Lecture 23: Zero-Knowledge Proofs

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

July 29, 2021

Overview

- Why Zero Knowledge?
- Zero-Knowledge Proofs
- Conclusion
- Acknowledgements

• In cryptography, want to communicate with other people/entities whom we may not trust.

- In cryptography, want to communicate with other people/entities whom we may not trust.
- Or we may not trust the channel of communication
 - someone may *eavesdrop* our messages
 - messages could be *corrupted*
 - someone may try to *impersonate* us
 - it's a wild world out there

- In cryptography, want to communicate with other people/entities whom we may not trust.
- Or we may not trust the channel of communication
 - someone may *eavesdrop* our messages
 - messages could be *corrupted*
 - someone may try to *impersonate* us
 - it's a wild world out there
- Situation
 - Alice has all her files encrypted (in public database)
 - Bob requests from her the contents of one of her files

- In cryptography, want to communicate with other people/entities whom we may not trust.
- Or we may not trust the channel of communication
 - someone may *eavesdrop* our messages
 - messages could be *corrupted*
 - someone may try to *impersonate* us
 - it's a wild world out there
- Situation
 - Alice has all her files encrypted (in public database)
 - Bob requests from her the contents of one of her files
 - She could simply send the decrypted file to Bob

- In cryptography, want to communicate with other people/entities whom we may not trust.
- Or we may not trust the channel of communication
 - someone may *eavesdrop* our messages
 - messages could be *corrupted*
 - someone may try to *impersonate* us
 - it's a wild world out there
- Situation
 - Alice has all her files encrypted (in public database)
 - Bob requests from her the contents of one of her files
 - She could simply send the decrypted file to Bob
 - Bob has no way of knowing that this message comes from Alice (or that this is indeed the right file)

- In cryptography, want to communicate with other people/entities whom we may not trust.
- Or we may not trust the channel of communication
 - someone may *eavesdrop* our messages
 - messages could be *corrupted*
 - someone may try to *impersonate* us
 - it's a wild world out there
- Situation
 - Alice has all her files encrypted (in public database)
 - Bob requests from her the contents of one of her files
 - She could simply send the decrypted file to Bob
 - Bob has no way of knowing that this message comes from Alice (or that this is indeed the right file)
 - Alice could *prove* to Bob this is the correct file by sending her encryption key

- In cryptography, want to communicate with other people/entities whom we may not trust.
- Or we may not trust the channel of communication
 - someone may *eavesdrop* our messages
 - messages could be *corrupted*
 - someone may try to *impersonate* us
 - it's a wild world out there
- Situation
 - Alice has all her files encrypted (in public database)
 - Bob requests from her the contents of one of her files
 - She could simply send the decrypted file to Bob
 - Bob has no way of knowing that this message comes from Alice (or that this is indeed the right file)
 - Alice could *prove* to Bob this is the correct file by sending her encryption key
 - But then Bob has access to her entire database!

- In cryptography, want to communicate with other people/entities whom we may not trust.
- Or we may not trust the channel of communication
 - someone may *eavesdrop* our messages
 - messages could be *corrupted*
 - someone may try to *impersonate* us
 - it's a wild world out there
- Situation
 - Alice has all her files encrypted (in public database)
 - Bob requests from her the contents of one of her files
 - She could simply send the decrypted file to Bob
 - Bob has no way of knowing that this message comes from Alice (or that this is indeed the right file)
 - Alice could *prove* to Bob this is the correct file by sending her encryption key
 - But then Bob has access to her entire database!
 - Can Alice convince Bob that she gave right file without giving any more knowledge beyond that she gave right file?

Zero-Knowledge Proofs

Proofs in which the verifier gains *no knowledge* beyond the validity of the assertion.

- What do you mean by knowledge?
- What does it mean to "learn something/gain knowledge"?
- What is difference between knowledge and information?

