Lecture 22: Distributed Algorithms

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

July 27, 2021

Overview

- Administrivia
- Distributed Computing: The Models
- Consensus with Byzantine Failures
- Conclusion
- Acknowledgements

Rate this course!

Please log in to

https://evaluate.uwaterloo.ca/

Evaluation will be open until August 5th.

- This would really help me figuring out what worked and what didn't for the course
- And let the school know if I was a good boy this term!
- Teaching this course is also a learning experience for me:)

What are Distributed Algorithms?

- Algorithms which run on a network, or multiprocessors within a computer which share memory

What are Distributed Algorithms?

- Algorithms which run on a network, or multiprocessors within a computer which share memory
- Problems they solve:
- Resource Management
- Data Management and Transmission
- Synchronization
- Consensus
- many more

What are Distributed Algorithms?

- Algorithms which run on a network, or multiprocessors within a computer which share memory
- Problems they solve:
- Resource Management
- Data Management and Transmission
- Synchronization
- Consensus
- many more
- Challenges in this setting:
- Concurrent Activity
- Uncertainty of order of events
- Failure and recovery of processors or channels

What are Distributed Algorithms?

- Algorithms which run on a network, or multiprocessors within a computer which share memory
- Problems they solve:
- Resource Management
- Data Management and Transmission
- Synchronization
- Consensus
- many more
- Challenges in this setting:
- Concurrent Activity
- Uncertainty of order of events
- Failure and recovery of processors or channels
- Many models
- Memory \& Communication: shared memory, message-passing
- Timing: synchronous (rounds), asynchronous, partially synchronous (bounds on message delay, processor speeds, clock rates)
- Failures: processor (stop, Byzantine), communication (message loss/altered), system state corruption

Synchronous Model

- processors are vertices of directed graph
- Memory: each processor has its own memory
- Communication: each processor can send messages to its outgoing neighbours
- Timing: processors communicate in synchronous rounds
- Failures: may or may not have failures (different settings today)

Synchronous Model

- processors are vertices of directed graph
- Memory: each processor has its own memory
- Communication: each processor can send messages to its outgoing neighbours
- Timing: processors communicate in synchronous rounds
- Failures: may or may not have failures (different settings today)
- Σ is the message alphabet, plus special symbol \perp

$$
\text { C, } \begin{aligned}
\Sigma & =\{0,1\} \cup\} \perp\} \\
\Sigma & =\{1, \ldots, n\}
\end{aligned}
$$

Synchronous Model

- processors are vertices of directed graph on n vertices
- Memory: each processor has its own memory
- Communication: each processor can send messages to its outgoing neighbours
- Timing: processors communicate in synchronous rounds
- Failures: may or may not have failures (different settings today)
- Σ is the message alphabet, plus special symbol \perp
- For each vertex $i \in[n]$, a processor consists of:
- $S_{i}=$ nonempty set of states
- $\sigma_{i}=$ a start state
- $\mu_{i}: S_{i} \times$ out $_{i} \rightarrow \Sigma \cup\{\perp\} \quad$ Message function
- $\tau_{i}: S_{i} \times(\underline{\Sigma \cup\{\perp\}})^{i n_{i}} \rightarrow S_{i} \quad$ Transition function

Synchronous Model

- processors are vertices of directed graph
- Memory: each processor has its own memory
- Communication: each processor can send messages to its outgoing neighbours
- Timing: processors communicate in synchronous rounds
- Failures: may or may not have failures (different settings today)
- Σ is the message alphabet, plus special symbol \perp
- For each vertex $i \in[n]$, a processor consists of:
- $S_{i}=$ non-empty set of states
- $\sigma_{i}=$ a start state
- $\mu_{i}: S_{i} \times$ out $_{i} \rightarrow \Sigma \cup\{\perp\} \quad$ Message function
- $\tau_{i}: S_{i} \times(\Sigma \cup\{\perp\})^{i n_{i}} \rightarrow S_{i}$

Transition function

- Complexity Measure: number of rounds (total data communicated) needed to solve problem
- processors have unlimited internal resources (i.e., can compute anything)
- For today, will assume each processor deterministic

Example: Leader Election (i.e. breaking symmetry)

- Input: network of processors
- Output: want to distinguish exactly one process, as the leader

Example: Leader Election (i.e. breaking symmetry)

