CS 487 / \ldots Introduction to Symbolic Computation

University of Waterloo
Éric Schost
eschost@uwaterloo.ca

The exponent of linear algebra
$2 / 23$

Main idea

All problems of linear algebra are more or less equivalent.

More precisely

- the exponent of a problem P (multiplication, inverse, \ldots) is a number ω_{P} such that one can solve problem P for matrices of size \boldsymbol{n} in time $\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{\omega}_{P}}\right)$.
- then

$$
\omega_{\text {product }}=\omega_{\text {inverse }}=\omega_{\text {determinant }}=\cdots
$$

Inverse \Longrightarrow multiplication

Suppose we want to multiply two matrices A and B, but all that we have is an algorithm for inverse.

Define

$$
D=\left[\begin{array}{ccc}
I_{n} & A & 0 \\
0 & I_{n} & B \\
0 & 0 & I_{n}
\end{array}\right]
$$

Then

$$
D^{-1}=\left[\begin{array}{ccc}
I_{n} & -A & A B \\
0 & I_{n} & -B \\
0 & 0 & I_{n}
\end{array}\right]
$$

So product in size n can be done using inverse in size $3 n$, so in time

$$
\boldsymbol{O}\left((3 n)^{\omega_{\text {inverse }}}\right)=\boldsymbol{O}\left(n^{\omega_{\text {inverse }}}\right)
$$

Multiplication \Longrightarrow inverse

Suppose we want to invert a matrix A of size $n=2^{k}$. We cut A into blocks of size $m=n / 2$:

$$
A=\left[\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right]
$$

and do as if we invert a 2×2 matrix.

$$
\left[\begin{array}{cc}
I_{m} & 0 \\
-A_{2,1} A_{1,1}^{-1} & I_{m}
\end{array}\right] A=\left[\begin{array}{cc}
A_{1,1} & A_{1,2} \\
0 & S
\end{array}\right], \quad S=A_{2,2}-A_{2,1} A_{1,1}^{-1} A_{1,2}
$$

so

$$
A^{-1}=\left[\begin{array}{cc}
A_{1,1}^{-1} & -A_{1,1}^{-1} A_{1,2} S^{-1} \\
0 & S^{-1}
\end{array}\right]\left[\begin{array}{cc}
I_{m} & 0 \\
-A_{2,1} A_{1,1}^{-1} & I_{m}
\end{array}\right]
$$

Multiplication \Longrightarrow inverse

Complexity:

$$
I(n) \leq 2 I(n / 2)+C n^{\omega_{\text {product }}}
$$

implies

$$
I(n) \leq C^{\prime} n^{\omega_{\text {product }}}
$$

Proof: some form of the master theorem.
Remark 1: we need our matrices to be "nice" for this to work: $A_{1,1}$ may be not invertible, even if A is.

Remark 2: this also gives the determinant.

Automatic differentiation

Partial derivatives

Def: if $F\left(X_{1}, \ldots, X_{N}\right)$ is a polynomial in N variables, we define the partial derivatives

$$
\frac{\partial F}{\partial X_{1}}, \ldots, \frac{\partial F}{\partial X_{N}}
$$

where

$$
\frac{\partial F}{\partial X_{i}}
$$

is obtained by keeping all other X_{j} constant, and differentiating in X_{i}.
Example: with

$$
F=X_{1} X_{2}-X_{3} X_{4}
$$

we get

$$
\frac{\partial F}{\partial X_{1}}=X_{2}, \quad \frac{\partial F}{\partial X_{2}}=X_{1}, \quad \frac{\partial F}{\partial X_{3}}=-X_{4}, \quad \frac{\partial F}{\partial X_{4}}=-X_{3} .
$$

Automatic differentiation

Prop.

- If F can be computed using L operations,,$+- \times$, then all partial derivatives

$$
\frac{\partial F}{\partial X_{1}}, \ldots, \frac{\partial F}{\partial X_{N}},
$$

can be computed using $4 L$ operations.

- Independent of N.