- What do you mean by knowledge?
- What does it mean to "learn something/gain knowledge"?
- What is difference between knowledge and information?
- First question is quite complex, so let's only talk about the second and third

- What do you mean by knowledge?
- What does it mean to "learn something/gain knowledge"?
- What is difference between knowledge and information?
- First question is quite complex, so let's only talk about the second and third
- Knowledge has to do with your *computational ability*
 - If you could have found the answer (i.e. computed it) without help, then you *gained no knowledge*

- What do you mean by knowledge?
- What does it mean to "learn something/gain knowledge"?
- What is difference between knowledge and information?
- First question is quite complex, so let's only talk about the second and third
- Knowledge has to do with your *computational ability*
 - If you could have found the answer (i.e. computed it) without help, then you *gained no knowledge*
- Example:
 - Bob asks Alice whether a graph G is Eulerian

- What do you mean by knowledge?
- What does it mean to "learn something/gain knowledge"?
- What is difference between knowledge and information?
- First question is quite complex, so let's only talk about the second and third
- Knowledge has to do with your *computational ability*
 - If you could have found the answer (i.e. computed it) without help, then you *gained no knowledge*
- Example:
 - Bob asks Alice whether a graph G is Eulerian
 - Bob gains no knowledge in this interaction, since he could have computed it by himself (By Euler's theorem: check that all vertices have even degree)

- What do you mean by knowledge?
- What does it mean to "learn something/gain knowledge"?
- What is difference between knowledge and information?
- First question is quite complex, so let's only talk about the second and third
- Knowledge has to do with your *computational ability*
 - If you could have found the answer (i.e. computed it) without help, then you *gained no knowledge*
- Example:
 - Bob asks Alice whether a graph G is Eulerian
 - Bob gains no knowledge in this interaction, since he could have computed it by himself (By Euler's theorem: check that all vertices have even degree)
 - Bob asks Alice if graph G has Hamiltonian cycle

- What do you mean by knowledge?
- What does it mean to "learn something/gain knowledge"?
- What is difference between knowledge and information?
- First question is quite complex, so let's only talk about the second and third
- Knowledge has to do with your *computational ability*
 - If you could have found the answer (i.e. computed it) without help, then you *gained no knowledge*
- Example:
 - Bob asks Alice whether a graph G is Eulerian
 - Bob gains no knowledge in this interaction, since he could have computed it by himself (By Euler's theorem: check that all vertices have even degree)
 - Bob asks Alice if graph G has Hamiltonian cycle
 - Bob now gains knowledge ($P \neq NP \Rightarrow$ Bob could not compute it)

- What do you mean by knowledge?
- What does it mean to "learn something/gain knowledge"?
- What is difference between knowledge and information?
- First question is quite complex, so let's only talk about the second and third
- Knowledge has to do with your *computational ability*
 - If you could have found the answer (i.e. computed it) without help, then you *gained no knowledge*
- Example:
 - Bob asks Alice whether a graph G is Eulerian
 - Bob gains no knowledge in this interaction, since he could have computed it by himself (By Euler's theorem: check that all vertices have even degree)
 - Bob asks Alice if graph G has Hamiltonian cycle
 - Bob now gains knowledge ($P \neq NP \Rightarrow$ Bob could not compute it)
- In both cases Alice conveyed *information*!

イロト 不得 トイヨト イヨト ヨー うらつ

• Knowledge:

- related to computational difficulty
- about publicly known objects
 - One gains knowledge when one obtains something one *could not compute* before!

• Knowledge:

- related to computational difficulty
- about publicly known objects
 - One gains knowledge when one obtains something one *could not compute* before!

• Information:

- unrelated to computational difficulty
- about partially known objects
 - One gains information when one obtains something one could not

access before!

- Our usual notion of proof:
 - \bullet A claim ${\mathcal C}$ is given

- Our usual notion of proof:
 - $\bullet~\mathsf{A}$ claim $\mathcal C$ is given
 - A prover P writes down a proof that $\ensuremath{\mathcal{C}}$ is correct

- Our usual notion of proof:
 - $\bullet~\mathsf{A}$ claim $\mathcal C$ is given
 - A prover P writes down a proof that $\mathcal C$ is correct
 - Prover P sends this proof to a verifier V

- Our usual notion of proof:
 - $\bullet~\mathsf{A}$ claim $\mathcal C$ is given
 - A prover P writes down a proof that $\mathcal C$ is correct
 - Prover P sends this proof to a verifier V
 - Verifier has procedure (axioms and derivation rules) to check validity of proof

