{array}{c} (\text{gives} \frac{\partial D_3}{\partial X_1}) \\ (\text{gives} \frac{\partial D_3}{\partial X_1}) \\ (\text{gives} \frac{\partial D_3}{\partial Y}) \end{array}$$

Recall that
$$G_3(X_1, X_2) = E_3(X_1, X_2, X_1X_2)$$
, so

$$\begin{array}{lll} \frac{\partial G_3}{\partial X_1} & = & \frac{\partial D_3}{\partial X_1}(X_1, X_2, X_1 X_2) + \frac{\partial D_3}{\partial Y}(X_1, X_2, X_1 X_2) \frac{\partial X_1 X_2}{\partial X_1} \\ & = & \frac{\partial D_3}{\partial X_1}(X_1, X_2, X_1 X_2) + X_2 \frac{\partial D_3}{\partial Y}(X_1, X_2, X_1 X_2) \\ \frac{\partial G_3}{\partial X_2} & = & \frac{\partial D_3}{\partial X_2}(X_1, X_2, X_1 X_2) + \frac{\partial D_3}{\partial Y}(X_1, X_2, X_1 X_2) \frac{\partial X_1 X_2}{\partial X_2} \\ & = & \frac{\partial D_3}{\partial X_2}(X_1, X_2, X_1 X_2) + X_1 \frac{\partial D_3}{\partial Y}(X_1, X_2, X_1 X_2) \end{array}$$

This finally yields

$$G_1 = X_1 \times X_2$$

$$G_2 = G_1 + X_1$$

$$G_3 = G_1 \times G_2$$

$$E_{3,X_{1,2}} = 0$$

$$E_{3,Y} = G_2$$

$$E_{3,Z} = G_1$$

$$D_{3,X_1} = E_{3,X_{1,2}} + E_{3,Z}$$

$$D_{3,Y} = E_{3,Y} + E_{3,Z}$$

$$tmp_1 = D_{3,Y} \times X_2$$

$$G_{3,X_1} = D_{3,X_1} + tmp_1 \qquad (gives \frac{\partial G_3}{\partial X_1})$$

$$tmp_2 = D_{3,Y} \times X_1$$

$$G_{3,X_2} = E_{3,X_{1,2}} + tmp_2 \qquad (gives \frac{\partial G_3}{\partial X_2})$$

Back to matrix computations

Differentiating the determinant

Using automatic differentiation, an algorithm for the **determinant** gives an algorithm for **inverse**.

Prop. Let $A = [a_{i,j}]$ be a matrix of size n, whose entries are variables.

• The derivatives of the determinant of A w.r.t. $a_{1,1}, \ldots, a_{n,n}$ are (almost) the entries of A^{-1} .

"Proof" (on an example): n = 3. Take

$$A = \left[\begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right]$$

SO

$$\det(A) = a_{1,1}a_{2,2}a_{3,3} - a_{1,1}a_{2,3}a_{3,2} + a_{2,1}a_{3,2}a_{1,3} -a_{2,1}a_{1,2}a_{3,3} + a_{3,1}a_{1,2}a_{2,3} - a_{3,1}a_{2,2}a_{1,3}.$$

Example with n = 3

Take the partial derivatives:

$$\frac{\partial A}{\partial a_{1,1}} = a_{2,2}a_{3,3} - a_{2,3}a_{3,2}
\frac{\partial A}{\partial a_{1,2}} = a_{3,1}a_{2,3} - a_{1,2}a_{3,3}
\frac{\partial A}{\partial a_{1,3}} = a_{2,1}a_{3,2} - a_{3,1}a_{2,2}, \text{ etc} \dots$$

whereas the entries of $B = A^{-1}$ are

$$b_{1,1} = \frac{a_{2,2}a_{3,3} - a_{2,3}a_{3,2}}{\det(A)}$$

$$b_{2,1} = \frac{a_{3,1}a_{2,3} - a_{1,2}a_{3,3}}{\det(A)}$$

$$b_{3,1} = \frac{a_{2,1}a_{3,2} - a_{3,1}a_{2,2}}{\det(A)}, \text{ etc} \dots$$

Determinant \Longrightarrow **inverse**

Suppose we have a program using L additions / subtractions / multiplications that computes the determinant of A.

(No division because I don't want to bother with the issues of division by zero)

Then we can turn it into a program that computes all entries of A^{-1} using O(L) additions / subtractions / multiplications, and 1 division (by the determinant).