- Input: network of processors
- Output: want to distinguish exactly one process, as the leader
- Motivation: leader can take charge of
- communication
- coordination
- allocating resources
- other tasks

Example: Leader Election (i.e. breaking symmetry)

- Input: network of processors
- Output: want to distinguish exactly one process, as the leader
- Motivation: leader can take charge of
- communication
- coordination
- allocating resources
- other tasks
- Simple case: ring network, bi-directional communication
- processors numbered clockwise (but they don't know their numbers)

Example: Leader Election (i.e. breaking symmetry)

- Input: network of processors
- Output: want to distinguish exactly one process, as the leader
- Motivation: leader can take charge of
- communication
- coordination
- allocating resources
- other tasks
- Simple case: ring network, bi-directional communication
- processors numbered clockwise (but they don't know their numbers)
- Theorem: all processors identical (same set of states and transition functions) and deterministic then it is impossible to elect a leader!

Example: Leader Election (i.e. breaking symmetry)

- Input: network of processors
- Output: want to distinguish exactly one process, as the leader
- Motivation: leader can take charge of
- communication
- coordination
- allocating resources
- other tasks
- Simple case: ring network, bi-directional communication
- processors numbered clockwise (but they don't know their numbers)
- Theorem: all processors identical (same set of states and transition functions) and deterministic then it is impossible to elect a leader!
- To show this, simply look at execution and check that all processors will always be at identical states.

Leader Election: Algorithm

- Let's assume that each processor also has a unique ID (UID)
- But they don't know size of the network (ie. n)
using randornmen scan pick unique ID with high probability

Leader Election: Algorithm

- Let's assume that each processor also has a unique ID (UID)
- But they don't know size of the network (i.e. n)
- Idea: each processor sends its UID in a message, to be relayed step-by-step around the ring.

0
0^{2}
${ }_{4}^{0}$

Leader Election: Algorithm

- Let's assume that each processor also has a unique ID (UID)
- But they don't know size of the network (ie. n)
- Idea: each processor sends its UID in a message, to be relayed step-by-step around the ring.
- When processor receives UID, compares it with its own
- if it is bigger, pass it on
- if smaller, discard
- equal \Rightarrow processor declares itself leader
- leader then notifies everyone else (by message relaying in network)

Leader: the one with largest UID

Leader Election: Algorithm

- Let's assume that each processor also has a unique ID (UID)
- But they don't know size of the network (i.e. n)
- Idea: each processor sends its UID in a message, to be relayed step-by-step around the ring.
- When processor receives UID, compares it with its own
- if it is bigger, pass it on
- if smaller, discard
- equal \Rightarrow processor declares itself leader
- leader then notifies everyone else (by message relaying in network)
- Algorithm terminates, and elects leader with largest UID

Leader Election: Algorithm

- Let's assume that each processor also has a unique ID (UID)
- But they don't know size of the network (i.e. n)
- Idea: each processor sends its UID in a message, to be relayed step-by-step around the ring.
- When processor receives UID, compares it with its own
- if it is bigger, pass it on
- if smaller, discard
- equal \Rightarrow processor declares itself leader
- leader then notifies everyone else (by message relaying in network)
- Algorithm terminates, and elects leader with largest UID
- After n rounds, element with maximum UID will declare itself the leader (and no other processor will)

Leader Election: Algorithm

- Let's assume that each processor also has a unique ID (UID)
- But they don't know size of the network (i.e. n)
- Idea: each processor sends its UID in a message, to be relayed step-by-step around the ring.
- When processor receives UID, compares it with its own
- if it is bigger, pass it on
- if smaller, discard
- equal \Rightarrow processor declares itself leader
- leader then notifies everyone else (by message relaying in network)
- Algorithm terminates, and elects leader with largest UID
- After n rounds, element with maximum UID will declare itself the leader (and no other processor will)
- Complexity:
- Number of rounds: $O(n)$
- Communication: $O\left(n^{2}\right)$