Remarks

- widely used for optimization (using Newton's iteration in several variables)
- some polynomials (such as $(\boldsymbol{X}-\mathbf{1})^{k}$) can be computed using few operations $(\boldsymbol{L}=\boldsymbol{O}(\boldsymbol{\operatorname { l o g }}(\boldsymbol{k})))$, even though they have a lot of monomials.

Not only in symbolic computation

File Edit View Go Bookmarks Help

* + $12 \mid$ of $43 \mid$ + *

$$
\text { a } 310.66 \% \quad+
$$

An important advantage of the reverse mode is that it is significantly less costly to evaluate (in terms of operation count) than the forward mode for functions with a large number of inputs. In the extreme case of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, only one application of the reverse mode is sufficient to compute the full gradient $\nabla f=\left(\frac{\partial y}{\partial x_{1}}, \ldots, \frac{\partial y}{\partial x_{n}}\right)$, compared with the n passes of the forward mode needed for populating the same. Because machine learning practice principally involves the gradient of a scalar-valued objective with respect to a large number of parameters, this establishes the reverse mode, as opposed to the forward mode, as the mainstay technique in the form of the backpropagation algorithm.
12. Also called adjoint or cotangent linear mode.

A naive solution

We are given a program Γ with input variables X_{1}, \ldots, X_{N}. Example :

$$
\begin{aligned}
& G_{1}=X_{1}-X_{2} \\
& G_{2}=G_{1}^{2} \\
& G_{3}=G_{2} X_{3}
\end{aligned}
$$

computes $\left(X_{1}-X_{2}\right)^{2} X_{3}$, with $L=3$.

A naive solution

We are given a program Γ with input variables X_{1}, \ldots, X_{N}. Example :

$$
\begin{aligned}
& G_{1}=X_{1}-X_{2} \\
& G_{2}=G_{1}^{2} \\
& G_{3}=G_{2} X_{3}
\end{aligned}
$$

computes $\left(X_{1}-X_{2}\right)^{2} X_{3}$, with $L=3$.
We can follow line-by-line and apply the rules for differentiation. This is called the direct mode.

G_{i}	$\partial G_{i} / \partial X_{1}$	$\partial G_{i} / \partial X_{2}$	$\partial G_{i} / \partial X_{3}$
$G_{1}=X_{1}-X_{2}$	1	-1	0
$G_{2}=G_{1}^{2}$	$2 G_{1} \partial G_{1} / \partial X_{1}$	$2 G_{1} \partial G_{1} / \partial X_{2}$	$2 G_{1} \partial G_{1} / \partial X_{3}$
$G_{3}=X_{3} G_{2}$	$X_{3} \partial G_{2} / \partial X_{1}$	$X_{3} \partial G_{2} / \partial X_{2}$	$X_{3} \partial G_{2} / \partial X_{3}+G_{2}$

Total: $O(N L)$

The reverse mode

Setup.

- Let G_{1}, \ldots, G_{L} be the polynomials computed by Γ.
- Let Δ the program in variables $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{N}}, \boldsymbol{Y}$ obtained by removing the first line of Γ and replacing G_{1} by Y. Let D_{2}, \ldots, D_{L} be the polynomials it computes.
Example: with Γ given by

$$
\begin{array}{l|l}
G_{1}=X_{1} \times X_{2} & G_{1}=X_{1} X_{2} \\
G_{2}=G_{1}+X_{1} & G_{2}=X_{1} X_{2}+X_{1} \\
G_{3}=G_{1} \times G_{2} & G_{3}=X_{1}^{2} X_{2}^{2}+X_{1}^{2} X_{2}
\end{array}
$$

We get Δ given by

$$
\begin{array}{l|l}
D_{2}=Y+X_{1} & D_{2}=Y+X_{1} \\
D_{3}=Y \times D_{2} & D_{3}=Y^{2}+Y X_{1}
\end{array}
$$

The reverse mode

Prop. $G_{L}=D_{L}\left(X_{1}, \ldots, X_{N}, G_{1}\left(X_{1}, \ldots, X_{N}\right)\right)$