- Our usual notion of proof:
 - $\bullet~\mathsf{A}$ claim $\mathcal C$ is given
 - $\bullet\,$ A prover P writes down a proof that ${\mathcal C}$ is correct
 - Prover P sends this proof to a verifier V
 - Verifier has procedure (axioms and derivation rules) to check validity of proof
 - Verifier accepts or rejects based on these rules

- Our usual notion of proof:
 - $\bullet~\mathsf{A}$ claim $\mathcal C$ is given
 - A prover P writes down a proof that ${\mathcal C}$ is correct
 - Prover P sends this proof to a verifier V
 - Verifier has procedure (axioms and derivation rules) to check validity of proof
 - Verifier accepts or rejects based on these rules
- One-way communication (or, in other words, very little interaction!)

- Our usual notion of proof:
 - $\bullet~\mathsf{A}$ claim $\mathcal C$ is given
 - A prover P writes down a proof that ${\mathcal C}$ is correct
 - Prover P sends this proof to a verifier V
 - Verifier has procedure (axioms and derivation rules) to check validity of proof
 - Verifier accepts or rejects based on these rules
- One-way communication (or, in other words, very little interaction!)
- Verifier *does not trust* prover. Otherwise no need to verify proof!

Example: NP (Efficient Verifiable Proofs) set & Claim with efficient by verifiable proofs

• A claim $C := x \in L$ is given

- A claim $C := x \in L$ is given
- A prover *P* writes down a proof (witness) *w* that $x \in L$

- A claim $C := x \in L$ is given
- A prover *P* writes down a proof (witness) *w* that $x \in L$
- Prover P sends w to a verifier V

- A claim $C := x \in L$ is given
- A prover *P* writes down a proof (witness) *w* that $x \in L$
- Prover P sends w to a verifier V
- Verifier has procedure (axioms and derivation rules) to check validity of proof (*deterministic, polynomial time algorithm*)

- A claim $C := x \in L$ is given
- A prover P writes down a proof (witness) w that $x \in L$
- Prover P sends w to a verifier V
- Verifier has procedure (axioms and derivation rules) to check validity of proof (*deterministic, polynomial time algorithm*)
- Verifier accepts iff V(x, w) = 1

- A claim $\mathcal{C} := x \in L$ is given
- A prover P writes down a proof (witness) w that $x \in L$
- Prover P sends w to a verifier V
- Verifier has procedure (axioms and derivation rules) to check validity of proof (*deterministic, polynomial time algorithm*)
- Verifier accepts iff V(x, w) = 1
- In this setting, verifier *learns the proof*!

Example: Factoring

Setup:
A claim C := N is a product of two primes is given

Example: Factoring

- Setup:
 - A claim C := N is a product of two primes is given
 - A prover P writes down a proof: two primes p, q that $N = p \cdot q$
- Setup:
 - A claim $\mathcal{C} := N$ is a product of two primes is given
 - A prover P writes down a proof: two primes p, q that $N = p \cdot q$
 - Prover P sends (p, q) to a verifier V

- Setup:
 - A claim $\mathcal{C} := N$ is a product of two primes is given
 - A prover P writes down a proof: two primes p, q that $N = p \cdot q$
 - Prover P sends (p,q) to a verifier V
 - Verifier computes p · q and checks that p, q are prime.
 Checking validity of proof (*deterministic, polynomial time algorithm*)

Can multiply in P Can check that nombers prime in P

- Setup:
 - A claim C := N is a product of two primes is given
 - A prover P writes down a proof: two primes p, q that $N = p \cdot q$
 - Prover P sends (p, q) to a verifier V
 - Verifier computes p · q and checks that p, q are prime.
 Checking validity of proof (*deterministic, polynomial time algorithm*)
 - Verifier accepts iff p, q prime, and N = pq

- Setup:
 - A claim $\mathcal{C} := N$ is a product of two primes is given
 - A prover P writes down a proof: two primes p, q that $N = p \cdot q$
 - Prover P sends (p, q) to a verifier V
 - Verifier computes p · q and checks that p, q are prime.
 Checking validity of proof (*deterministic, polynomial time algorithm*)
 - Verifier accepts iff p, q prime, and N = pq
- In this setting, verifier *learns the proof* (in this case factorization)!