Leader Election: Algorithm

- Let's assume that each processor also has a unique ID (UID)
- But they don't know size of the network (i.e. n)
- Idea: each processor sends its UID in a message, to be relayed step-by-step around the ring.
- When processor receives UID, compares it with its own
- if it is bigger, pass it on
- if smaller, discard
- equal \Rightarrow processor declares itself leader
- leader then notifies everyone else (by message relaying in network)
- Algorithm terminates, and elects leader with largest UID
- After n rounds, element with maximum UID will declare itself the leader (and no other processor will)
- Complexity:
- Number of rounds: $O(n)$
- Communication: $O\left(n^{2}\right)$
- Can reduce communication to $O(n \log n)$ by successively doubling (see reference)
- Administrivia
- Distributed Computing: The Models
- Consensus with Byzantine Failures
- Conclusion
- Acknowledgements

Consensus Problem - Setup

- Several generals and their armies surround an enemy city

[^0]
Consensus Problem - Setup

- Several generals and their armies surround an enemy city
- Generals want to plan a coordinated attack to an enemy

[^1]
Consensus Problem - Setup

- Several generals and their armies surround an enemy city
- Generals want to plan a coordinated attack to an enemy
- Some generals may not have their armies ready...

[^2]
Consensus Problem - Setup

- Several generals and their armies surround an enemy city
- Generals want to plan a coordinated attack to an enemy
- Some generals may not have their armies ready...
- Generals can communicate by sending messengers to others' bases
- Unreliable, as messenger can get lost or captured
- Routes between bases are undirected graph, known to all generals
- Generals know bound on time it takes for message to be delivered successfully

[^3]
Consensus Problem - Setup

- Several generals and their armies surround an enemy city
- Generals want to plan a coordinated attack to an enemy
- Some generals may not have their armies ready...
- Generals can communicate by sending messengers to others' bases
- Unreliable, as messenger can get lost or captured
- Routes between bases are undirected graph, known to all generals
- Generals know bound on time it takes for message to be delivered successfully
- For them to attack, all generals must agree to attack

[^4]
Consensus Problem - Setup

- Several generals and their armies surround an enemy city
- Generals want to plan a coordinated attack to an enemy
- Some generals may not have their armies ready...
- Generals can communicate by sending messengers to others' bases
- Unreliable, as messenger can get lost or captured
- Routes between bases are undirected graph, known to all generals
- Generals know bound on time it takes for message to be delivered successfully
- For them to attack, all generals must agree to attack
- Model: synchronous model, arbitrary number of message failures.

[^5]
Consensus Problem - Setup

- Several generals and their armies surround an enemy city
- Generals want to plan a coordinated attack to an enemy
- Some generals may not have their armies ready...
- Generals can communicate by sending messengers to others' bases
- Unreliable, as messenger can get lost or captured
- Routes between bases are undirected graph, known to all generals
- Generals know bound on time it takes for message to be delivered successfully
- For them to attack, all generals must agree to attack
- Model: synchronous model, arbitrary number of message failures.
- Input: Each processor has one bit of input. 1 (attack) or 0 (don't attack)
agreement
- Output: all should have same decision bit b satisfying weak validity. ${ }^{1}$ $\{$ - if all processors start with bit 0 , then 0 is only allowed decision
- if all start with 1 and all messages successfully delivered, then 1 is the only allowed decision.

[^6]
Consensus Problem - Byzantine Failures

- Unbounded message failures \Rightarrow impossible, even for 2 generals
- In the end \rightarrow have to make a decision without communicating

Consensus Problem - Byzantine Failures

- Unbounded message failures \Rightarrow impossible, even for 2 generals
- In the end \rightarrow have to make a decision without communicating
- Not very illuminating.

What if we allow only a finite number of failures?

Consensus Problem - Byzantine Failures

- Unbounded message failures \Rightarrow impossible, even for 2 generals
- In the end \rightarrow have to make a decision without communicating
- Not very illuminating.

What if we allow only a finite number of failures?

- Two types of failures:
- Stopping Failures: all generals honest, but some may not be able to communicate at all (node crash in network)
- Byzantine Failures: some generals dishonest. Similar to malicious attacker in a network.

Consensus Problem - Byzantine Failures

- Unbounded message failures \Rightarrow impossible, even for 2 generals
- In the end \rightarrow have to make a decision without communicating
- Not very illuminating.

What if we allow only a finite number of failures?

- Two types of failures:
- Stopping Failures: all generals honest, but some may not be able to communicate at all (node crash in network)
- Byzantine Failures: some generals dishonest. Similar to malicious attacker in a network.
- Input: Each processor has one bit of input. 1 (attack) or 0 (don't attack). Faulty processors can behave arbitrarily.

