Lecture 18: Hardness of Approximation

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

July 13, 2021

1/86

Overview

@ Background and Motivation
e Why Hardness of Approximation?
o How do we prove Hardness of Approximation?
e Hardness of Approximation - Example

@ Proofs & Hardness of Approximation

@ Conclusion

@ Acknowledgements

2/86

Why Study Hardness of Approximation?
@ Since the 50s and 60s (before we “formally knew” about NP)

researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others
Jehn Mash
umanm C.,QL'H(}L
GodeL U Ae)
Tohnam Gow omd odbars
: S amq (O .
" TC W\)i?\d’“"l SVhM"uLM
fP"""\"l”'“” Hum Yo

in¥nackhlt

v;\ C“\\\
3/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

4/86

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

e design algorithm which is efficient on “most” instances and always
gives us the exact/best answer

‘ hew(in"im“

5/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

e design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
o design (always) efficient algorithm, but finds sub-optimal solutions

Approximation Algorithms

6/86

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

e design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
o design (always) efficient algorithm, but finds sub-optimal solutions
Approximation Algorithms
e For @ > 1, an algorithm is a-approximate for a minimization

(maximization) problem if on every input instance the algorithm finds a
solution with cost < a.- OPT (> 1. OPT).

all pdatirn

b s €2 01T

S Adp\"\m w

o? (wmin)

7/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

e design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
o design (always) efficient algorithm, but finds sub-optimal solutions
Approximation Algorithms
e For @ > 1, an algorithm is a-approximate for a minimization
(maximization) problem if on every input instance the algorithm finds a
solution with cost < a- OPT (> 1. OPT).
@ For some problems, it is possible to prove that even the design of
approximation algorithms for certain values of « is impossible, unless
P = NP (in which case we would have an exact algorithm).

Hardness of Approximation

8/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

e design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
o design (always) efficient algorithm, but finds sub-optimal solutions
Approximation Algorithms
e For @ > 1, an algorithm is a-approximate for a minimization
(maximization) problem if on every input instance the algorithm finds a
solution with cost < a- OPT (> 1. OPT).
@ For some problems, it is possible to prove that even the design of
approximation algorithms for certain values of « is impossible, unless
P = NP (in which case we would have an exact algorithm).

Hardness of Approximation
@ Important to know the limits of efficient algorithms!

9/86

Background and Motivation

e How do we prove Hardness of Approximation?

Proofs & Hardness of Approximation

Conclusion

Acknowledgements

10/86

How do we Prove Hardness of Approximation?

@ When we prove that a combinatorial problem C is NP-hard, we
usually pick our favorite NP-complete combinatorial problem L and
we show a reduction that

11/86

How do we Prove Hardness of Approximation?

@ When we prove that a combinatorial problem C is NP-hard, we
usually pick our favorite NP-complete combinatorial problem L and
we show a reduction that

e maps every YES instance of L to a YES instance of C
e maps every NO instance of L to a NO instance of C
blue Mzu’n o YES inpub

piw of Yu yudackon in Awall)
(.{ ve el o alganiee thet N,lvw@ Hun we
N uld oo el L

12/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

How do we Prove Hardness of Approximation?

@ When we prove that a combinatorial problem C is NP-hard, we
usually pick our favorite NP-complete combinatorial problem L and
we show a reduction that

e maps every YES instance of L to a YES instance of C
e maps every NO instance of L to a NO instance of C

@ Let's do this for the CLIQUE problem. Input for CLIQUE is (G, k)

e maps every YES instance of SAT to a YES instance of CLIQUE
e maps every NO instance of SAT to a NO instance of CLIQUE

5{ @ wr & beefeam{mm,%m mep @ o greph
(Gmk)%d her @ k—df?u .'{ @ Aqka@m%
A poT nekindreble | Hum we have b e
(04-—)(9Q)l«.) whue Ce hen 12 ch'u,w(
Ge e clipe of aire < ko

13/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

How do we Prove Hardness of Approximation?

@ When we prove that a combinatorial problem C is NP-hard, we

usually pick our favorite NP-complete combinatorial problem L and
we show a reduction that

e maps every YES instance of L to a YES instance of C
e maps every NO instance of L to a NO instance of C

@ Let's do this for the CLIQUE problem. Input for CLIQUE is (G, k)

e maps every YES instance of SAT to a YES instance of CLIQUE
e maps every NO instance of SAT to a NO instance of CLIQUE

14 /86

How do we Prove Hardness of Approximation?

