CS 487 / · · · Introduction to Symbolic Computation

University of Waterloo Éric Schost eschost@uwaterloo.ca

Linear recurrences with polynomial coefficients (n! and generalizations)

D-finite series

Def.

• A power series f(x) is **D-finite** if there exists a linear differential equation with polynomial coefficients such that

$$q_d(x)f^{(d)} + q_{d-1}(x)f^{(d-1)} + \dots + q_0(x)f = 0.$$

• Equivalently, we can take rational functions as coefficients.

Examples.

- polynomials,
- · rational functions,
- algebraic series (e.g., $\sqrt{1+x^2}$)
- exp, sin, cos,
- · a lot more

P-recursive sequences

Def.

• A sequence u_n is **P-recursive** if it satisfies a recurrence with polynomial coefficients

$$p_d(n)u_{n+d} + p_{d-1}(n)u_{n+d-1} + \cdots + p_0(n)u_n = 0$$

Examples.

- constant sequences,
- recurrences with constant coefficients,
- factorial, and generalizations.

Remark: matrix recurrence

$$p_d(n)u_{n+d} + p_{d-1}(n)u_{n+d-1} + \cdots + p_0(n)u_n = 0$$

means that

$$u_{n+d} = -\frac{p_{d-1}(n)}{p_d(n)}u_{n+d-1} - \cdots - \frac{p_0(n)}{p_d(n)}u_n$$

SO

$$\begin{bmatrix} u_{n+d} \\ u_{n+d-1} \\ \vdots \\ u_{n+1} \end{bmatrix} = \begin{bmatrix} -\frac{p_{d-1}(n)}{p_d(n)} & -\frac{p_{d-2}(n)}{p_d(n)} & \cdots & -\frac{p_0(n)}{p_d(n)} \\ 1 & 1 & & \\ & & \ddots & & \\ & & & 1 \end{bmatrix} \begin{bmatrix} u_{n+d-1} \\ u_{n+d-2} \\ \vdots \\ u_n \end{bmatrix}$$

Equivalence

Theorem.

The power series

$$f = \sum_{i \geqslant 0} f_i x^i$$

is D-finite if and only if the **sequence** (f_i) is P-recursive.

Examples.

- recurrence with constant coefficients \iff rational power series.
- $f_i = 1/i! \iff \text{exponential}$

Proof for the exponential

Suppose that f is a solution of

$$f' = f$$
.

(We know that f is the exponential.) With

$$f = \sum_{i \geqslant 0} f_i x^i,$$

we get

$$f' = \sum_{i \geqslant 0} (i+1) f_{i+1} x^{i}.$$

So

$$(i+1)f_{i+1} = f_i.$$

Sketch of proof in general

In general, with

$$f = \sum_{i \ge 0} f_i x^i,$$

we get

$$f' = \sum_{i \geqslant 0} (i+1)f_{i+1}x^i$$
 and $f'' = \sum_{i \geqslant 0} (i+1)(i+2)f_{i+2}x^i$, ...

Multiplying by a monomial shifts the coefficients:

$$x^{\ell}f' = \sum_{i \geqslant 0} (i+1)f_{i+1}x^{i+\ell} = \sum_{i \geqslant \ell} (i-\ell+1)f_{i-\ell+1}x^{i}, \dots$$

So extracting coefficients gives a recurrence on the f_i .

Converse on an example

Consider the **factorial**

$$f_i = i!$$
, so that $f_{i+1} = (i+1)f_i$.

Let
$$f = \sum_{i \geqslant 0} f_i x^i$$
.

Multiply by x^{i+1} and sum over all $i \ge 0$.

$$\sum_{i \ge 0} f_{i+1} x^{i+1} = f - 1 \quad \text{and} \quad \sum_{i \ge 0} (i+1) f_i x^{i+1} = x(xf' + f).$$

So

$$x^2f' + (x-1)f = -1$$
 or $x^2f'' + (3x-1)f' - f = 0$.

