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The exponent of linear algebra



Main idea

All problems of linear algebra are more or less equivalent.

More precisely

* the exponent of a problem P (multiplication, inverse, ...) is a
number wp such that one can solve problem P for matrices of
size n in time O (n°F).

* then

Wproduct = Winverse = Wdeterminant = * * *



Inverse — multiplication

Suppose we want to multiply two matrices A and B, but all that we
have is an algorithm for inverse.

Define
I, A O
D=0 I, B
0 0 I,

Then
I, —A AB
pD'=|0 1, -B
0 O I,

So product in size n can be done using inverse in size 3n, so in time

0( (3") Winverse ) =0 (n Winverse ) .



Multiplication —> inverse

Suppose we want to invert a matrix A of size n = 2. We cut A into
blocks of size m =n/2:

A App
A= A
[ Ax1 Az ]

and do as if we invert a 2 X 2 matrix.

I 0
| atit ]
A AT Ly

SO

A Agp
0 S

} . S=Ayy— Ay AT A,



Multiplication —> inverse

Complexity:
I(n) S 2[(11/2) -+ anproduct

implies
I(n) S C’nwproduct

Proof: some form of the master theorem.

Remark 1: we need our matrices to be “nice” for this to work: Aj ;
may be not invertible, even if A is.

Remark 2: this also gives the determinant.
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Automatic differentiation
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Partial derivatives

Def: if F(Xy, ..., Xy) is a polynomial in N variables, we define the

partial derivatives
oF - OF

where
oF

0X;

is obtained by keeping all other X; constant, and differentiating in X;.

Example: with
F=X1X; — X3Xy,

we get

OF _  OF . OF OF _
oX, 0X, 0X;



Automatic differentiation

Prop.
 If F can be computed using L operations +, —, X, then all partial
derivatives
oF oF
oxX;' T oXy'

can be computed using 4L operations.

¢ Independent of N.

Remarks

 widely used for optimization (using Newton’s iteration in several
variables)

« some polynomials (such as (X — 1)¥) can be computed using
few operations (L = O(log (k))), even though they have a lot of
monomials.
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Not only in symbolic computation
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An important advantage of the reverse mode is that it is significantly less costly to
evaluate (in terms of operation count) than the forward mode for functions with a large
number of inputs. In the extreme case of f : R™ — R, only one application of the reverse
mode is sufficient to compute the full gradient Vf = (aa—zyl, R %), compared with the
n passes of the forward mode needed for populating the same. Because machine learning ||
practice principally involves the gradient of a scalar-valued objective with respect to a large
number of parameters, this establishes the reverse mode, as opposed to the forward mode,
as the mainstay technique in the form of the backpropagation algorithm.

12. Also called adjoint or cotangent linear mode.

12

Journal of Machine Learning Research 18 (2018) 1-43
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A naive solution

We are given a program I" with input variables X1, ..., Xy.
Example :

G =X1—X;

G, =G}

G3 = G2X;3

computes (X; — X,)?X3, with L = 3.
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A naive solution

We are given a program I" with input variables X1, ..., Xy.
Example :

G =X1—X;

G, =G}

G; = G2 X5

computes (X; — X,)?X3, with L = 3.

We can follow line-by-line and apply the rules for differentiation.
This is called the direct mode.

Gi | 9Gi/oX1 | 0Gi/dX, |  9Gi/dX;
G =X —X» 1 —1 0
G, =G} 2G10G, /93X, | 2G10G,/3X> | 2G19G,/0X;3
G3 :X3G2 X3aG2/aX1 X3aG2/aX2 X36G2/6X3 + G2

Total: O(NL)
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The reverse mode

Setup.
* Let Gy, ..., Gy be the polynomials computed by T'.

* Let A the program in variables X3, . . ., X, Y obtained by
removing the first line of I" and replacing G by Y. Let
D, ..., Dy be the polynomials it computes.

Example: with I" given by

G1 =X xXp G1 =X X2
G, =G+ X4 G, = X1 X2 + X
G; =G x Gy | Gy =XX3+ XX,

We get A given by

D, =Y+ X4 D, =Y 4+ X
Dy=YxD,| Dy=Y*+7YX;
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The reverse mode




The reverse mode

Prop. GL == DL(Xl ..... XN, G1 (Xl ..... XN))
Corollary Foralli=1,..., N,

0G, oD,
0X; - 0X; oY

(Xlr'--yXNyGl)—i_i(Xl,...

, XN, G1)

oxX;



The reverse mode

Prop. GL == DL(Xl ..... XN, G1 (Xl ..... XN))
Corollary Foralli=1,..., N,
oDy,

X1, ..., X —(Xy,..., X
(Xi,...,Xn,G1) + E)Y( -, Xn,G1)

0Gy
oxX;

oG, 0Dy
X, X,

Key remark. G has one of the following shapes

Xa +va Xabe )\Xay )\+Xa-



The reverse mode

Prop. GL == DL(Xl ..... XN, G1 (Xl ..... XN))
Corollary Foralli=1,..., N,

oD;.

oG
(X1, ..., Xn, G1) + —2(Xy, ... Xy, Gp) —2

oG, 0Dy
X, X,

Key remark. G has one of the following shapes

Xa +va Xava )\Xay )\+Xa-

For i ¢ {a, b},
0GL dDg

oX, 0X;’

oY oxX;
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The reverse mode

For i = a (same for b)

oG oD oD
an = an + aYL (X1,...,Xy,Gy) (first - fourth cases)

oG, 0oDp | dDg
X, — ox, + 5y (X1,...,Xy,G1)X, (second case)

aGL . aDL aDL .
X, — oX, + 37 (X1,...,Xy,G1)A (third case)

aGL GL

At most 2 new operations for and 2 new operations for 9

(if there is a b).
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The reverse mode

For i = a (same for b)

oG oD oD
an = an + aYL (X1,...,Xy,Gy) (first - fourth cases)

oG, 0oDp | dDg
X, — ox, + 5y (X1,...,Xy,G1)X, (second case)

aGL . aDL aDL .
X, — oX, + 37 (X1,...,Xy,G1)A (third case)

aGL GL

At most 2 new operations for and 2 new operations for 9

(if there is a b).