Consensus Problem - Byzantine Failures

- Unbounded message failures \Rightarrow impossible, even for 2 generals
- In the end \rightarrow have to make a decision without communicating
- Not very illuminating.

What if we allow only a finite number of failures?

- Two types of failures:
- Stopping Failures: all generals honest, but some may not be able to communicate at all (node crash in network)
- Byzantine Failures: some generals dishonest. Similar to malicious attacker in a network.
- Input: Each processor has one bit of input. 1 (attack) or 0 (don't attack). Faulty processors can behave arbitrarily.
Output: all non-faulty processors should terminate and have
(1) Agreement: same decision bit b
(2) Weak Validity: if all non-faulty processors inmanalan start with bit then b must be equal to a.
OBS: non-foulty proasord are olways able to correctly

Consensus Problem - Byzantine Failures

- Unbounded message failures \Rightarrow impossible, even for 2 generals
- In the end \rightarrow have to make a decision without communicating
- Not very illuminating.

What if we allow only a finite number of failures?

- Two types of failures:
- Stopping Failures: all generals honest, but some may not be able to communicate at all (node crash in network)
- Byzantine Failures: some generals dishonest. Similar to malicious attacker in a network.
- Input: Each processor has one bit of input. 1 (attack) or 0 (don't attack). Faulty processors can behave arbitrarily.
- Output: all non-faulty processors should terminate and have
(1) Agreement: same decision bit b
(2) Weak Validity: if all non-faulty processors processors start with bit a, then b must be equal to a.
- Complexity measures: number of rounds \& communication (\# messages exchanged in bit-size).

Byzantine Consensus - Complete Graph

- Assume all vertices can talk to any other vertex ("broadcast" setting)

Byzantine Consensus - Complete Graph

- Assume all vertices can talk to any other vertex ("broadcast" setting)
- First attempt: simply send our value to other nodes (if non-faulty), then take majority.
$n=$ \#generals (size of over network) $\quad f=$ F faulty nodes
Example: $n=3 \quad f=1$
p_{1}, p_{2} honest p_{3} faulty
inputs: $x_{1}=1, x_{2}=0, x_{3}=0$
p_{3} send 1 to $p_{1} \rightarrow p_{1}$ secs 101 attack
p_{3} and 0 to $p_{2} \rightarrow p_{2}$ seas 100 don't attest vigleted the agreement constraint!

Byzantine Consensus - Complete Graph

- Assume all vertices can talk to any other vertex ("broadcast" setting)
- First attempt: simply send our value to other nodes (if non-faulty), then take majority.
- Well, that didn't work - violated the agreement property!

Byzantine Consensus - Complete Graph

- Assume all vertices can talk to any other vertex ("broadcast" setting)
- First attempt: simply send our value to other nodes (if non-faulty), then take majority.
- Well, that didn't work - violated the agreement property!
- New Idea: make all nodes gossip!

Each node now will keep track of what each node has told another and so on...

- At each round, each vertex broadcasts its knowledge
- After a number of rounds, everyone must make a decision

Byzantine Consensus - Complete Graph

- Assume all vertices can talk to any other vertex ("broadcast" setting)
- First attempt: simply send our value to other nodes (if non-faulty), then take majority.
- Well, that didn't work - violated the agreement property!
- New Idea: make all nodes gossip!

Each node now will keep track of what each node has told another and so on...

- At each round, each vertex broadcasts its knowledge
- After a number of rounds, everyone must make a decision
- Does this work?
- How many rounds do we need?
- How many Byzantine failures can it tolerate?

