CS487/---
Introduction to Symbolic
Computation

University of Waterloo
Eric Schost
eschost @uwaterloo.ca

1/26

Linear recurrences with
polynomial coefficients

(n! and generalizations)

2/26

D-finite series

Def.

* A power series f(x) is D-finite if there exists a linear differential
equation with polynomial coefficients such that

a0+ qa (Y 4 o) =0.
* Equivalently, we can take rational functions as coefficients.

Examples.
* polynomials,
* rational functions,
« algebraic series (e.g., V1 + x2)
* exp, sin, cos,

* alot more

P-recursive sequences

Def.

* A sequence u, is P-recursive if it satisfies a recurrence with
polynomial coefficients

pa(Munta + pa—1(n)upiq—1 + -+ + po(n)u, =0

Examples.
* constant sequences,
* recurrences with constant coefficients,

¢ factorial, and generalizations.

4/26

Remark: matrix recurrence

paMupia + pa—1(Mupig—1 + -+ + po(n)u, =0

means that
_ pa—1(n) po(n)
Un+d = — Up+d—1 — - — Un
pa(n) pa(n)
SO
_pa—i(n) _paa(n) _ po(n)
Un+d pa(n) pa(n) pa(n) | |Mntd—1

Upt+d—1 1 Upn+d—2

Up+1 1 127

Equivalence

Theorem.
* The power series

f=) fx

i>0
is D-finite if and only if the sequence (f;) is P-recursive.

Examples.
* recurrence with constant coefficients <> rational power series.

* fi =1/i! <= exponential

Proof for the exponential

Suppose that f is a solution of
f'=r.

(We know that f is the exponential.) With

f=2_fa

i=0
we get
=) (i+ Dfix
i>0
So
(i+ Vfir1 =fi-

7126

Sketch of proof in general

In general, with

f=) fx,

i>0

we get

= i+ 1)finx and 7= (i+1)(i+2)fira2¥,

iz0 iz0

Multiplying by a monomial shifts the coefficients:

xff =) (N =) (=l Do,

i>0 i>0

So extracting coefficients gives a recurrence on the f;.

8/26

Converse on an example

Consider the factorial
fi=1i, sothat fi = (i+1)f.
Letf =} j5ofix’

Multiply by x'*! and sum over all i > 0.

D frn=f—1 and Y (i+ 1T =alf 4).

i>0 i>0

So

'+ (x—1)f=—1 or x}"+ Bx—1)f'—f=0.

9/26

Our questions

1. Computing one term in a P-recursive sequence
* binary splitting
* baby steps / giant steps

2. Computing several terms
¢ unroll the recurrence

¢ solve the differential equation using Newton iteration

10/26

Examples

1. Compute the first 100 coefficients ¢; of hm (x + 1)'00%0

We know they are binomial coefficients, so we get
D—i
i+1

Ci+1 = Ci

2. Compute the first 100 coefficients d; of (x + 2)10000(x 4 1)1000
The generating series S = Zi>0 dix' satisfies

!

100007 + 10007
x+2 x+1

which gives

(i — 1)d;q + 3id; + 2(i + 1)d;q = 11000d;_; + 12000d;

11/26

Computing one term

12/26

Binary splitting

This is the method you want to use when the coefficients size matters
* quasi-optimal algorithms exist, taking bit-size into account

* not useful modulo p

Example: factorial.
* We write My, (n) for the cost of multiplying integers of size n.
 The factorial n! has about n log n digits.

Prop.

 Using binary splitting, one can compute n! in
O(My(nlogn)logn) bit operations.

13/26

The algorithm in a nutshell

It boils down to computing 1 -2 -3 -4 -5--- in a clever way.

Naive:
e 2=1-2
c6=2-3
c24=6-4
*120=24-5
*« 720=120-6
* 5040 =720-7

* 40320 = 5040 - 8
* 362880 = 40320 -9

Consequence: quadratic time!