@ When we prove that a combinatorial problem C is NP-hard, we
usually pick our favorite NP-complete combinatorial problem L and
we show a reduction that

e maps every YES instance of L to a YES instance of C
e maps every NO instance of L to a NO instance of C

@ Let's do this for the CLIQUE problem. Input for CLIQUE is (G, k)

e maps every YES instance of SAT to a YES instance of CLIQUE
e maps every NO instance of SAT to a NO instance of CLIQUE

@ For hardness of approximation what we would like is a (more robust)
reduction of the form:

15/86

How do we Prove Hardness of Approximation?

(GQ) k) YEeS q Cligue ((0 ia /)a‘h‘a‘{q‘;lt)

very he edow nt hawe cligau
(HQL.I'.':) '::‘o“ “ of Ak k/?,

A

@ Let's do this for the CLIQUE problem. Input for CLIQUE is (G, k)

e maps every YES instance of SAT to a YES instance of CLIQUE
e maps every NO instance of SAT to a NO instance of CLIQUE

@ For hardness of approximation what we would like is a (more robust)
reduction of the form:

e maps every YES instance of SAT to a YES instance of CLIQUE
e maps every NO instance of SAT to a VERY-MUCH-NO instance of
CLIQUE .
we had o ?_-appmlm&hm #ez MAX-CLIGUE
m{vm+ G heo Cliqee of ni I we oubpar kclfw i mz:‘*/tzdd
d o . s Cw
(i MM-CI."u(Gq) = Jehan cllw °‘ Aiws /:.‘ B able "‘hr“
. I * AR € /3 dnhhr-ar an
unX-Cliya (He) — sutmn clijpa @ in ratiof

16 /86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Background and Motivation

e Hardness of Approximation - Example

Proofs & Hardness of Approximation

Conclusion

Acknowledgements

17/86

Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function

d:XXX—>]R20

18/86

Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function
d: XxX— RZO

@ For any path pg — p1 — -+ — p: in X, length of the path is sum of

distances traveled .
tf

> d(pi,pit1)

i=0

19/86

Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function
d: XxX—]RZO

@ For any path pg — p1 — -+ — p: in X, length of the path is sum of
distances traveled

-1
> d(pi,pit1)
i=0

@ QOutput: find a cycle that reaches all points in X of shortest length.

20/86

Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function
d: XxX—]RZO

@ For any path pg — p1 — -+ — p: in X, length of the path is sum of
distances traveled

-1
> d(pi,pit1)
i=0

Output: find a cycle that reaches all points in X of shortest length.

Definitely a problem we would like to solve

o Efficient route planning (mail system, shuttle bus pick up and drop
off...)

21/86

Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function
d: XxX—]RZO

@ For any path pg — p1 — -+ — p: in X, length of the path is sum of
distances traveled

-1
> d(pi,pit1)
i=0

Output: find a cycle that reaches all points in X of shortest length.

Definitely a problem we would like to solve

o Efficient route planning (mail system, shuttle bus pick up and drop
off...)

@ One of the famous NP-complete problems

22/86

Hardness of Approximation - TSP

@ General TSP without repetitions (General TSP-NR)

23/86

Hardness of Approximation - TSP

@ General TSP without repetitions (General TSP-NR)

o if P # NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.

24 /86

Hardness of Approximation - TSP

@ General TSP without repetitions (General TSP-NR)
o if P # NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
e More generally, if there is any function r : N — N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P % NP

25/86

Hardness of Approximation - TSP

@ General TSP without repetitions (General TSP-NR)
o if P # NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
e More generally, if there is any function r : N — N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P % NP

@ How does one prove any such hardness of approximation?
By reduction to another NP-hard problem.

26/86

Hardness of Approximation - TSP

@ General TSP without repetitions (General TSP-NR)
o if P # NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
e More generally, if there is any function r : N — N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P % NP

@ How does one prove any such hardness of approximation?
By reduction to another NP-hard problem.

© In our case, let's reduce it to the Hamiltonian Cycle Problem

If there is an algorithm M which solves TSP without repetitions with
a-approximation, then P = NP.