Byzantine Consensus - Bad Example

- 3 vertices $\left\{v_{1}, v_{2}, v_{3}\right\}, 1$ faulty vertex $n=3, f=1$ Hounds $=2$
- Scenario 1: v_{1}, v_{2} good with value $1, v_{3}$ faulty with value 0
(1) Round 1: all vertices truthful
(2) Round 2: v_{3} lies to v_{1}, saying that v_{2} said 0 , all other communications truthful
(3) Validity $\Rightarrow v_{1}, v_{2}$ must decide 1

Byzantine Consensus - Bad Example

- 3 vertices $\left\{v_{1}, v_{2}, v_{3}\right\}, 1$ faulty vertex
- Scenario 2: v_{2}, v_{3} good with value $0, v_{1}$ faulty with value 1
(1) Round 1: all vertices truthful
(2) Round 2: v_{1} lies to v_{3}, saying that v_{2} said 1 , all other communications truthful
(3) Validity $\Rightarrow v_{2}, v_{3}$ must decide 0

Byzantine Consensus - Bad Example

- 3 vertices $\left\{v_{1}, v_{2}, v_{3}\right\}, 1$ faulty vertex all they meed to do
- Scenario 3: v_{1}, v_{3} good with values 1,0 (resp.), v_{2} faulty with value 0
(1) Round 1: v_{2} tells v_{1} its value is 1 , tells v_{3} its value is 0
(2) Round 2: all truthful

Byzantine Consensus - Bad Example

- 3 vertices $\left\{v_{1}, v_{2}, v_{3}\right\}, 1$ faulty vertex
- Scenario 1: v_{1}, v_{2} good with value $1, v_{3}$ faulty with value 0
(1) Round 1: all vertices truthful
(2) Round 2: v_{3} lies to v_{1}, saying that v_{2} said 0 , all other communications truthful
(3) Validity $\Rightarrow v_{1}, v_{2}$ must decide 1
- Scenario 2: v_{2}, v_{3} good with value $0, v_{1}$ faulty with value 1
(1) Round 1: all vertices truthful
(2) Round 2: v_{1} lies to v_{3}, saying that v_{2} said 1 , all other communications truthful
(3) Validity $\Rightarrow v_{2}, v_{3}$ must decide 0
- Scenario 3: v_{1}, v_{3} good with values 1,0 (resp.), v_{2} faulty with value 0
(1) Round 1: v_{2} tells v_{1} its value is 1 , tells v_{3} its value is 0
(2) Round 2: all truthful
\square Scenarios 1 and 3 identical to v_{1}, so it must return 1
0 Scenarios 2 and 3 identical to v_{3}, so it must return 0
- Contradicts agreement in Scenario 3!

Byzantine Consensus - Algorithm

- Assumption: ${ }^{2} n>3 f$ (number of bad vertices $<$ third total vertices) (in bad example $n=3 f$)

[^7]
Byzantine Consensus - Algorithm

- Assumption: ${ }^{2} n>3 f$ (number of bad vertices $<$ third total vertices)
- How to perfectly gossip?

[^8]Byzantine Consensus - Algorithm

- Assumption: ${ }^{2} n>3 f$ (number of bad vertices $<$ third total vertices)
- How to perfectly gossip?
- Data structure: Exponential Information Gathering (EIG) tree $T_{n, f}$
- Depth: $f+1$
(so $f+2$ node levels)
- Each tree node at level $k+1$ labeled by string $i_{1} i_{2} \cdots i_{k}$ $\left(i_{a} \neq i_{b}\right)$
$n=4 \quad i f=1$
 data ntronctura

Q: what dons it contain?
${ }^{2}$ It turns out that $n \leq 3 f \Rightarrow$ no algorithm can reach consensus!

Byzantine Consensus - Algorithm

- Assumption: ${ }^{2} n>3 f$ (number of bad vertices $<$ third total vertices)
- How to perfectly gossip?
- Data structure: Exponential Information Gathering (EIG) tree $T_{n, f}$
- Depth: $f+1$
(so $f+2$ node levels)
- Each tree node at level $k+1$ labeled by string $i_{1} i_{2} \cdots i_{k} \quad\left(i_{a} \neq i_{b}\right)$
- Node $i_{1} i_{2} \cdots i_{k}$ will store value v if the following happens: i_{k} told you that i_{k-1} told i_{k} that i_{k-2} told $i_{k-1} \ldots$ that i_{1} told i_{2} that its initial value was v

$$
i_{1} \xrightarrow{\alpha_{1}} i_{2} \xrightarrow{\substack{\alpha_{2} \\ v}} i_{3} \xrightarrow{\alpha_{3}} i_{4} \xrightarrow{v} \cdots i_{n-1} \rightarrow i_{k}{ }^{v} \text { you }
$$

idea: thin tree is keeping track of Common communicated infruatisn:
${ }^{2}$ It turns out that $n \leq 3 f \Rightarrow$ no algorithm can reach consensus!