The reverse mode

Prop. $G_{L}=D_{L}\left(X_{1}, \ldots, X_{N}, G_{1}\left(X_{1}, \ldots, X_{N}\right)\right)$
Corollary For all $i=1, \ldots, N$,

$$
\frac{\partial G_{L}}{\partial X_{i}}=\frac{\partial D_{L}}{\partial X_{i}}\left(X_{1}, \ldots, X_{N}, G_{1}\right)+\frac{\partial D_{L}}{\partial Y}\left(X_{1}, \ldots, X_{N}, G_{1}\right) \frac{\partial G_{1}}{\partial X_{i}} .
$$

The reverse mode

Prop. $G_{L}=D_{L}\left(X_{1}, \ldots, X_{N}, G_{1}\left(X_{1}, \ldots, X_{N}\right)\right)$
Corollary For all $i=1, \ldots, N$,

$$
\frac{\partial G_{L}}{\partial X_{i}}=\frac{\partial D_{L}}{\partial X_{i}}\left(X_{1}, \ldots, X_{N}, G_{1}\right)+\frac{\partial D_{L}}{\partial Y}\left(X_{1}, \ldots, X_{N}, G_{1}\right) \frac{\partial G_{1}}{\partial X_{i}} .
$$

Key remark. G_{1} has one of the following shapes

$$
X_{a}+X_{b}, \quad X_{a} X_{b}, \quad \lambda X_{a}, \quad \lambda+X_{a}
$$

The reverse mode

Prop. $G_{L}=D_{L}\left(X_{1}, \ldots, X_{N}, G_{1}\left(X_{1}, \ldots, X_{N}\right)\right)$
Corollary For all $i=1, \ldots, N$,

$$
\frac{\partial G_{L}}{\partial X_{i}}=\frac{\partial D_{L}}{\partial X_{i}}\left(X_{1}, \ldots, X_{N}, G_{1}\right)+\frac{\partial D_{L}}{\partial Y}\left(X_{1}, \ldots, X_{N}, G_{1}\right) \frac{\partial G_{1}}{\partial X_{i}} .
$$

Key remark. G_{1} has one of the following shapes

$$
X_{a}+X_{b}, \quad X_{a} X_{b}, \quad \lambda X_{a}, \quad \lambda+X_{a} .
$$

For $i \notin\{a, b\}$,

$$
\frac{\partial G_{L}}{\partial X_{i}}=\frac{\partial D_{L}}{\partial X_{i}} .
$$

The reverse mode

For $i=a($ same for $b)$

$$
\begin{gathered}
\frac{\partial G_{L}}{\partial X_{a}}=\frac{\partial D_{L}}{\partial X_{a}}+\frac{\partial D_{L}}{\partial Y}\left(X_{1}, \ldots, X_{N}, G_{1}\right) \quad \text { (first - fourth cases) } \\
\frac{\partial G_{L}}{\partial X_{a}}=\frac{\partial D_{L}}{\partial X_{a}}+\frac{\partial D_{L}}{\partial Y}\left(X_{1}, \ldots, X_{N}, G_{1}\right) X_{b} \quad \text { (second case) } \\
\frac{\partial G_{L}}{\partial X_{a}}=\frac{\partial D_{L}}{\partial X_{a}}+\frac{\partial D_{L}}{\partial Y}\left(X_{1}, \ldots, X_{N}, G_{1}\right) \lambda \quad \text { (third case) }
\end{gathered}
$$

At most 2 new operations for $\frac{\partial G_{L}}{\partial X_{a}}$ and 2 new operations for $\frac{\partial G_{L}}{\partial X_{b}}$ (if there is a b).