27/86

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide

whether there exists a cycle C which passes through every vertex #&

#fgst once.
exoﬂla

/}Qeolwch-m .

yio

l.hﬁ.c (e

—

(

m

E

28/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

@ If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then

o from graph G(V/, E), construct weighted graph H(V, F, w) such that

29/86

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

@ If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then

o from graph G(V/, E), construct weighted graph H(V, F, w) such that
o All edges {u,v} € F (thatis, H is the complete graph on V)

H complck fywpht‘"‘ Vv
(weighkd)

30/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.
@ If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then
o from graph G(V[E), construct weighted graph H(V, F, w) such that
o All edges {u,v} € F (thatis, H is the complete graph on V)
1, if {u,v} E@ el weig\t
(1+a)-|V], if {u,v} € E very Joage weght
T T Ty,

o w(u,v)=

31/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

@ If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then

o from graph G(V/, E), construct weighted graph H(V, F, w) such that
o All edges {u,v} € F (thatis, H is the complete graph on V)

1, if {u,v} e E

(14+a)-|V|, if{uv}€E

@ If G has a Hamiltonian Cycle, then OPT for the TSP is of value < |V/|
emly w edes, of weight &

T

o w(u,v)=

32/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.
@ If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then
o from graph G(V/, E), construct weighted graph H(V, F, w) such that

All edges {u, v} € F (that is, H is the complete graph on V
° ges { }_ (plete grap o bc) o VES
w(u,) 1, if {u,v} € E %A M i
° b = .
(14a)-|V|, if {u,v} ¢ E o N

A
© If G has a Hamiltonian Cycle, then OPT for the TSP is of v Iuejg |V|‘

@ If G has no Hamiltonian Cycle, then OPT for TSP must usq an edge
not in g thus value is > (1 + a) - | V]|

' é h n HMIQMIM %ch] V]
“4 - hes avby OPT Q‘”S%‘z [Tk

33/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Hardness of Approximation

o

Q

Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then

o from graph G(V/, E), construct weighted graph H(V, F, w) such that
o All edges {u,v} € F (thatis, H is the complete graph on V)

1, if {u,v} e E
(14+a)-|V|, if{uv}€E
If G has a Hamiltonian Cycle, then OPT for the TSP is of value < |V/|

If G has no Hamiltonian Cycle, then OPT for TSP must use an edge
not in V/, thus value is > (14 «) - |V/|

o w(u,v)=

Thus, M on input H will output a Hamiltonian Cycle of G, if G has
one, or it will output a solution with value > (1 + «) - |V/|

34/86

Discussion of Proof

Hae
35/86

@ Proofs & Hardness of Approximation

36/86

Complexity Classes

@ NP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine V/, such that:

xeledwe{0,1}PVID st v(x,p)=1
ver(fion

Witnmm (0 ""”() "
o poly >

/

' Qccepf'n |'H
W ina walvd

Homi Qtomion cycles “ ‘Pme“ fat x el

LS G_(an:-) . rmion eycle . B

(N\I(EI‘:’(S H:k:h wheHm W 17 |‘\wiQ(v*-: a; 7

37/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Complexity Classes

@ NP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine V/, such that:

xeledwe{0,1}PVID st v(x,y)=1

@ BPP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine M, such that:

xelL& [M(x,R)=1]>2/3
Re/{0, 1}poly(\><| — .)
—_—— a,ca wi 16
vex th\.cn. b\l)’ Oy M
o Samdom ninky 5 6"’ '
|“ xel

Rewoxk : @ semdomizd d%’li%n i toamn o(TA i»
Tuamy mackee M(.l) 2)

G namdo caine

no .
ny mex 38/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Complexity Classes

@ NP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine V/, such that:

x € L 3w e {0, 1}poly(\><\) st. V(x,y)=1

@ BPP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine M, such that:

xelLs Pr [M(x,R) =1]>2/3
Re{0,1}poly(Ix])

@ RP: Set of languages L C {0, 1}* such that there exists a poly-time
Turing Machine M, such that:

. RN
el OCC‘P“’" cl= R)=1] > 2/3
dh{tﬁ)\ pﬂ*’ba})i“i“a * Re{0, 1}p°'y“x‘ (M(x. R)] /
L P R)=1]=0
uq lél— Neven x¢g L= Re{O,l}z’O'Y(\X\)[(x,R)]
OC“(’