• Setup:

• A claim $\mathcal{C}:=$ graphs G_0, G_1 are isomorphic

Go and
$$G_1$$
 are isomorphic eff there is
a parmutation of the vertices e^{-S_n}
with $\{i,j\} \in E_0 \iff \{e^{(i)}, e^{(j)}\} \in E_1$

V=[n]

G. (V, E.) G. (V, E.)

- Setup:
 - A claim $\mathcal{C} :=$ graphs G_0, G_1 are isomorphic
 - A prover P writes down an isomorphism ρ such that $\rho(G_0) = G_1$

- Setup:
 - A claim $\mathcal{C} :=$ graphs G_0, G_1 are isomorphic
 - A prover P writes down an isomorphism ρ such that $\rho(G_0) = G_1$
 - Prover P sends ρ to a verifier V

- Setup:
 - A claim $\mathcal{C} :=$ graphs G_0, G_1 are isomorphic
 - A prover P writes down an isomorphism ρ such that $\rho(G_0) = G_1$
 - Prover P sends ρ to a verifier V
 - Verifier checks that ρ is a permutation of vertices, and that $\rho(G_0) = G_1$ (*deterministic, polynomial time algorithm*)

- Setup:
 - A claim $\mathcal{C} :=$ graphs G_0, G_1 are isomorphic
 - A prover P writes down an isomorphism ρ such that $\rho(G_0) = G_1$
 - Prover P sends ρ to a verifier V
 - Verifier checks that ρ is a permutation of vertices, and that $\rho(G_0) = G_1$ (deterministic, polynomial time algorithm)
 - Verifier accepts iff the above is correct.

- Setup:
 - A claim $\mathcal{C} :=$ graphs G_0, G_1 are isomorphic
 - A prover P writes down an isomorphism ρ such that $\rho(G_0) = G_1$
 - Prover P sends ρ to a verifier V
 - Verifier checks that ρ is a permutation of vertices, and that $\rho(G_0) = G_1$ (deterministic, polynomial time algorithm)
 - Verifier accepts iff the above is correct.
- In this setting, verifier *learns the isomorphism* (i.e., the proof)!

• Yes! But we need to modify the way proofs are checked.

- Yes! But we need to modify the way proofs are checked.
 - Make proofs interactive, instead of only one-way

- Yes! But we need to modify the way proofs are checked.
 - Make proofs *interactive*, instead of only one-way
 - Verifier is allowed *private randomness*

- Yes! But we need to modify the way proofs are checked.
 - Make proofs interactive, instead of only one-way
 - Verifier is allowed *private randomness*
- In the end, we will see a (zero-knowledge) proof for graph isomorphism as follows:

Alice: I will not give you an isomorphism, but I will prove that I could give you one, if I wanted to.

• Why Zero Knowledge?

• Zero-Knowledge Proofs

Conclusion

Acknowledgements

Setup:

• A claim C := graphs G_0, G_1 are isomorphic

- A claim C := graphs G_0, G_1 are isomorphic
 - A prover P produces a random graph H for which:

- A claim $\mathcal{C} :=$ graphs G_0, G_1 are isomorphic
 - A prover *P* produces a random graph *H* for which:
 - It can give isomorphism ρ_0 from G_0 to H
 - It can give isomorphism ρ_1 from G_1 to H

- A claim $\mathcal{C} :=$ graphs G_0, G_1 are isomorphic
 - A prover *P* produces a random graph *H* for which:
 - It can give isomorphism ρ_0 from G_0 to H
 - It can give isomorphism ρ_1 from G_1 to H
 - Above possible iff G_0 and G_1 isomorphic!