The reverse mode

For $i=a($ same for $b)$

$$
\begin{gathered}
\frac{\partial G_{L}}{\partial X_{a}}=\frac{\partial D_{L}}{\partial X_{a}}+\frac{\partial D_{L}}{\partial Y}\left(X_{1}, \ldots, X_{N}, G_{1}\right) \quad \text { (first } \text { - fourth cases) } \\
\frac{\partial G_{L}}{\partial X_{a}}=\frac{\partial D_{L}}{\partial X_{a}}+\frac{\partial D_{L}}{\partial Y}\left(X_{1}, \ldots, X_{N}, G_{1}\right) X_{b} \quad \text { (second case) } \\
\frac{\partial G_{L}}{\partial X_{a}}=\frac{\partial D_{L}}{\partial X_{a}}+\frac{\partial D_{L}}{\partial Y}\left(X_{1}, \ldots, X_{N}, G_{1}\right) \lambda \quad \text { (third case) }
\end{gathered}
$$

At most 2 new operations for $\frac{\partial G_{L}}{\partial X_{a}}$ and 2 new operations for $\frac{\partial G_{L}}{\partial X_{b}}$ (if there is a b).
Conclusion. If we know a program Δ^{\prime} that augments Δ by computing all partial derivatives of D_{L} in X_{1}, \ldots, X_{N}, Y, we can deduce a program Γ^{\prime} of length $\leqslant L\left(\Delta^{\prime}\right)+4$, that computes all partial derivatives of G_{L}.

Complexity

Corollary. Continuing inductively to remove the first lines, we finally obtain a program of length 1.

- The gradient of such a program is easy to compute.
- Then we can go backward to recover the gradient of G_{L}, adding a bounded number of operations (at most 4) at each step.
So the gradient of G_{L} can be computed using $4 L$ operations.

Example

We detail the previous example. Removing the first instruction in Δ gives the program

$$
\Phi \quad E_{3}=Y \times Z \quad \mid \quad E_{3}\left(X_{1}, X_{2}, Y, Z\right)=Y Z
$$

Hence,

$$
\frac{\partial E_{3}}{\partial X_{1}}=\frac{\partial E_{3}}{\partial X_{2}}=0, \quad \frac{\partial E_{3}}{\partial Y}=Z, \quad \frac{\partial E_{3}}{\partial Z}=Y
$$

So the program Φ^{\prime} computes E_{3} and its gradient:

$$
\Phi^{\prime} \left\lvert\, \begin{array}{ll}
E_{3}=Y \times Z & \\
E_{3, X_{12}}=0 & \text { (gives } \frac{\partial E_{3}}{\partial X_{1}} \text { and } \frac{\partial E_{3}}{\partial X_{2}} \text {) } \\
E_{3, Y}=Z & \text { (gives } \frac{\partial E_{3}}{\partial Y} \text {) } \\
E_{3, Z}=Y & \text { (gives } \frac{\partial E_{3}}{\partial Z} \text {) }
\end{array}\right.
$$

Example

Recall that $D_{3}\left(X_{1}, X_{2}, Y\right)=E_{3}\left(X_{1}, X_{2}, Y, Y+X_{1}\right)$, so
$\frac{\partial D_{3}}{\partial X_{1}, X_{2}, Y}=\frac{\partial E_{3}}{\partial X_{1}, X_{2}, Y}\left(X_{1}, X_{2}, Y, Y+X_{1}\right)+\frac{\partial E_{3}}{\partial Z}\left(X_{1}, X_{2}, Y, Y+X_{1}\right) \frac{\partial\left(Y+X_{1}\right)}{\partial X_{1}, X_{2}, Y}$

Example

Recall that $D_{3}\left(X_{1}, X_{2}, Y\right)=E_{3}\left(X_{1}, X_{2}, Y, Y+X_{1}\right)$, so

$$
\frac{\partial D_{3}}{\partial X_{1}, X_{2}, Y}=\frac{\partial E_{3}}{\partial X_{1}, X_{2}, Y}\left(X_{1}, X_{2}, Y, Y+X_{1}\right)+\frac{\partial E_{3}}{\partial Z}\left(X_{1}, X_{2}, Y, Y+X_{1}\right) \frac{\partial\left(Y+X_{1}\right)}{\partial X_{1}, X_{2}, Y}
$$