39/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Complexity Classes

@ NP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine V/, such that:

x € L 3w e {0, 1}p0|y(\><\) st. V(x,y)=1

@ BPP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine M, such that:
xelLs Pr [M(x,R) =1]>2/3
Re{0,1}poly(Ix])

@ RP: Set of languages L C {0, 1}* such that there exists a poly-time
Turing Machine M, such that:

xel= [M(x,R)=1]>2/3

Pr
Re{0,1}poly(Ix])
x¢L= Pr [M(x,R)=1]=0
Re{0,1}pely(Ix])

@ co-RP: languages L C {0,1}* s.t. L € RP

40/86

Examples of Problems in Complexity Classes

'Paﬁémm:af Id@m‘"-lh ’rmfin% pwhlm:
g plormit pG) o dpr &7

T

. = 0 ? o e
N P = ‘
n 2re pjbn,_“x Z(Qﬂmf (PIT c Go ~R¢L;"j
lI'E‘-of 0""0w pal:)v»’"*“l elgﬂ‘l"\lm M (P;a,,,...u' poun
0. wnm -
=i\=1L H('P‘“
gel = B [M(31R) =L) Pém

41/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Examples of Problems in Complexity Classes

Do
42/86

Proof Systems
A proof system looks like this:

43/386

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification

44386

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")

45/86

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")

© A prover writes down a proof of the statement

46 /86

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")
© A prover writes down a proof of the statement
@ The verifier uses an algorithm of their choice to check the statement
and proof, and accepts or rejects accordingly.

47/86

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")
© A prover writes down a proof of the statement
@ The verifier uses an algorithm of their choice to check the statement

and proof, and accepts or rejects accordingly.
© NP as a proof system:

o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine

48 /86

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")
© A prover writes down a proof of the statement
@ The verifier uses an algorithm of their choice to check the statement
and proof, and accepts or rejects accordingly.
© NP as a proof system:
o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine

o Given an element x, the prover gives a proof (also known as witness)
w e {0, 1}poly(|X|)

49/86

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")
© A prover writes down a proof of the statement
@ The verifier uses an algorithm of their choice to check the statement
and proof, and accepts or rejects accordingly.
© NP as a proof system:
o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine
o Given an element x, the prover gives a proof (also known as witness)
= {071}pdy0XD
o Verifier picks a poly-time Turing Machine V' and outputs
TRUE, if V(x,w) =1
FALSE, otherwise

50/86

NP as Proof System - Example

japat: x <« G(v E)
wambn 9 clam ol G hes |-|-Mn Clddc

’F)J(tl#bti
(—) %iw. (?"9% w
Veri fien: (Y— 'W)

whitbe W (» ham: %d"s’"x

51/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Proof Systems - Completeness and Soundness

How good is a proof system?
© Two parameters (aside from efficiency):

’\af—;m-'{-' ~n

52/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Proof Systems - Completeness and Soundness

How good is a proof system?
© Two parameters (aside from efficiency):

o Completeness: correct statements have a proof in the system
e Soundness: false statements do not have a proof in the system

53/86

Proof Systems - Completeness and Soundness

How good is a proof system?

© Two parameters (aside from efficiency):
o Completeness: correct statements have a proof in the system
e Soundness: false statements do not have a proof in the system

@ NP as a proof system:
o L C{0,1}" is the language, verifier can use any poly-time Turing

Machine
o Given an element x, the prover gives a proof (also known as witness)

w e {0, 1}pol(Ix))
o Verifier picks a deterministic, poly-time Turing Machine V and outputs

TRUE, if V(x,w) =1
FALSE, otherwise

54/86

Proof Systems - Completeness and Soundness

How good is a proof system?
© Two parameters (aside from efficiency):
o Completeness: correct statements have a proof in the system
e Soundness: false statements do not have a proof in the system
@ NP as a proof system:
o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine
o Given an element x, the prover gives a proof (also known as witness)
w e {0, 1}pol(Ix))
o Verifier picks a deterministic, poly-time Turing Machine V and outputs
TRUE, if V(x,w) =1 lid pe ‘
e in vah
{FALSE, otherwise Huae |
o Completeness: x € L = 3w € {0,1}PY(X) such that V(x,w) =1
‘g e puof vabid i} Venfios ccoeph
n et ‘

55 /86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Proof Systems - Completeness and Soundness

