Lecture 17: Semidefinite Programming Relaxation and MAX-CUT

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science rafael.oliveira.teaching@gmail.com

July 8, 2021

Overview

• Why Relax & Round?

Max-Cut SDP Relaxation and Rounding

Conclusion

Acknowledgements

• Many important problems are NP-hard to solve.

- Many important problems are NP-hard to solve.
- What do we do when we see one?

- Many important problems are NP-hard to solve.
- What do we do when we see one?
 - Find approximate solutions in polynomial time!

- Many important problems are NP-hard to solve.
- What do we do when we see one?
 - Find approximate solutions in polynomial time!
 - Sometimes we even do that for problems in P (but we want much much faster solutions)

- Many important problems are NP-hard to solve.
- What do we do when we see one?
 - Find approximate solutions in polynomial time!

• Integer Linear Program (ILP):

minimize
$$c^T x$$

subject to $Ax \leq b$
 $x \in \mathbb{N}^n$

- Many important problems are NP-hard to solve.
- What do we do when we see one?
 - Find approximate solutions in polynomial time!

• Integer Linear Program (ILP):

minimize
$$c^T x$$

subject to $Ax \leq b$
 $x \in \mathbb{N}^n$

 Advantage of ILPs: very expressive language to formulate optimization problems (capture many combinatorial optimization problems)

- Many important problems are NP-hard to solve.
- What do we do when we see one?
 - Find approximate solutions in polynomial time!

• Integer Linear Program (ILP):

minimize
$$c^T x$$

subject to $Ax \leq b$
 $x \in \mathbb{N}^n$

- Advantage of ILPs: very expressive language to formulate optimization problems (capture many combinatorial optimization problems)
- Disadvantage of ILPs: capture even NP-hard problems (thus NP-hard)

- Many important problems are NP-hard to solve.
- What do we do when we see one?
 - 1 Find approximate solutions in polynomial time!

Integer Linear Program (ILP):

minimize
$$c^T x$$

subject to $Ax \leq b$
 $x \in \mathbb{N}^n$

- Advantage of ILPs: very expressive language to formulate optimization problems (capture many combinatorial optimization problems)
- Disadvantage of ILPs: capture even NP-hard problems (thus NP-hard)
- But we know how to solve LPs. Can we get partial credit in life?

Quadratic Program (QP):

Quadratic Program (QP):

minimize
$$g(x)$$
 subject to $q_i(x) \ge 0$

where each $q_i(x)$ and g(x) are quadratic functions on x.

Advantage of QPs: very expressive language to formulate optimization problems

Quadratic Program (QP):

- Advantage of QPs: very expressive language to formulate optimization problems
- Disadvantage of QPs: capture even NP-hard problems (ILPs for instance)

linear constraint also quadratic (LPCQP)

$$x_i \in \{0, 1\} \iff x_i(1-x_i) = 0$$
 quadratic

enough to copture NP-hand

problems

• Quadratic Program (QP):

minimize
$$g(x)$$
 subject to $q_i(x) \ge 0$

- Advantage of QPs: very expressive language to formulate optimization problems
- Disadvantage of QPs: capture even NP-hard problems (ILPs for instance)
- Can relax quadratic programs with SDPs

Quadratic Program (QP):

minimize
$$g(x)$$
 subject to $q_i(x) \ge 0$

- Advantage of QPs: very expressive language to formulate optimization problems
- Disadvantage of QPs: capture even NP-hard problems (ILPs for instance)
- Can relax quadratic programs with SDPs
 - Can we get better approximations using SDPs instead of LPs?