Our questions

- 1. Computing one term in a P-recursive sequence
 - · binary splitting
 - baby steps / giant steps
- 2. Computing several terms
 - unroll the recurrence
 - solve the differential equation using Newton iteration

Examples

1. Compute the first 100 coefficients c_i of $bm(x+1)^{10000}$ We know they are binomial coefficients, so we get

$$c_{i+1} = \frac{D-i}{i+1}c_i$$

2. Compute the first 100 coefficients d_i of $(x+2)^{10000}(x+1)^{1000}$ The generating series $S = \sum_{i \ge 0} d_i x^i$ satisfies

$$\frac{S'}{S} = 10000 \frac{1}{x+2} + 1000 \frac{1}{x+1}$$

which gives

$$(i-1)d_{i-1} + 3id_i + 2(i+1)d_{i+1} = 11000d_{i-1} + 12000d_i$$

Computing one term

Binary splitting

This is the method you want to use when the **coefficients size** matters

- · quasi-optimal algorithms exist, taking bit-size into account
- not useful modulo p

Example: factorial.

- We write $\mathbf{M}_{\mathbb{Z}}(n)$ for the cost of multiplying integers of size n.
- The factorial n! has about $n \log n$ digits.

Prop.

• Using binary splitting, one can compute n! in $O(M_{\mathbb{Z}}(n \log n) \log n)$ bit operations.

The algorithm in a nutshell

It boils down to computing $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdots$ in a clever way.

Naive:

- $2 = 1 \cdot 2$
- $6 = 2 \cdot 3$
- $24 = 6 \cdot 4$
- $120 = 24 \cdot 5$
- $720 = 120 \cdot 6$
- $5040 = 720 \cdot 7$
- $40320 = 5040 \cdot 8$
- $362880 = 40320 \cdot 9$

Consequence: quadratic time!

The algorithm in a nutshell

It boils down to computing $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdots$ in a clever way.

Let
$$P(a, b) = a(a + 1) \cdot \cdot \cdot b$$
, so that we want $P(1, n)$.

Binary splitting:

$$P(a,b) = P(a,m)P(m,b)$$
 with $m = \lfloor (a+b)/2 \rfloor$.

Let $P(a, b) = a(a + 1) \cdot \cdot \cdot b$, so that we want P(1, n).

Binary splitting:

$$P(a,b) = P(a,m)P(m,b)$$
 with $m = \lfloor (a+b)/2 \rfloor$.

Cost:

$$C(a,b) = C(a,m) + C(m,b) + \mathsf{M}_{\mathbb{Z}}(\log P(m,b))$$

$$\leq 2C(m,b) + \mathsf{M}_{\mathbb{Z}}(\log P(m,b)).$$

Let $P(a, b) = a(a + 1) \cdot \cdot \cdot b$, so that we want P(1, n).

Binary splitting:

$$P(a,b) = P(a,m)P(m,b)$$
 with $m = \lfloor (a+b)/2 \rfloor$.

Cost:

$$C(a,b) = C(a,m) + C(m,b) + \mathsf{M}_{\mathbb{Z}}(\log P(m,b))$$

$$\leq 2C(m,b) + \mathsf{M}_{\mathbb{Z}}(\log P(m,b)).$$

•
$$C(1, n) \leqslant 2C(n/2, n) + \mathsf{M}_{\mathbb{Z}}(\log P(n/2, n))$$

Let $P(a, b) = a(a + 1) \cdot \cdot \cdot b$, so that we want P(1, n).

Binary splitting:

$$P(a,b) = P(a,m)P(m,b)$$
 with $m = \lfloor (a+b)/2 \rfloor$.

Cost:

$$C(a,b) = C(a,m) + C(m,b) + \mathsf{M}_{\mathbb{Z}}(\log P(m,b))$$

$$\leq 2C(m,b) + \mathsf{M}_{\mathbb{Z}}(\log P(m,b)).$$

- $C(1, n) \leqslant 2C(n/2, n) + \mathsf{M}_{\mathbb{Z}}(\log P(n/2, n))$
- $C(n/2, n) \leq 2C(3n/4, n) + \mathsf{M}_{\mathbb{Z}}(\log P(3n/4, n))$

Let $P(a, b) = a(a + 1) \cdot \cdot \cdot b$, so that we want P(1, n).