How good is a proof system?
© Two parameters (aside from efficiency):
o Completeness: correct statements have a proof in the system
e Soundness: false statements do not have a proof in the system
@ NP as a proof system:
o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine
Given an element x, the prover gives a proof (also known as witness)
w e {0, 1}pol(Ix))
o Verifier picks a deterministic, poly-time Turing Machine V and outputs
{TRUE, if V(x,w) =1

FALSE, otherwise

Completeness: x € L = 3w € {0,1}PY(XD) such that V(x,w) =1
Soundness: x ¢ L = Yw € {0,1}P°Y(X) we have V(x,w) = 0
N\

awy prd v

Mra Y

56 /86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

57/86

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V
for which:

@ Given language L (the language of correct statements)

58 /86

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V
for which:

@ Given language L (the language of correct statements)

Q@ xcl= Ww such that Pr[V¥(x) =1] =1
——

/

_— v
S ———

miu \V on ﬁk acconn B Wl

. V com quey bita of w
Al wep QCCW’)‘O covuct atelmant

59 /86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V
for which:

@ Given language L (the language of correct statements)
@ x € L = there exists proof w such that Pr[V"(x) =1] =1

—
Q@ x¢L :@ any proof w,|we have Pr[V*%(x) =1] < 1/2

Carn trocsl Namlomi ud algeithn V @o
T uning Maghint MR

vl DY A ??n[n(x,k):l‘)‘i

60 /86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V
for which:

@ Given language L (the language of correct statements)
@ x € L = there exists proof w such that Pr[V"(x) =1] =1
@ x ¢ L = for any proof w, we have Pr[V¥(x) =1] <1/2

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs consists of languages L that
have a randomized poly-time verifier V' such that

61/86

Rafael Oliveira

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V
for which:

@ Given language L (the language of correct statements)
@ x € L = there exists proof w such that Pr[V"(x) =1] =1
@ x ¢ L = for any proof w, we have Pr[V¥(x) =1] <1/2

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs consists of languages L that
have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V¥(x) =1] =1
@ x & L = for any proof w, we have Pr[V¥(x) =1] < 1/2

62/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Interactive Proofs: Complexity Classes

The above discussion motivates us to define complexity classes in terms of
proof systems!

63/86

Interactive Proofs: Complexity Classes

The above discussion motivates us to define complexity classes in terms of
proof systems!

Definition (Interactive Proof Systems)

The class consists of all languages L that have an interactive proof
system (P, V) where

(> Qvlwfa

VMi»eim

proven : olgain that subputs prefs

64/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Interactive Proofs: Complexity Classes

The above discussion motivates us to define complexity classes in terms of
proof systems!

Definition (Interactive Proof Systems)

The class IP consists of all languages L that have an interactive proof
system (P, V) where

@ the verifier V is a randomized, polynomial time algorithm

@ there is an honest prover P (who can be all powerful)

65 /86

Interactive Proofs: Complexity Classes

The above discussion motivates us to define complexity classes in terms of
proof systems!

Definition (Interactive Proof Systems)

The class IP consists of all languages L that have an interactive proof
system (P, V) where

@ the verifier V is a randomized, polynomial time algorithm

@ there is an honest prover P (who can be all powerful)
@ for any x € {0,1}*

e x € L = for an honest prover P, the proof lp satisfies:
PrivVT?(x) =1] =1

° X ¢L = for any prover P’, the proof Np

PrlVTP (x) =1] < 1/2

66 /86

Rafael Oliveira

Interactive Proofs - Picture

£S

67 /86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V¥(x) =1] =1
@ x & L = for any proof w, we have Pr[V"(x) =1] <1/2

68 /86

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V¥(x) =1] =1
@ x & L = for any proof w, we have Pr[V"(x) =1] <1/2

° 'M consists of all languages L € PCP such that, on
) inputs x of length n m«bb'

eh of longueye Ik

69 /86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V¥(x) =1] =1
@ x & L = for any proof w, we have Pr[V"(x) =1] <1/2

e PCP[r(n), q(n)] consists of all languages L € PCP such that, on

inputs x of length n n omln d P ol» o X
W;\"‘ @ Uses O(r(n)) random bits d
4 @ Examines O(q(n)) bits of a proof w

L Note that n does not depend on w, only on x.
M (1) M Oﬂta ma ke, O('}(M)
'Q’L/‘ 0 (xw) Quanics to (e w-
hito M ﬂ\”ﬂ“‘“z ¥1n¢ ')JQQ(]i)

70/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V¥(x) =1] =1
@ x & L = for any proof w, we have Pr[V"(x) =1] <1/2

e PCP[r(n), q(n)] consists of all languages L € PCP such that, on
inputs x of length n

@ Uses O(r(n)) random bits O(«QDS“) Aandomwrn
@ Examines O(q(n)) bits of a proof w 0(_() bitsr of M

Note that n does not depend on w, only on x.