Quadratic Program (QP):

minimize
$$g(x)$$
 subject to $q_i(x) \ge 0$

- Advantage of QPs: very expressive language to formulate optimization problems
- Disadvantage of QPs: capture even NP-hard problems (ILPs for instance)
- Can relax quadratic programs with SDPs
 - Can we get better approximations using SDPs instead of ILPs?
- Yes. Today we will see Max-Cut (more generally constraint satisfaction relaxations)

Quadratic Program (QP):

- Advantage of QPs: very expressive language to formulate optimization problems
- Disadvantage of QPs: capture even NP-hard problems (ILPs for instance)
- Can relax quadratic programs with SDPs
 - Can we get better approximations using SDPs instead of ILPs?
- Yes. Today we will see Max-Cut (more generally constraint satisfaction relaxations)
- Very impressive recent theoretical developments! Unique Games Conjecture, Sum-of-Squares, and more!

Example

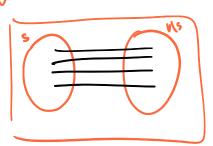
Maximum Cut (Max-Cut):

$$G(V, E)$$
 graph.

Cut $S \subseteq V$ and size of cut is

$$|E(S,\overline{S})| = |\{(u,v) \in E \mid u \in S, v \notin S\}|.$$

Goal: find cut of maximum size. NP- hard!



Example

Maximum Cut (Max-Cut):

$$G(V, E)$$
 graph.

Cut $S \subseteq V$ and size of cut is

$$|E(S,\overline{S})| = |\{(u,v) \in E \mid u \in S, v \notin S\}|.$$

Goal: find cut of maximum size. $x_n = \begin{cases} 0 & \text{otherwise} \end{cases}$ if edge $e \in E(5,6)$

maximize
$$\sum_{e \in E} z_e$$
 maximize $\sum_{e \in E} z_e$

(u, b in the man
wide of ont)
$$(5) = (6)(5) = 5$$

$$(4)(5)(5) = 5$$

subject to
$$x_u + x_v \ge z_e$$
 for $e = \{u, v\} \in E$

$$2 - x_u - x_v \ge z_e$$
 for $e = \{u, v\} \in E$

Example - Weighted Variant

Maximum Cut (Max-Cut):

$$G(V, E, w)$$
 weighted graph. $\sum_{e \in E} w_e = 1$

Cut $S \subseteq V$ and weight of cut is the sum of weights of edges crossing cut. Goal: find cut of maximum weight.

maximize
$$\sum_{e \in E} z_e \cdot w_e$$
 subject to $x_u + x_v \geq z_e$ for $e = \{u, v\} \in E$
$$2 - x_u - x_v \geq z_e \text{ for } e = \{u, v\} \in E$$

$$x_v \in \{0, 1\} \text{ for } v \in V$$

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:

¹Even more general mathematical program, so long as derive SDP from it.

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:

Formulate optimization problem as QP¹

¹Even more general mathematical program, so long as derive SDP from it. >

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:

- Formulate optimization problem as QP¹
- ② Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an *SDP relaxation*.

¹Even more general mathematical program, so long as derive SDP from it. >

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:

- Formulate optimization problem as QP¹
- ② Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an *SDP relaxation*.

We are still maximizing the same objective function, but over a (potentially) larger set of solutions.

¹Even more general mathematical program, so long as derive SDP from it.

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:

- Formulate optimization problem as QP¹
- ② Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an *SDP relaxation*.

We are still maximizing the same objective function, but over a (potentially) larger set of solutions.

$$OPT(SDP) \ge OPT(QP)$$

• Solve SDP (approximately) optimally using efficient algorithm.

¹Even more general mathematical program, so long as derive SDP from it.

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:

- Formulate optimization problem as QP¹
- ② Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an *SDP relaxation*.

We are still maximizing the same objective function, but over a (potentially) larger set of solutions.

$$OPT(SDP) \ge OPT(QP)$$

- Solve SDP (approximately) optimally using efficient algorithm.
 - If solution to SDP is integral and one-dimensional, then it is a solution to QP and we are done

¹Even more general mathematical program, so long as derive SDP from it. >

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:

- Formulate optimization problem as QP¹
- ② Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an SDP relaxation.