Binary splitting:

$$P(a,b) = P(a,m)P(m,b)$$
 with $m = \lfloor (a+b)/2 \rfloor$.

Cost:

$$\frac{C(a,b)}{C(a,b)} = C(a,m) + C(m,b) + \mathsf{M}_{\mathbb{Z}}(\log P(m,b))$$

$$\leq \frac{2C(m,b)}{C(m,b)} + \mathsf{M}_{\mathbb{Z}}(\log P(m,b)).$$

- $C(1, n) \leq 2C(n/2, n) + M_{\mathbb{Z}}(\log P(n/2, n))$
- $C(n/2, n) \leq 2C(3n/4, n) + \mathsf{M}_{\mathbb{Z}}(\log P(3n/4, n))$
- $C(3n/4, n) \leq 2C(7n/8, n) + \mathsf{M}_{\mathbb{Z}}(\log P(7n/8, n))$

Let $P(a, b) = a(a + 1) \cdot \cdot \cdot b$, so that we want P(1, n).

Binary splitting:

$$P(a,b) = P(a,m)P(m,b)$$
 with $m = \lfloor (a+b)/2 \rfloor$.

Cost:

$$C(a,b) = C(a,m) + C(m,b) + \mathsf{M}_{\mathbb{Z}}(\log P(m,b))$$

$$\leq 2C(m,b) + \mathsf{M}_{\mathbb{Z}}(\log P(m,b)).$$

- $C(1, n) \leqslant 2C(n/2, n) + \mathsf{M}_{\mathbb{Z}}(\log P(n/2, n))$
- $2C(n/2, n) \le 4C(3n/4, n) + 2M_{\mathbb{Z}}(\log P(3n/4, n))$

Let $P(a, b) = a(a + 1) \cdot \cdot \cdot b$, so that we want P(1, n).

Binary splitting:

$$P(a,b) = P(a,m)P(m,b)$$
 with $m = \lfloor (a+b)/2 \rfloor$.

Cost:

$$C(a,b) = C(a,m) + C(m,b) + \mathsf{M}_{\mathbb{Z}}(\log P(m,b))$$

$$\leq 2C(m,b) + \mathsf{M}_{\mathbb{Z}}(\log P(m,b)).$$

- $C(1, n) \leq 2C(n/2, n) + \mathsf{M}_{\mathbb{Z}}(\log P(n/2, n))$
- $2C(n/2, n) \le 4C(3n/4, n) + 2M_{\mathbb{Z}}(\log P(3n/4, n))$
- $4C(3n/4, n) \leq 8C(7n/8, n) + 4M_{\mathbb{Z}}(\log P(7n/8, n))$

Solving the recurrence

These equalities give (for any $k \leq \log(n)$)

$$C(1,n) \leqslant 2^k C(n-\frac{n}{2^k},n) + \sum_{j=1}^k 2^{j-1} M_{\mathbb{Z}}(\log P(n-\frac{n}{2^j},n)).$$

Simplifications

· remember that

$$P(n-\frac{n}{2^{j}},n)=(n-\frac{n}{2^{j}})\cdots n\leqslant n^{n/2^{j}}$$

- so its log is $\leq \frac{n}{2^j} \log n$,
- so its contribution is $\leq M_{\mathbb{Z}}(n \log n)$ (using $M_{\mathbb{Z}}(t/2) \leq \frac{1}{2}M_{\mathbb{Z}}(t)$)

Solving the recurrence

Putting everything together gives

$$C(1,n) \leqslant 2^k C(n - \frac{n}{2^k}, n) + k \mathsf{M}_{\mathbb{Z}}(n \log n).$$

We stop the recursion for $k = \log n$, which gives

$$C(1, n) \in O(M_{\mathbb{Z}}(n \log n) \log n).$$

Second example: computing $e = \exp(1)$

The sequence

$$e_n = \sum_{k=0}^n \frac{1}{k!}$$

converges to e, and $0 \le e - e_n \le \frac{1}{n!}$.