Setup:

• A claim $\mathcal{C} :=$ graphs G_0, G_1 are isomorphic • A prover *P* produces a random graph *H* for which: • It can give isomorphism ρ_0 from G_0 to H• It can give isomorphism ρ_1 from G_1 to H• Above possible iff G₀ and G₁ isomorphic! • Verifier picks random bit $b \in \{0, 1\}$ proven sonds graph It to varifier verifier rends bit & to prover

- A claim $\mathcal{C} :=$ graphs G_0, G_1 are isomorphic
 - A prover *P* produces a random graph *H* for which:
 - It can give isomorphism ρ_0 from G_0 to H
 - It can give isomorphism ρ_1 from G_1 to H
 - Above possible iff G₀ and G₁ isomorphic!
 - Verifier picks random bit $b \in \{0,1\}$
 - Prover gives isomorphism ρ_b

- A claim $\mathcal{C} :=$ graphs G_0, G_1 are isomorphic
 - A prover *P* produces a random graph *H* for which:
 - It can give isomorphism ρ_0 from G_0 to H
 - It can give isomorphism ρ_1 from G_1 to H
 - Above possible iff G₀ and G₁ isomorphic!
 - Verifier picks random bit $b \in \{0,1\}$
 - Prover gives isomorphism ρ_b
 - Verifier checks that $\overline{
 ho_b(H)}=G_b$

V(H, b, Cb)

Setup:

- A claim $\mathcal{C} :=$ graphs G_0, G_1 are isomorphic
 - A prover *P* produces a random graph *H* for which:
 - It can give isomorphism ρ_0 from G_0 to H
 - It can give isomorphism ρ_1 from G_1 to H
 - Above possible iff G₀ and G₁ isomorphic!
 - Verifier picks random bit $b \in \{0,1\}$
 - Prover gives isomorphism ρ_b
 - Verifier checks that $\rho_b(H) = G_b$
- Note that verifier will not learn isomorphism between G_0 and G_1 !

< ロ > < 同 > < 回 > < 回 >

Setup:

- A claim C := graphs G_0, G_1 are isomorphic
 - A prover *P* produces a random graph *H* for which:
 - It can give isomorphism ρ_0 from G_0 to H
 - It can give isomorphism ρ_1 from ${\it G}_1$ to ${\it H}$
 - Above possible iff G_0 and G_1 isomorphic!
 - Verifier picks random bit $b \in \{0,1\}$
 - Prover gives isomorphism ρ_b
 - Verifier checks that $\rho_b(H) = G_b$
- Note that verifier will not learn isomorphism between \overline{G}_0 and \overline{G}_1 !
- Note that:
 - Claim is $true \Rightarrow$ prover can always give isomorphism!
 - Claim is $\textit{false} \Rightarrow \mathsf{can}\ \mathsf{catch}\ \mathsf{bad}\ \mathsf{proof}\ \mathsf{with}\ \mathsf{probability} = 1/2$

>> Verification always succeds

(日) (日) (日) (日) (日)

- A claim C := graphs G_0, G_1 are isomorphic
 - A prover *P* produces a random graph *H* for which:
 - It can give isomorphism ρ_0 from G_0 to H
 - It can give isomorphism ρ_1 from G_1 to H
 - Above possible iff G_0 and G_1 isomorphic!
 - Verifier picks random bit $b \in \{0,1\}$
 - Prover gives isomorphism ρ_{b}
 - Verifier checks that $\rho_b(H) = G_b$
- Note that verifier will not learn isomorphism between G_0 and G_1 !
- Note that:
 - Claim is $true \Rightarrow$ prover can always give isomorphism!
 - Claim is $\textit{false} \Rightarrow \mathsf{can} \ \mathsf{catch} \ \mathsf{bad} \ \mathsf{proof} \ \mathsf{with} \ \mathsf{probability} = 1/2$
 - Can amplify probability of catching bad proof by repeating protocol above!

Setup:

- A claim $\mathcal{C} :=$ graphs G_0, G_1 are isomorphic
 - A prover P produces a random graph H for which:
 - It can give isomorphism ρ_0 from G_0 to H
 - It can give isomorphism ρ_1 from G_1 to H
 - Above possible iff G_0 and G_1 isomorphic!
 - Verifier picks random bit $b \in \{0,1\}$
 - Prover gives isomorphism ρ_{b}
 - Verifier checks that $\rho_b(H) = G_b$
- Note that verifier will not learn isomorphism between G_0 and G_1 !
- Note that:
 - Claim is $true \Rightarrow$ prover can always give isomorphism!
 - Claim is $\textit{false} \Rightarrow \mathsf{can} \ \mathsf{catch} \ \mathsf{bad} \ \mathsf{proof} \ \mathsf{with} \ \mathsf{probability} = 1/2$
 - Can amplify probability of catching bad proof by repeating protocol above!
- How can we model the fact that verifier does not gain knowledge?!