Conclusion. If we know a program A’ that augments A by
computing all partial derivatives of Dy in X1, .. ., Xy, Y, we can
deduce a program I'" of length < L(A’) + 4, that computes all
partial derivatives of G.
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Complexity

Corollary. Continuing inductively to remove the first lines, we
finally obtain a program of length 1.

* The gradient of such a program is easy to compute.

* Then we can go backward to recover the gradient of Gy,
adding a bounded number of operations (at most 4) at each
step.

So the gradient of G; can be computed using 4L operations.
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Example

We detail the previous example. Removing the first instruction in A
gives the program

O E3s=YxZ | E3(X\,X,Y,Z)=YZ

Hence,
0E3 0E;3 0E; 7 0E; v
oX, 09X, ' oYy T 2z

So the program @’ computes E3 and its gradient:

Es=Y xZ
D )
o E3x, =0 (gl.vesg—g and a—%)
Esy=2Z (glvesaa—E)?)
Es7z=Y (gives 57)
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Example

Recall that D3(X],X2, Y) = E3(X1,X2, Y, Y—l—X]), SO

0b; _ 0k (X1, X2, Y, Y+X )—i—%(X X YY+X)LY+X1)
X1, X, ¥ OX,. Xp, v B Uz e b Vox, X, v
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Example

Recall that D3(X],X2, Y) = E3(X1,X2, Y, Y—l—X]), SO

0D3 0E3

= (X1, Xo, Y, Y+X )+aE3(X X YY—|—X)6(Y+X1)
0N, X5, Y 0X;, Xy, ¥ o T g A A e T X, Y

%%ZSQMHXLYY+XU %%WLXLKY+XU
and thus 922 = S8 (X1, X, ¥, Y + X))
& = aE*(Xl X, Y, Y +X1) + 2B(X), X0, ¥, Y + X))
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Example

Recall that D3(X;,X5,Y)

d0D;  OE;
90X, X, Y 90X, X»,Y
9D; _ 0F;
00X,
and thus 223

9D;

B = aEg(Xl X, Y, Y +X)+

yielding the program A’

0E;
(X1, X, Y, Y+X1 ) +—=

= ox (X1, X, Y, Y + Xi) +
=52 (X1, X, Y, Y + X))

=E3(X1, X2, Y, Y +X1), 50

oY +X,)
X1,X%,Y,Y+X|]) —————
az( 1, X2, Y, Y+ ‘)axl,xz,y

95 (X1, X2, Y, Y + X1)

95 (X1, X2, Y, Y + X1)

D, =Y+ X,

D3 =Y x D,

E3x, =0 (gives 2?3)
Esy =D,

Ey7z=Y

D3y, = E3x,, + E3z (gives 2’,?’)

D3y =Ezy+E3z (gives aa’; )
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Example

Recall that G3(X1,X5) = E3(X1, X5, X1X5), so

3G,
X,

0G3
X,

sy

2 X2, X1X0) + 57 (X1, Xa, X1 Xp) 1%
0

3 (X )
3 (X1, X2, X1X2) + Xz o, % (X1, Xa, X1X2)
v )
( )

X1
Ds
o
9B (X1, X2, X1 X2) + %22 (X1 Xa, X, X,) 8

_l’_
+ X1 %22 (X1, X2, X1 X2)

18/23



Example

This finally yields
G] = X] X Xz
G, =G+ X,
G3 =G X G
E3x, =0
Esy =G
o E3z =G

D3 x, =Esx,, + E3z2
D3y =Ezy+E3z
tmp; = D3y X X

.G
G3x, = D3 x, + tmp, (glVeSaT(f)
tmp2 = D3’y X Xl

.G
Gs x, = E3 x,, + tmp, (glvesTXZ)
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Back to matrix computations
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[ Differentiating the determinant ]

Using automatic differentiation, an algorithm for the determinant
gives an algorithm for inverse.

Prop. Let A = [a; J] be a matrix of size n, whose entries are variables.

* The derivatives of the determinant of A w.r.t. ay 1, ..., an, are
(almost) the entries of A~!.

“Proof” (on an example): n = 3. Take

ai,l aip a3
A= | a1 ap a3

as,1 dzpz dz3

SO

det(A) = aj1az2a33 — a1 1a23a32 + az1a32a1 3

—a»,101,2a33 + 43,141 2023 — a3,142241 3.
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Example with n = 3

Take the partial derivatives

0A
a(I]’]

0A
aa1’2

0A
0ap 3

whereas the entries of B =

by =

az a3z 3 —d3ds3n

asz1azs3 —djpdss

ap1asp —asdao, etc. ..

A~ ! are

az2033 — a2 3032
det(A)

as1az3 —dai2d33
det(A)

az1da32 —as a2 ot |
det(A) '
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Determinant —> inverse

Suppose we have a program using L additions / subtractions /
multiplications that computes the determinant of A.

(No division because I don’t want to bother with the issues of division
by zero)

Then we can turn it into a program that computes all entries of A~!
using O(L) additions / subtractions / multiplications, and 1 division
(by the determinant).