Theorem (PCP theorem [AS'98, ALMSS'98])

PCP[log n, 1] = NP

71/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

PCP and Approximability of Max 3SAT

Definition (Max 3SAT)
@ Input: a 3CNF formula ¢ on boolean variables xi,...,x, and m
clauses

@ Output: the maximum number of clauses of ¢ which can be
simultaneously satisfied.

| A\

Theorem

@ The PCP theorem implies that there is an € > 0 such that there is no
polynomial time (1 + ¢)-approximation algorithm for Max 3SAT,
unless P = NP.

@ Moreover, if Max 3SAT is hard to approximate within a factor of
(1+¢), then the PCP theorem holds.

@ In other words, the PCP theorem and the hardness of approximation
of Max 3SAT are equivalent.

72/86

PCP and Approximability of Max 3SAT

O Let us assume the PCP theorem holds. PCP (_vQUS n |] = NP

o Let L € PCP[log n,1] be an NP-complete problem.
o Let V be the (O(logn), q) verifier for L, where q is a constant

73/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

PCP and Approximability of Max 3SAT

@ Let us assume the PCP theorem holds.

o Let L € PCP[log n,1] be an NP-complete problem.
o Let V be the (O(logn), q) verifier for L, where q is a constant

@ We now describe a reduction from L to Max 3SAT which has a gap.

J{ we oo (?) ne have hetdlyam { WPM“mqu

7486

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

PCP and Approximability of Max 3SAT

@ Let us assume the PCP theorem holds.
o Let L € PCP[log n,1] be an NP-complete problem.
o Let V be the (O(logn), q) verifier for L, where g is a constant
@ We now describe a reduction from L to Max 3SAT which has a gap.

© Given an instance x of problem L, we construct 3CNF formula ¢y
with m clauses such that, for some £ we have

e x € L= ¢, is satisfiable
e x ¢ L = no assignment satisfies more than (1 —) - m clauses of @y

75/86

PCP and Approximability of Max 3SAT

@ Let us assume the PCP theorem holds.
o Let L € PCP[log n,1] be an NP-complete problem.
o Let V be the (O(logn), q) verifier for L, where g is a constant
@ We now describe a reduction from L to Max 3SAT which has a gap.

© Given an instance x of problem L, we construct 3CNF formula ¢y
with m clauses such that, for some £ we have

e x € L= ¢, is satisfiable
e x ¢ L = no assignment satisfies more than (1 — €) - m clauses of @y
@ Enumerate all random inputs[lﬂfor the verifier V.

o Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n). 2 *)

o For each R, V chooses g positions iff ...,if and a boolean function
fr : {0,1}9 — {0,1} and accepts iff(fr(wir, ..., w;z) = L.

R in ow sandew NNy >hite of prwof @

76 /86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

PCP and Approximability of Max 3SAT

© Enumerate all random inputs R for the verifier V.

o Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
o For each R, V chooses q positions if¥,... i and a boolean function

+lq
fr : {0,1}9 — {0,1} and accepts iff fr(wi, ..., W,-‘f) =1

1

77/86

PCP and Approximability of Max 3SAT

© Enumerate all random inputs R for the verifier V.

o Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
R

o For each R, V chooses g positions if*, ..., ig R and a boolean function

fr : {0,1}9 — {0,1} and accepts iff fr(wer, ..., w;r) = 1.

@ Simulate the computation fg of the verifier for different random
inputs R and witnesses w as a Boolean formula.