Byzantine Consensus - EIG Tree

Byzantine Consensus - EIG Algorithm

(1) Each vertex has own EIG tree $T_{n, f}$, with root labeled by its own value

Byzantine Consensus - EIG Algorithm

(1) Each vertex has own EIG tree $T_{n, f}$, with root labeled by its own value
(2) Relay messages for $f+1$ rounds

- At round r, each vertex sends the values of level r of its EIG tree
- Each vertex decorates values of its $(r+1)^{\text {th }}$ level with values from messages

Byzantine Consensus - EIG Algorithm

(1) Each vertex has own EIG tree $T_{n, f}$, with root labeled by its own value
(2) Relay messages for $f+1$ rounds

- At round r, each vertex sends the values of level r of its EIG tree
- Each vertex decorates values of its $(r+1)^{\text {th }}$ level with values from messages
(3) After $f+1$ rounds, redecorate tree bottom-up, taking strict majority of children (otherwise set value of tree node to \perp)

EIG Algorithm - Example

- $n=4, f=1$
- p_{3} is faulty, initial values are $p_{1}=p_{2}=1, p_{3}=p_{4}=0$
- round 1: p_{3} lies to p_{2} and p_{4}
wrong values in pink
- round 2: p_{3} lies to p_{2} about p_{1} and lies to p_{1} about p_{2}

EIG Algorithm - Analysis
Lemma (Consistency of Non-Faulty Messages)
If i, j, k are non-faulty, then $T_{i}(x)=T_{j}(x)$ whenever label x ends with k.

$$
\begin{aligned}
& x=x_{i_{1}} x_{i_{2}} \cdots \underbrace{x_{i(p+1)}}_{=k} \\
& \text { non-faulty } \\
& x=1234 k \quad 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \xrightarrow{\text { or }} k \underset{\sim}{t}
\end{aligned}
$$

EIG Algorithm - Analysis

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty processors i, j the new values of $T_{i}(x)$ and $T_{j}(x)$ are the same.

EIG Algorithm - Analysis

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty processors i, j the new values of $T_{i}(x)$ and $T_{j}(x)$ are the same.

- Base case: if x is the label of leaf, previous lemma handles it.

EIG Algorithm - Analysis
Lemma (Consistency of Upwards Relabeling)
If label x ends with non-faulty process, then for any two non-faulty processors i, j the new values of $T_{i}(x)$ and $T_{j}(x)$ are the same.

- Base case: if x is the label of leaf, previous lemma handles it. end with non
- Inductive step: $|x|=t \leq f$
- By induction, if ℓ is a non-faulty element the new value of $T_{i}(x \circ \ell)$ is the same for any $i \in[n]$.
OBS: if x is not haaf then know the $|x| \leqslant f$ becaux $T_{n i f}$ has $\rho+2$ lays and $t+1$ blague has t symbols $x_{i,} x_{i} \cdots x_{i}$

$$
[x] n o t \operatorname{lnf} \Rightarrow x \text { in } \begin{aligned}
\operatorname{lag} & t+1<f+2 \\
& \Rightarrow t \leq f
\end{aligned}
$$

EIG Algorithm - Analysis

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty processors i, j the new values of $T_{i}(x)$ and $T_{j}(x)$ are the same.

- Base case: if x is the label of leaf, previous lemma handles it.
- Inductive step: $|x|=t \leq f$
- By induction, if ℓ is a non-faulty element the new value of $T_{i}(x \circ \ell)$ is the same for any $i \in[n]$.
- So label x has same labeled children across trees (if x_{ℓ} honest)

accon

EIG Algorithm - Analysis

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty processors i, j the new values of $T_{i}(x)$ and $T_{j}(x)$ are the same.

- Base case: if x is the label of leaf, previous lemma handles it.
- Inductive step: $|x|=t \leq f$
- By induction, if ℓ is a non-faulty element the new value of $T_{i}(x \circ \ell)$ is the same for any $i \in[n]$.
- So label x has same labeled children across trees (if x_{ℓ} honest)
- Number of children of x :

$$
\begin{aligned}
& =n-t>3 f-f=2 f \\
& x \text { at } t+1 \text { level }
\end{aligned}
$$

EIG Algorithm - Analysis

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty processors i, j the new values of $T_{i}(x)$ and $T_{j}(x)$ are the same.

