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Motivation - NP-hard problems

Many important problems are NP-hard to solve.

What do we do when we see one?

1 Find approximate solutions in polynomial time!
2 Sometimes we even do that for problems in P (but we want much

much faster solutions)

Integer Linear Program (ILP):

minimize cT x

subject to Ax ≤ b

x ∈ Nn

Advantage of ILPs: very expressive language to formulate
optimization problems (capture many combinatorial optimization
problems)

Disadvantage of ILPs: capture even NP-hard problems (thus NP-hard)

But we know how to solve LPs. Can we get partial credit in life?
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Motivation - NP-hard problems
Quadratic Program (QP):

minimize g(x)

subject to qi (x) ≥ 0

where each qi (x) and g(x) are quadratic functions on x .

Advantage of QPs: very expressive language to formulate
optimization problems

Disadvantage of QPs: capture even NP-hard problems (ILPs for
instance)

Can relax quadratic programs with SDPs

Can we get better approximations using SDPs instead of ILPs?

Yes. Today we will see Max-Cut (more generally constraint
satisfaction relaxations)

Very impressive recent theoretical developments! Unique Games
Conjecture, Sum-of-Squares, and more!
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Example
Maximum Cut (Max-Cut):

G (V ,E ) graph.

Cut S ⊆ V and size of cut is

|E (S ,S)| = |{(u, v) ∈ E | u ∈ S , v 6∈ S}|.

Goal: find cut of maximum size.

Integer Linear Program:

maximize
∑
e∈E

ze

subject to xu + xv ≥ ze for e = {u, v} ∈ E

2− xu − xv ≥ ze for e = {u, v} ∈ E

xv ∈ {0, 1} for v ∈ V
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Example - Weighted Variant

Maximum Cut (Max-Cut):

G (V ,E ,w) weighted graph.
∑

e∈E we = 1

Cut S ⊆ V and weight of cut is the sum of weights of edges crossing cut.
Goal: find cut of maximum weight.

Integer Linear Program:

maximize
∑
e∈E

ze · we

subject to xu + xv ≥ ze for e = {u, v} ∈ E

2− xu − xv ≥ ze for e = {u, v} ∈ E

xv ∈ {0, 1} for v ∈ V
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Relax... & Round!
In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:

1 Formulate optimization problem as QP1

2 Derive SDP from the QP by going to higher dimensions and imposing
PSD constraint

This is called an SDP relaxation.
3 We are still maximizing the same objective function, but over a

(potentially) larger set of solutions.

OPT (SDP) ≥ OPT (QP)

4 Solve SDP (approximately) optimally using efficient algorithm.

1 If solution to SDP is integral and one-dimensional, then it is a solution
to QP and we are done

2 If solution has higher dimension, then we have to devise rounding
procedure that transforms

high dimensional solutions → integral & 1D solutions

rounded SDP solution value ≥ c · OPT (QP)

1Even more general mathematical program, so long as derive SDP from it.
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Analyzing ILP for Max-Cut

G (V ,E ,w) weighted graph.
∑

e∈E we = 1

Integer Linear Program:

maximize
∑
e∈E

ze · we

subject to xu + xv ≥ ze for e = {u, v} ∈ E

2− xu − xv ≥ ze for e = {u, v} ∈ E

xv ∈ {0, 1} for v ∈ V

OPT (ILP) = 1⇔ G is bipartite

OPT (ILP) ≥ 1/2
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Proof that OPT (ILP) ≥ 1/2
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Rounding Max-Cut ILP

G (V ,E ,w) weighted graph.
∑

e∈E we = 1

Linear Program Relaxation:

maximize
∑
e∈E

ze · we

subject to xu + xv ≥ ze for e = {u, v} ∈ E

2− xu − xv ≥ ze for e = {u, v} ∈ E

0 ≤ xv ≤ 1 for v ∈ V

0 ≤ ze ≤ 1 for e ∈ E

Setting xv = 1/2, ze = 1 we get OPT (LP) always = 1

This relaxation is not helpful! :(
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Why Relax & Round?