We are still maximizing the same objective function, but over a (potentially) larger set of solutions.

$$OPT(SDP) \ge OPT(QP)$$

- Solve SDP (approximately) optimally using efficient algorithm.
 - If solution to SDP is integral and one-dimensional, then it is a solution to QP and we are done
 - If solution has higher dimension, then we have to devise rounding procedure that transforms

high dimensional solutions \rightarrow integral & 1D solutions

rounded SDP solution value $\geq c \cdot OPT(QP)$

¹Even more general mathematical program, so long as derive SDP from it.

$$G(V, E, w)$$
 weighted graph. $\sum_{e \in E} w_e = 1$

$$\begin{array}{ll} \text{maximize} & \sum_{e \in E} z_e \cdot w_e \\ \\ \text{subject to} & x_u + x_v \geq z_e \quad \text{for } e = \{u,v\} \in E \\ \\ & 2 - x_u - x_v \geq z_e \quad \text{for } e = \{u,v\} \in E \\ \\ & x_v \in \{0,1\} \quad \text{for } v \in V \end{array}$$

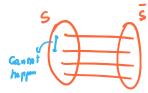
$$G(V, E, w)$$
 weighted graph. $\sum_{e \in E} w_e = 1$

Integer Linear Program:

Me >0

$$\begin{array}{ll} \text{maximize} & \sum_{e \in E} z_e \cdot w_e \\ \\ \text{subject to} & x_u + x_v \geq z_e \quad \text{for } e = \{u,v\} \in E \\ \\ & 2 - x_u - x_v \geq z_e \quad \text{for } e = \{u,v\} \in E \\ \\ & x_v \in \{0,1\} \quad \text{for } v \in V \end{array}$$

• $OPT(ILP) = 1 \Leftrightarrow G$ is bipartite



$$G(V, E, w)$$
 weighted graph. $\sum_{e \in E} w_e = 1$

$$\begin{array}{ll} \text{maximize} & \sum_{e \in E} z_e \cdot w_e \\ \\ \text{subject to} & x_u + x_v \geq z_e \quad \text{for } e = \{u,v\} \in E \\ \\ & 2 - x_u - x_v \geq z_e \quad \text{for } e = \{u,v\} \in E \\ \\ & x_v \in \{0,1\} \quad \text{for } v \in V \end{array}$$

- $OPT(ILP) = 1 \Leftrightarrow G$ is bipartite
- $OPT(ILP) \ge 1/2$

$$G(V, E, w)$$
 weighted graph. $\sum_{e \in E} w_e = 1$

$$\begin{array}{ll} \text{maximize} & \sum_{e \in E} z_e \cdot w_e \\ \\ \text{subject to} & x_u + x_v \geq z_e \quad \text{for } e = \{u,v\} \in E \\ \\ & 2 - x_u - x_v \geq z_e \quad \text{for } e = \{u,v\} \in E \\ \\ & x_v \in \{0,1\} \quad \text{for } v \in V \end{array}$$

- $OPT(ILP) = 1 \Leftrightarrow G$ is bipartite
- $OPT(ILP) \ge 1/2$
- G complete graph \Rightarrow $OPT = \frac{1}{2} + \frac{1}{2(n-1)}$ weight on with

$$\mathit{G}(\mathit{V}, \mathit{E}, \mathit{w})$$
 weighted graph. $\sum_{e \in \mathit{E}} \mathit{w}_e = 1$

$$\begin{array}{ll} \text{maximize} & \sum_{e \in E} z_e \cdot w_e \\ \\ \text{subject to} & x_u + x_v \geq z_e \quad \text{for } e = \{u,v\} \in E \\ \\ & 2 - x_u - x_v \geq z_e \quad \text{for } e = \{u,v\} \in E \\ \\ & x_v \in \{0,1\} \quad \text{for } v \in V \end{array}$$