- Base case: if x is the label of leaf, previous lemma handles it.
- Inductive step: $|x|=t \leq f$
- By induction, if ℓ is a non-faulty element the new value of $T_{i}(x \circ \ell)$ is the same for any $i \in[n]$.
- So label x has same labeled children across trees (if x_{ℓ} honest)
- Number of children of x :

$$
=n-t>3 f-f=2 f
$$

- At most f are faulty. By taking majority, we get that new values $T_{i}(x)=T_{j}(x)$
became $>$ half of x^{\prime} 's children agree

EIG Algorithm - Analysis

So far we have managed to prove:
(1) Termination: after $f+1$ rounds, all of them will decide.

- every label x which has no faulty processor is able to update its value

EIG Algorithm - Analysis

So far we have managed to prove:
(1) Termination: after $f+1$ rounds, all of them will decide.

- every label x which has no faulty processor is able to update its value
(2) Validity: if all nodes start with b, then each label x with no faulty processor will be updated to b
- proof analogous to the proof of previous lemma
- just note that all values will be b, as it is value being propagated by non-faulty nodes

EIG Algorithm - Analysis

So far we have managed to prove:
(1) Termination: after $f+1$ rounds, all of them will decide.

- every label x which has no faulty processor is able to update its value
(2) Validity: if all nodes start with b, then each label x with no faulty processor will be updated to b
- proof analogous to the proof of previous lemma
- just note that all values will be b, as it is value being propagated by non-faulty nodes
(3) Agreement: all nodes must agree on same value
- By first lemma, all values in the leaves x are consistent across processors so long as x ends on a non-faulty process
- By second lemma, majority will cause all values in nodes from level r ending in non-faulty nodes to be the same across processors
- Induction and $n>3 f$ ensures that labels in level 1 will look the same on non-faulty nodes \Rightarrow agreement

Conclusion

- Today we learned about distributed computation
- It is cool
- Widely used in practice
- Cryptocurrencies - all of them need to solve Byzantine Agreement!

Happening at UW: Sergey Gorbunov (involved with Algorand)

- Other peer-to-peer systems
- Multi-core programming

Happening at UW: Trevor Brown

- Biology (social insect colony algorithms)
- many more...
- Learned an (inefficient) algorithm for Byzantine Agreement (check out the more efficient one in [Attiya and Welch 2004])

Acknowledgement

- Lecture based largely on:
- Nancy Lynch's 6.852 Fall 2015 course - lectures 1 and 6
- Lecture 1
https://learning-modules.mit.edu/service/materials/groups/ 103042/files/271154f5-ea0f-41a0-9ed9-6f83a5222d8b/link? errorRedirect=\%2Fmaterials\%2Findex.html\&download=true
- Lecture 6
https://learning-modules.mit.edu/service/materials/groups/ 103042/files/95f71f5e-7791-4a1a-aeb5-e3d97afb167f/link? errorRedirect=\%2Fmaterials\%2Findex.html\&download=true

References I

R
Attiya, H. and Welch, J., 2004.
Distributed computing: fundamentals, simulations, and advanced topics (Vol. 19). John Wiley \& Sons.

[^0]: ${ }^{1}$ Strong validity: if at least one general has bit 0 , then 0 is only allowed decision

[^1]: ${ }^{1}$ Strong validity: if at least one general has bit 0 , then 0 is only allowed decision

[^2]: ${ }^{1}$ Strong validity: if at least one general has bit 0 , then 0 is only allowed decision

[^3]: ${ }^{1}$ Strong validity: if at least one general has bit 0 , then 0 is only allowed decision

[^4]: ${ }^{1}$ Strong validity: if at least one general has bit 0 , then 0 is only allowed decision

[^5]: ${ }^{1}$ Strong validity: if at least one general has bit 0 , then 0 is only allowed decision

[^6]: ${ }^{1}$ Strong validity: if at least one general has bit 0 , then 0 is only allowed decision

[^7]: ${ }^{2}$ It turns out that $n \leq 3 f \Rightarrow$ no algorithm can reach consensus!

[^8]: ${ }^{2}$ It turns out that $n \leq 3 f \Rightarrow$ no algorithm can reach consensus!