$$
\text { and thus } \begin{aligned}
& \frac{\partial D_{3}}{\partial X_{1}}=\frac{\partial E_{3}}{\partial X_{1}}\left(X_{1}, X_{2}, Y, Y+X_{1}\right)+\frac{\partial E_{3}}{\partial Z}\left(X_{1}, X_{2}, Y, Y+X_{1}\right) \\
& \frac{\partial D_{3}}{\partial X_{2}}=\frac{\partial E_{3}}{\partial X_{2}}\left(X_{1}, X_{2}, Y, Y+X_{1}\right) \\
& \frac{\partial D_{3}}{\partial Y}=\frac{\partial E_{3}}{\partial Y}\left(X_{1}, X_{2}, Y, Y+X_{1}\right)+\frac{\partial E_{3}}{\partial Z}\left(X_{1}, X_{2}, Y, Y+X_{1}\right)
\end{aligned}
$$

Example

Recall that $D_{3}\left(X_{1}, X_{2}, Y\right)=E_{3}\left(X_{1}, X_{2}, Y, Y+X_{1}\right)$, so
$\frac{\partial D_{3}}{\partial X_{1}, X_{2}, Y}=\frac{\partial E_{3}}{\partial X_{1}, X_{2}, Y}\left(X_{1}, X_{2}, Y, Y+X_{1}\right)+\frac{\partial E_{3}}{\partial Z}\left(X_{1}, X_{2}, Y, Y+X_{1}\right) \frac{\partial\left(Y+X_{1}\right)}{\partial X_{1}, X_{2}, Y}$
and thus $\begin{aligned} & \frac{\partial D_{3}}{\partial X_{1}}=\frac{\partial E_{3}}{\partial X_{1}}\left(X_{1}, X_{2}, Y, Y+X_{1}\right)+\frac{\partial E_{3}}{\partial Z}\left(X_{1}, X_{2}, Y, Y+X_{1}\right) \\ & \frac{\partial D_{3}}{\partial X_{2}}=\frac{\partial E_{3}}{\partial X_{2}}\left(X_{1}, X_{2}, Y, Y+X_{1}\right) \\ & \frac{\partial D_{3}}{\partial Y}=\frac{\partial E_{3}}{\partial Y}\left(X_{1}, X_{2}, Y, Y+X_{1}\right)+\frac{\partial E_{3}}{\partial Z}\left(X_{1}, X_{2}, Y, Y+X_{1}\right)\end{aligned}$

$$
D_{2}=Y+X_{1}
$$

$$
D_{3}=Y \times D_{2}
$$

$$
E_{3, X_{12}}=0
$$

$$
\left(\text { gives } \frac{\partial D_{3}}{\partial X_{2}}\right)
$$

yielding the program Δ^{\prime}
$E_{3, Y}=D_{2}$
$E_{3, Z}=Y$
$\begin{array}{ll}D_{3, X_{1}}=E_{3, X_{1,2}}+E_{3, Z} & \left(\text { gives } \frac{\partial D_{3}}{\partial X_{1}}\right) \\ D_{3, Y}=E_{3, Y}+E_{3, Z} & \left(\text { gives } \frac{\partial D_{3}}{\partial Y}\right)\end{array}$

Example

Recall that $G_{3}\left(X_{1}, X_{2}\right)=E_{3}\left(X_{1}, X_{2}, X_{1} X_{2}\right)$, so

$$
\begin{aligned}
\frac{\partial G_{3}}{\partial X_{1}} & =\frac{\partial D_{3}}{\partial X_{1}}\left(X_{1}, X_{2}, X_{1} X_{2}\right)+\frac{\partial D_{3}}{\partial Y}\left(X_{1}, X_{2}, X_{1} X_{2}\right) \frac{\partial X_{1} X_{2}}{\partial X_{1}} \\
& =\frac{\partial D_{3}}{\partial X_{1}}\left(X_{1}, X_{2}, X_{1} X_{2}\right)+X_{2} \frac{\partial D_{3}}{\partial Y}\left(X_{1}, X_{2}, X_{1} X_{2}\right) \\
\frac{\partial G_{3}}{\partial X_{2}} & =\frac{\partial D_{3}}{\partial X_{2}}\left(X_{1}, X_{2}, X_{1} X_{2}\right)+\frac{\partial D_{3}}{\partial Y}\left(X_{1}, X_{2}, X_{1} X_{2}\right) \frac{\partial X_{1} X_{2}}{\partial X_{2}} \\
& =\frac{\partial D_{3}}{\partial X_{2}}\left(X_{1}, X_{2}, X_{1} X_{2}\right)+X_{1} \frac{\partial D_{3}}{\partial Y}\left(X_{1}, X_{2}, X_{1} X_{2}\right)
\end{aligned}
$$