Simulation!

• Key idea: if claim is indeed true, then verifier's view of proof could have been simulated by the verifier alone!

- Key idea: if claim is indeed true, then verifier's view of proof could have been simulated by the verifier alone!
- Simulated protocol:
- The verifier (privately) produces a random permutation ρ and a bit b and outputs H = ρ(G_b).

- Key idea: if claim is indeed true, then verifier's view of proof could have been simulated by the verifier alone!
- Simulated protocol:
- The verifier (privately) produces a random permutation ρ and a bit b and outputs H = ρ(G_b).
- Verifier then picks bit b from previous step

- Key idea: if claim is indeed true, then verifier's view of proof could have been simulated by the verifier alone!
- Simulated protocol:
- The verifier (privately) produces a random permutation ρ and a bit b and outputs H = ρ(G_b).
- Verifier then picks bit *b* from previous step
- Verifier gives isomorphism ρ^{-1}

- Key idea: if claim is indeed true, then verifier's view of proof could have been simulated by the verifier alone!
- Simulated protocol:
- The verifier (privately) produces a random permutation ρ and a bit b and outputs H = ρ(G_b).
- Verifier then picks bit b from previous step
- Verifier gives isomorphism ρ^{-1}
- Verifier checks that $\rho^{-1}(H) = G_b$

- Key idea: if claim is indeed true, then verifier's view of proof could have been simulated by the verifier alone!
- Simulated protocol:
- The verifier (privately) produces a random permutation ρ and a bit b and outputs H = ρ(G_b).
- Verifier then picks bit b from previous step
- Verifier gives isomorphism ρ^{-1}
- Verifier checks that $\rho^{-1}(H) = G_b$
- Simulation \Rightarrow V gained no new information!

H e

<ロ> (四) (四) (三) (三) (三)

68 / 83

Perfect Zero Knowledge Proof

Note that we usually talked about not trusting provers so far, but for Zero-Knowledge, we will *not trust verifiers* (as they may try to obtain information about the proof!)

Perfect Zero Knowledge Proof

Note that we usually talked about not trusting provers so far, but for Zero-Knowledge, we will *not trust verifiers* (as they may try to obtain information about the proof!)

Definition (Perfect Zero Knowledge)

A prover *P* is *perfect zero-knowledge* for language *L* if for every polynomial time, randomized verifier V^* , there is a randomized algorithm M^* such that for every $x \in L$ the following random variables are identically distributed:

- $\langle P, V^* \rangle(x)$, that is, output of interaction between prover P and verifier V* on input x mandre verifies of proof.
- $M^*(x)$, that is, output of algorithm M^* (simulation) on input x

random vorable of simulation

Perfect Zero Knowledge Proof

Note that we usually talked about not trusting provers so far, but for Zero-Knowledge, we will *not trust verifiers* (as they may try to obtain information about the proof!)

Definition (Perfect Zero Knowledge)

A prover *P* is *perfect zero-knowledge* for language *L* if for every polynomial time, randomized verifier V^* , there is a randomized algorithm M^* such that for every $x \in L$ the following random variables are identically distributed:

- \$\langle P, V^* \rangle(x)\$, that is, output of interaction between prover P and verifier V* on input x
- $M^*(x)$, that is, output of algorithm M^* (simulation) on input x
- The above captures the idea that V^* is not gaining any extra computational power by interacting with P, since same output could have been generated by M^*

Perfect Zero Knowledge Proof²

- Previous definition is a bit too strict to be useful, so we relax it.¹
- We will allow simulator to fail with small probability (denoted by outputting \perp)

¹Very common phenomenon in crypto, that statistical indistinguishability too strict. ²For applications in cryptography, one can even relax this definition further, to include computational zero-knowledge
Perfect Zero Knowledge Proof²

- Previous definition is a bit too strict to be useful, so we relax it.¹
- We will allow simulator to fail with small probability (denoted by outputting \perp)