{o Can be done with a CNF of size 29
{ Converting to 3CNF we get a formula of size g - 29

Ol heelsam ugumd'lm\ om {Ollﬁ {OMS
Cam Wt xpund on & CNF-
‘Awd nednckio temm CNF to BCWF

78/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

PCP and Approximability of Max 3SAT

© Enumerate all random inputs R for the verifier V.
o Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
o For each R, V chooses q positions if¥,... i and a boolean function

iy
fr : {0,1}9 — {0,1} and accepts iff fr(w;r, ..., W,-‘;?) =1

@ Simulate the computation fg of the verifier for different random
inputs R and witnesses w as a Boolean formula.
e Can be done with a CNF of size 29
e Converting to 3CNF we get a formula of size g - 29

© Let ¢, be the 3CNF we get by putting together all the 3CNFs
constructed above

79/86

PCP and Approximability of Max 3SAT

© Enumerate all random inputs R for the verifier V.
o Length of each random string is O(log n), by definition. So number of

such random inputs is poly(n).
o For each R, V chooses g positions if, ..., ¥ and a boolean function

fr : {0,1}9 — {0,1} and accepts iff fr(w;r, ..., W,-‘;?) =1
@ Simulate the computation fg of the verifier for different random
inputs R and witnesses w as a Boolean formula.
e Can be done with a CNF of size 29
e Converting to 3CNF we get a formula of size g - 29

© Let ¢, be the 3CNF we get by putting together all the 3CNFs
constructed above

© If x € L then there is a witness w such that V/(x, w) accepts for every
random string R. In this case, px is satisfiable!

80 /386

PCP and Approximability of Max 3SAT

© Enumerate all random inputs R for the verifier V.
o Length of each random string is O(log n), by definition. So number of

such random inputs is poly(n).
o For each R, V chooses g positions if, ..., ¥ and a boolean function

fr : {0,1}9 — {0,1} and accepts iff fr(w;r, ..., W,-‘;?) =1
@ Simulate the computation fg of the verifier for different random {.9\

inputs R and witnesses w as a Boolean formula. each
o Can be done with a CNF of size 29 S
e Converting to 3CNF we get a formula of size! q-29 ’

© Let ¢, be the 3CNF we get by putting together all the 3CNFs
constructed above

© If x € L then there is a witness w such that V/(x, w) accepts for every
random string R. In this case, px is satisfiable!
@ If x & L then the verifier says NO for half of the random strings R.
e For each such random string, at least one of its clauses fails

e Thus at least € = > of the clauses of ¢, fails.

- q
hel °"‘”“"‘ hinvp 81/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Digested Proof of Theorem 35AT

e e e |

?MJ VEKY AVCH
MO
poep Tt tueom { .

Q - 'y
Jo owmdm‘j:‘.h 24720 e \
el T ! lomarn wild Atwrs
e%\;‘ “9,9"’ ?r j\l\'!‘.ﬁw

82/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Digested Proof of Theorem

Vg5 — ol Clowa sebheatk
1- frockon

N’J — = G- 21_1) %‘ML'”
GE ‘/74L-‘¢/a 1{ anl&

U MAX 36T ((4€) hed o o ppraimele

O =y 2y E 9AC
83/86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Conclusion

@ Important to study hardness of approximation for NP-hard problems

@ Different hard problems have different approximation parameters

@ For hardness of approximation, need more robust reductions between
combinatorial problems

@ Proof systems, in particular Probabilistic Checkable Proofs, allows us
to get such strong reductions

@ Many more applications in computer science and industry!

e Program Checking (for software engineering)
e Zero-knowledge proofs in cryptocurrencies
@ many more...

84/86

Acknowledgement

@ Lecture based largely on:

o Section’s 1-3 of Luca’s survey [Trevisan 2004]
o [Motwani & Raghavan 2007, Chapter 7]

@ See Luca's survey https://arxiv.org/pdf/cs/0409043

85 /86

https://arxiv.org/pdf/cs/0409043

References |

ﬁ Trevisan, Luca (2004)
Inapproximability of combinatorial optimization problems.
arXiv preprint cs/0409043 (2004).

ﬁ Motwani, Rajeev and Raghavan, Prabhakar (2007)
Randomized Algorithms

ﬁ Arora, Sanjeev, and Shmuel Safra (1998)
Probabilistic checking of proofs: A new characterization of NP.
Journal of the ACM (JACM) 45, no. 1 (1998): 70-122.

ﬁ Arora, Sanjeev, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy
(1998)
Proof verification and the hardness of approximation problems.
Journal of the ACM (JACM) 45, no. 3 (1998): 501-555.

86 /86

	Background and Motivation
	Why Hardness of Approximation?
	How do we prove Hardness of Approximation?
	Hardness of Approximation - Example

	Proofs & Hardness of Approximation
	Conclusion
	Acknowledgements