Max-Cut SDP Relaxation and Rounding

Conclusion

Acknowledgements
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Max-Cut

G (V ,E ,w) weighted graph.
∑

e∈E we = 1

Quadratic Program:

maximize
∑
{u,v}∈E

1

2
· wu,v · (1− xuxv )

subject to x2v = 1 for v ∈ V
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SDP Relaxation [Delorme, Poljak 1993]
G (V ,E ,w) weighted graph, |V | = n and

∑
e∈E we = 1

Semidefinite Program:

maximize
∑
{u,v}∈E

1

2
· wu,v ·

(
1− yTu yv

)
subject to ‖yv‖22 = 1 for v ∈ V

yv ∈ Rd for v ∈ V

How is that an SDP?
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SDP Relaxation [Delorme, Poljak 1993]
G (V ,E ,w) weighted graph, |V | = n and

∑
e∈E we = 1

Semidefinite Program:
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∑
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1

2
· wu,v ·

(
1− yTu yv

)
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yv ∈ Rd for v ∈ V

How is that an SDP?
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What is this SDP doing?

Let γu,v = yTu yv = cos(yu, yv )
for any edge, want γuv ≈ −1, as this maximizes our weight
Geometrically, want vertices from our max-cut S to be as far away
from the complement S as possible
If all yv ’s are in a one-dimensional space, then we get original
quadratic program

OPT (SDP) ≥Weight of Maximum Cut
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Example

Let’s consider G = K3 with equal weights on edges.

Embed y1, y2, y3 ∈ R2 120 degrees apart in unit circle

We get:

OPTSDP(K3) = 3/4

OPTmax-cut(K3) = 2/3

So we get approximation 8/9 (better than the LP relaxation)

Practice problem: try this with C5.
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Max-Cut - Rounding

1 Let zu ∈ Rn be an optimal solution to our SDP

2 How do we convert it into a cut?

3 Need to “pick sides”

4 [Goemans, Williamson 1994]: Choose a random hyperplane though
origin!

5 Choose normal vector g ∈ Rn from a Gaussian distribution.

6 Set xu = sign(gT zu) as our solution
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Analysis of Rounding - Sketch
Probability that edge {u, v} crosses the cut is same as probability
that zu, zv fall in different sides of hyperplane

Pr[{u, v} crosses cut ] = Pr[g splits zu, zv ]

Looking at the problem in the plane:

Probability of splitting zu, zv :

Pr[{u, v} crosses cut] =
θ

π
=

cos−1(zTu zv )

π
=

cos−1(γuv )

π

E[value of cut] =
∑
{u,v}∈E

wu,v ·
cos−1(γuv )

π
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Analysis of Rounding - Sketch
Expected value of cut:

E[value of cut] =
∑
{u,v}∈E

wu,v ·
cos−1(γuv )

π

Recall that

OPTSDP =
∑
{u,v}∈E

1

2
· wu,v ·

(
1− zTu zv

)
=

∑
{u,v}∈E

1

2
· wu,v · (1− γuv )

If we find α such that

cos−1(γuv )

π
≥ 1

2
(1− γuv ), for all γuv ∈ [−1, 1]

Then we have an α-approximation algorithm!

Theorem ([Goemans, Williamson 1994])

α = 0.87856... works, and gives us our approximation algorithm.
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Putting Everything Together

1 Formulate Max-Cut problem as Quadratic Programming

2 Derive SDP from the quadratic program SDP relaxation

3 We are still maximizing the same objective function (weight of cut),
but over a (potentially) larger (higher-dimensional) set of solutions.

OPT (SDP) ≥ OPT (Max-Cut)

4 Solve SDP optimally using efficient algorithm.

1 If solution to SDP is integral and one dimensional, then it is a solution
to Max-Cut and we are done

2 If have higher dimensional solutions, rounding procedure

Random Hyperplane Cut algorithm, with high probability we get

cost(rounded solution) ≥ 0.878 · OPT (SDP) ≥ 0.878 · OPT (Max-Cut)
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Remarks

1 SDPs are very powerful for solving (approximating) many hard
problems

2 Recent and exciting work, driven by Unique Games Conjecture
(UGC), shows that if UGC is true, then all these approximation
algorithms are tight!

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf

3 Other applications in robust statistics, via the SDP & Sum-of-Squares
connection

https://arxiv.org/abs/1711.11581

4 Connections to automated theorem proving

https://eccc.weizmann.ac.il/report/2019/106/

All of these are amazing final project topics!
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Conclusion

Mathematical programming - very general, and pervasive in
(combinatorial) algorithmic life

Mathematical Programming hard in general

Sometimes can get SDP rounding!

Solve SDP and round the solution

Deterministic rounding when solutions are nice
Randomized rounding when things a bit more complicated
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