14/26

The algorithm in a nutshell

It boils down to computing 1 -2 -3 -4-5--- in a clever way.

109 L1338 1 oo

/ \ SLtA Bhon

by 310
AN (6o (%Y 43¢ 3,
A\ N N AN
L 5% o 5t 9 \3)__, t&)_ Mo
N\ 7\ \ VAN Z\ /\1
lt%\(fc}(()“\[o\l\),u\q o

15/26

Splitting

Let P(a,b) =a(a + 1)---b, so that we want P(1,n).
Binary splitting:

P(a,b) = P(a,m)P(m,b) with m=|(a+b)/2].

16/26

Splitting

Let P(a,b) =a(a + 1)---b, so that we want P(1,n).
Binary splitting:

P(a,b) = P(a,m)P(m,b) with m=|(a+b)/2].
Cost:

Cla,b) C(a,m) + C(m, b) + Mz (log P(m, b))

< 2C(m, b) + Mg (log P(m, b)).

16/26

Splitting

Let P(a,b) =a(a + 1)---b, so that we want P(1,n).
Binary splitting:

P(a,b) = P(a,m)P(m,b) with m=|(a+b)/2].
Cost:

Cla,b) C(a,m) + C(m, b) + Mz (log P(m, b))

< 2C(m, b) + Mg (log P(m, b)).

The splitting scheme
* C(1,n) <2C(n/2,n) + Mg(log P(n/2,n))

16/26

Splitting

Let P(a,b) =a(a + 1)---b, so that we want P(1,n).
Binary splitting:

P(a,b) = P(a,m)P(m,b) with m=|(a+b)/2].

Cost:

Cla,b) C(a,m) + C(m, b) + Mz (log P(m, b))

< 2C(m, b) + Mg (log P(m, b)).

The splitting scheme
* C(1,n) <2C(n/2,n) + Mg(log P(n/2,n))
* C(n/2,n) <2C(3n/4,n) + Mz(log P(3n/4,n))

16/26

Splitting

Let P(a,b) =a(a + 1)---b, so that we want P(1,n).
Binary splitting:

P(a,b) = P(a,m)P(m,b) with m=|(a+b)/2].

Cost:

C(a,b) = Cla,m)+ C(m,b) + My(log P(m, b))
< 2C(m, b) + Mg (log P(m, b)).

The splitting scheme
* C(1,n) <2C(n/2,n) + Mg(log P(n/2,n))
* C(n/2,n) <2C(3n/4,n) + Mz(log P(3n/4,n))
* C(3n/4,n) <2C(7n/8,n) + Mz(log P(7n/8, n))

16/26

Splitting

Let P(a,b) =a(a + 1)---b, so that we want P(1,n).
Binary splitting:

P(a,b) = P(a,m)P(m,b) with m=|(a+b)/2].

Cost:

Cla,b) C(a,m) + C(m, b) + Mz (log P(m, b))

< 2C(m, b) + Mg (log P(m, b)).

The splitting scheme
* C(1,n) <2C(n/2,n) + Mg(log P(n/2,n))
* 2C(n/2,n) <4C(3n/4,n) + 2My(log P(3n/4,n))

17/26

Splitting

Let P(a,b) =a(a + 1)---b, so that we want P(1,n).
Binary splitting:

P(a,b) = P(a,m)P(m,b) with m=|(a+b)/2].

Cost:

C(a,b) = Cla,m)+ C(m,b) + My(log P(m, b))
< 2C(m, b) + Mg (log P(m, b)).