Definition (Perfect Zero Knowledge)

A prover *P* is *perfect zero-knowledge* for language *L* if for every polynomial time, randomized verifier V^* , there is a randomized algorithm M^* such that for every $x \in L$ the following holds:

- With probability $\leq 1/2$, $M^*(x) = \perp$ simulater fails $\neq \frac{1}{2}$ of the
- Conditioned on M^{*}(x) ≠ ⊥, the following variables are identially distributed:
 - \$\langle P, V^* \rangle(x)\$, that is, output of interaction between prover P and verifier V* on input x
 - $M^*(x)$, that is, output of algorithm M^* (simulation) on input x

¹Very common phenomenon in crypto, that statistical indistinguishability too strict. ²For applications in cryptography, one can even relax this definition further, to include computational zero-knowledge

• Key idea: if claim is indeed true, then verifier's view of proof could have been simulated by the verifier alone!

- Key idea: if claim is indeed true, then verifier's view of proof could have been simulated by the verifier alone!
- Simulated protocol:
- The simulator produces a random permutation ρ and outputs $H = \rho(G_0)$.

- Key idea: if claim is indeed true, then verifier's view of proof could have been simulated by the verifier alone!
- Simulated protocol:
- The simulator produces a random permutation ρ and outputs $H = \rho(G_0)$.
- Simulator then picks random bit b

- Key idea: if claim is indeed true, then verifier's view of proof could have been simulated by the verifier alone!
- Simulated protocol:
- The simulator produces a random permutation ρ and outputs $H = \rho(G_0)$.
- Simulator then picks random bit b
- If $b \neq 0$ then output $\perp \leftarrow$ output failure

• Key idea: if claim is indeed true, then verifier's view of proof could have been simulated by the verifier alone!

always

- Simulated protocol:
- The simulator produces a random permutation ρ and outputs $H = \rho(G_0)$.
- Simulator then picks random bit b
- If $b \neq 0$ then output \perp

> il b=0

- igodold o Otherwise simulator gives isomorphism ho^{-1}
- Simulator checks that $\rho^{-1}(H) = G_0$

- Key idea: if claim is indeed true, then verifier's view of proof could have been simulated by the verifier alone!
- Simulated protocol:
- The simulator produces a random permutation ρ and outputs $H = \rho(G_0)$.
- Simulator then picks random bit b
- If $b \neq 0$ then output \perp
- Otherwise simulator gives isomorphism ρ^{-1}
- Simulator checks that $\rho^{-1}(H) = G_0$
- Simulation \Rightarrow perfect zero knowledge for our prover *P*!

- Key idea: if claim is indeed true, then verifier's view of proof could have been simulated by the verifier alone!
- Simulated protocol:
- The simulator produces a random permutation ρ and outputs $H = \rho(G_0)$.
- Simulator then picks random bit b
- If $b \neq 0$ then output \perp
- Otherwise simulator gives isomorphism ρ^{-1}
- Simulator checks that $\rho^{-1}(H) = G_0$
- Simulation \Rightarrow perfect zero knowledge for our prover *P*!
- Note that whenever we don't fail, we output same distribution as the original protocol!

$$P_{V} (H, O, P_{0}) \qquad M (H, O, P_{0}) \\ \rightarrow P_{0}(G_{0}) \qquad \Im_{\text{product}} P_{0} (H, O, P_{0}) \\ \xrightarrow{1}_{\text{product}} P_{0} (H, O,$$

Conclusion

• We saw today how the power of interaction can be used to verify validity of "proofs" without conveying information about it

Conclusion

- We saw today how the power of interaction can be used to verify validity of "proofs" without conveying information about it
- Has applications in
 - Modern cryptography
 - Credit Cards
 - Passwords
 - Complexity Theory (can use zero-knowledge to construct complexity classes)
 - Used in cryptocurrencies (validate transactions without giving details about transactions)

Acknowledgement

- Lecture based largely on:
 - Oded Goldreich's Foundations of Cryptography book, Chapter 6
 - Berkeley & MIT's 6.875 Lecture 14

https://inst.eecs.berkeley.edu/~cs276/fa20/slides/lec14.pdf