Consequence

• To compute m digits of e, compute e_n , with

$$n \approx \frac{m}{\log m}$$

The recursion

The sequence $f_n = 1/n!$ satisfies the recurrence

$$(n+1)f_{n+1} = f_n$$
.

Because $e_{n+1} - e_n = f_{n+1}$, we get

$$(n+1)(e_{n+1}-e_n) = (n+1)f_{n+1} = f_n = e_n - e_{n-1},$$

which becomes

$$\begin{bmatrix} e_{n+1} \\ e_n \end{bmatrix} = \frac{1}{n+1} \begin{bmatrix} n+2 & -1 \\ n+1 & 0 \end{bmatrix} \begin{bmatrix} e_n \\ e_{n-1} \end{bmatrix} = \frac{1}{n+1} M(n) \begin{bmatrix} e_n \\ e_{n-1} \end{bmatrix}.$$

So to compute e_{n-1} and e_n , we actually compute

$$\frac{1}{n!}M(n-1)\cdots M(1).$$

Same thing as the factorial!

Example

Take n = 30; then $M(n-1) \cdots M(1)$ is

and n! = 8222838654177922817725562880000000.

Our approximation to exp(1) is the first entry of

$$\frac{1}{n!}M(n-1)\cdots M(1)\begin{bmatrix}2\\1\end{bmatrix} = \frac{5587998223000619694886681981376183}{2055709663544480704431390720000000}.$$

Gives 117 correct bits.

Remark: works for cos, sin, ..., all D-finite functions.

Baby steps / giant steps

This is the method to use when coefficient size does not matter.

Prop.

- Consider u_n defined by a recurrence of order d with coefficients of degree p.
- Then the *n*th term can be computed in $O(M(\sqrt{n}) \log n)$, where the big-Oh depends on *d* and *p*.

Example

- The sequence $u_{n+1} = (n+1)u_n$, computed modulo an integer N.
- This leads to the best deterministic, proved algorithm for factoring integers.

Preliminaries

Evaluation and interpolation

• Given a polynomial P of degree m-1, and m evaluation points a_0, \ldots, a_{m-1} one can compute

$$P(a_0), \ldots, P(a_{m-1})$$

in $O(M(m) \log (m))$ operations.

• Conversely, given the values, one can recover *P* in the same cost.

Main ideas

- Divide-and-conquer: replace the original problem by the evaluation of a polynomial P₀ at the first half of the points and a polynomial P₁ at the second half.
- Cost: $C(n) \le 2C(n/2) + O(M(n))$.

The example of the factorial

Consider the sequence $u_{n+1} = (n+1)u_n$, $u_0 = 1$.

To compute u_n , let $m = \sqrt{n}$ and introduce

$$P = (x+1)\cdots(x+m).$$

Then u_n is given by

$$u_n = P(0) P(m) P(2m) \cdots P((m-1)m).$$

Algorithm

• Compute *P* (divide-and-conquer)

 $O(M(m)\log m)$

• Evaluate it a $0, m, \ldots, (m-1)m$

 $O(M(m)\log m)$

Multiply the values

O(m)

Application to factoring integers

Suppose you want to factor $p \in \mathbb{N}$ into primes.

- It's enough to find all prime factors $<\sqrt{p}$.
- Testing one number mod p costs $O((\log p)^{O(1)})$.
- So naive cost $O(\sqrt{p}(\log p)^{O(1)})$

Better: let $n = \sqrt{p}$ and $m = \sqrt{n}$, and compute the slices

$$a_0 = 1 \cdots m \mod p$$
, $a_1 = (m+1) \cdots (2m) \mod p$, ... $a_{m-1} = (m^2 - m + 1) \cdots m^2 \mod p$,

- cost almost linear in $\sqrt[4]{p}$.
- if $gcd(a_i, p) = 1$, no divisor in the slice i.
- as soon as you found $gcd(a_i, p) \neq 1$, test all elements in a_i .
- repeat.