The splitting scheme
* C(1,n) <2C(n/2,n) + Mg(log P(n/2,n))
* 2C(n/2,n) <4C(3n/4,n) + 2My(log P(3n/4,n))
* 4C(3n/4,n) < 8C(7n/8,n) + 4Mz(log P(7n/8,n))

17/26

Solving the recurrence

These equalities give (for any k < log(n))

k
C(1,n) < 2kC(n—§,n) +y 2! MZ(logP(n—%,n)).

j=1
Simplifications
* remember that
P(n— %n) = (n—%)' n<n?
* soits logis < 3 logn,

* S0 its contrlbutlon is < Mz(nlogn)
(using Mz (7/2) < Mz(1))

18/26

Solving the recurrence

Putting everything together gives

C(l,n) < 2kC(n—%,n) + kMy(nlogn).

We stop the recursion for k = log n, which gives

C(1,n) € O(Mz(nlogn)logn).

19/26

Second example: computing ¢ = exp(1)

The sequence
n

ey =
k=0

1
k!
converges to e, and 0 < e — e, < .

Consequence

* To compute m digits of e, compute e, with

m

~

- logm

20/26

The recursion

The sequence f, = 1/n! satisfies the recurrence

(I’l + 1)ﬁ1+1 :fn
Because e,1 — e, =f, 1, we get
(n+ 1)(en+1 —ey) = (n + 1)fn+1 =fun=¢€y—eu_1,

which becomes

en+1 1 n+2 —1 e, 1 e,
_ = M .
[e } n+1 [n +1 0] |ei n+1 (n) en—1

So to compute e, and e,, we actually compute

iM(n— 1)---M(1).
n!

Same thing as the factorial!
21/26

Example

Take n = 30; then M(n—1)---M(1) is

14129154237824555961821165045504732 —5906315583646633144095602165504732
14129154237824555961821165045504731 —5906315583646633144095602165504731

and n! = 8222838654177922817725562880000000.

Our approximation to exp(1) is the first entry of

1 2] 5587998223000619694386681981376183
~M(n—1)---M(1) | 7| =
n:

1| 2055709663544480704431390720000000

Gives 117 correct bits.

Remark: works for cos, sin, ..., all D-finite functions.

22126

Baby steps / giant steps

This is the method to use when coefficient size does not matter.

Prop.

 Consider u, defined by a recurrence of order d with coefficients
of degree p.

* Then the nth term can be computed in O(M(y/n) log n), where
the big-Oh depends on d and p.

Example
* The sequence u, | = (n + 1)u,, computed modulo an integer N.

* This leads to the best deterministic, proved algorithm for
factoring integers.

23/26

Preliminaries

Evaluation and interpolation
* Given a polynomial P of degree m — 1, and m evaluation points
ap, . . ., a,—1 one can compute

Plag), ..., Plam—1)

in O(M(m) log (m)) operations.
 Conversely, given the values, one can recover P in the same cost.

Main ideas
* Divide-and-conquer: replace the original problem by the
evaluation of a polynomial Py at the first half of the points and a

polynomial P; at the second half.
* Cost: C(n) < 2C(n/2) + O(M(n)).

24726

The example of the factorial

Consider the sequence u,+1 = (n+ 1)uy,, up = 1.

To compute u,, let m = 4/n and introduce
P=x+1)---(x+m).
Then u, is given by

u, = P(0)P(m) P(2m) --- P((m — 1)m).

Algorithm
» Compute P (divide-and-conquer) O(M(m)logm)
* Evaluateita 0, m, ..., (m—1)m O(M(m)logm)
* Multiply the values O(m)

25/26

Application to factoring integers

Suppose you want to factor p € N into primes.
* It’s enough to find all prime factors < ,/p.

« Testing one number mod p costs O((logp)?(1)).
* So naive cost 0(\/17(10gp)0(1))

Better: let n = ,/p and m = /n, and compute the slices
ag=1---mmodp, a = (m+1)---(2m) mod p, . .. ap_ = (m>—m+1) - --m?> mod p,

* cost almost linear in {/p.
* if ged(a;, p) = 1, no divisor in the slice i.
* as soon as you found gcd(a;, p) # 1, test all elements in a;.

* repeat.

26/26