Example

This finally yields

$$
\Gamma^{\prime} \left\lvert\, \begin{array}{ll}
G_{1}=X_{1} \times X_{2} & \\
G_{2}=G_{1}+X_{1} & \\
G_{3}=G_{1} \times G_{2} & \\
E_{3, X_{1,2}}=0 \\
E_{3, Y}=G_{2} & \\
E_{3, Z}=G_{1} \\
D_{3, X_{1}}=E_{3, X_{1,2}}+E_{3, Z} & \\
D_{3, Y}=E_{3, Y}+E_{3, Z} & \\
\operatorname{tmp}_{1}=D_{3, Y} \times X_{2} & \\
G_{3, X_{1}}=D_{3, X_{1}}+\operatorname{tmp}_{1} & \text { (gives } \frac{\partial G_{3}}{\partial X_{1}} \text {) } \\
\operatorname{tmp}_{2}=D_{3, Y} \times X_{1} & \\
G_{3, X_{2}}=E_{3, X_{1,2}}+\mathrm{tmp}_{2} & \text { (gives } \frac{\partial G_{3}}{\partial X_{2}} \text {) }
\end{array}\right.
$$

Back to matrix computations

Differentiating the determinant

Using automatic differentiation, an algorithm for the determinant gives an algorithm for inverse.
Prop. Let $A=\left[a_{i, j}\right]$ be a matrix of size n, whose entries are variables.

- The derivatives of the determinant of A w.r.t. $a_{1,1}, \ldots, a_{n, n}$ are (almost) the entries of A^{-1}.
"Proof" (on an example): $n=3$. Take

$$
A=\left[\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right]
$$

SO

$$
\begin{aligned}
\operatorname{det}(A)= & a_{1,1} a_{2,2} a_{3,3}-a_{1,1} a_{2,3} a_{3,2}+a_{2,1} a_{3,2} a_{1,3} \\
& -a_{2,1} a_{1,2} a_{3,3}+a_{3,1} a_{1,2} a_{2,3}-a_{3,1} a_{2,2} a_{1,3}
\end{aligned}
$$

Example with $n=3$

Take the partial derivatives:

$$
\begin{aligned}
\frac{\partial A}{\partial a_{1,1}} & =a_{2,2} a_{3,3}-a_{2,3} a_{3,2} \\
\frac{\partial A}{\partial a_{1,2}} & =a_{3,1} a_{2,3}-a_{1,2} a_{3,3} \\
\frac{\partial A}{\partial a_{1,3}} & =a_{2,1} a_{3,2}-a_{3,1} a_{2,2}, \text { etc } \ldots
\end{aligned}
$$

whereas the entries of $B=A^{-1}$ are

$$
\begin{aligned}
b_{1,1} & =\frac{a_{2,2} a_{3,3}-a_{2,3} a_{3,2}}{\operatorname{det}(A)} \\
b_{2,1} & =\frac{a_{3,1} a_{2,3}-a_{1,2} a_{3,3}}{\operatorname{det}(A)} \\
b_{3,1} & =\frac{a_{2,1} a_{3,2}-a_{3,1} a_{2,2}}{\operatorname{det}(A)}, \text { etc } \ldots
\end{aligned}
$$

Determinant \Longrightarrow inverse

Suppose we have a program using L additions / subtractions / multiplications that computes the determinant of A.
(No division because I don't want to bother with the issues of division by zero)

Then we can turn it into a program that computes all entries of A^{-1} using $O(L)$ additions / subtractions / multiplications, and 1 division (by the determinant).