- $OPT(ILP) = 1 \Leftrightarrow G$ is bipartite
- $OPT(ILP) \ge 1/2$
- G complete graph $\Rightarrow OPT = \frac{1}{2} + \frac{1}{2(n-1)}$
- Max-Cut NP-hard

Proof that $OPT(ILP) \ge 1/2$

Probabilistic method:

Pich: $x_v = \begin{cases} 0 & \omega \cdot p \cdot V_2 \\ 1 & \omega \cdot p \cdot V_2 \end{cases}$

 $\mathbb{E}\left\{z_{uv}\right\} = \frac{1}{2} \qquad z_{uv} = 1 \iff x_{u} = 0 \quad x_{v}$

$$\mathbb{E}[\text{value of out}] = \sum_{e \in E} \omega_e \cdot \mathbb{E}[\overline{z}_e] = \frac{1}{2} \sum_{e \in E} \omega_e = \frac{1}{2}$$

: I integral solution (aut) that has value

> average (expectation) : OPT(ELP) > 1/2

for any apaph

Rounding Max-Cut ILP

$$G(V, E, w)$$
 weighted graph. $\sum_{e \in E} w_e = 1$

Linear Program Relaxation:

$$\begin{array}{ll} \text{maximize} & \sum_{e \in E} z_e \cdot w_e \\ \\ \text{subject to} & x_u + x_v \geq z_e \quad \text{for } e = \{u,v\} \in E \\ \\ & 2 - x_u - x_v \geq z_e \quad \text{for } e = \{u,v\} \in E \\ \\ & \longrightarrow \underbrace{0 \leq x_v \leq 1 \quad \text{for } v \in V}_{0 \leq z_e \leq 1} \quad \text{for } e \in E \end{array}$$

Rounding Max-Cut ILP

$$G(V, E, w)$$
 weighted graph. $\sum_{e \in E} w_e = 1$

Linear Program Relaxation:

$$\begin{array}{ll} \text{maximize} & \sum_{e \in E} z_e \cdot w_e \\ \\ \text{subject to} & x_u + x_v \geq z_e \quad \text{for } e = \{u,v\} \in E \\ \\ 2 - x_u - x_v \geq z_e \quad \text{for } e = \{u,v\} \in E \\ \\ 0 \leq x_v \leq 1 \quad \text{for } v \in V \\ \\ 0 \leq z_e \leq 1 \quad \text{for } e \in E \end{array}$$

• Setting $x_v = 1/2$, $z_e = 1$ we get OPT(LP) always = 1

Rounding Max-Cut ILP

$$G(V, E, w)$$
 weighted graph. $\sum_{e \in E} w_e = 1$

Linear Program Relaxation:

$$\begin{array}{ll} \text{maximize} & \sum_{e \in E} z_e \cdot w_e \\ \\ \text{subject to} & x_u + x_v \geq z_e \quad \text{for } e = \{u,v\} \in E \\ \\ 2 - x_u - x_v \geq z_e \quad \text{for } e = \{u,v\} \in E \\ \\ 0 \leq x_v \leq 1 \quad \text{for } v \in V \\ \\ 0 \leq z_e \leq 1 \quad \text{for } e \in E \end{array}$$

- Setting $x_v = 1/2$, $z_e = 1$ we get OPT(LP) always = 1
- This relaxation is not helpful! :(

• Why Relax & Round?

• Max-Cut SDP Relaxation and Rounding

Conclusion

Acknowledgements

Max-Cut

$$G(V,E,w)$$
 weighted graph. $\sum_{e\in E}w_e=1$ ram:

$$\sim$$
 1

maximize
$$\sum_{\{u,v\}\in}$$

$$\{u,v\} \in \{u,v\} \in \{u,v$$

1.1. Te = 74+70 e=/4,69 Ze € 2- X4- X1= x = 40,14

$$\begin{cases}
 u,v \} \in \mathbb{R} \\
 \text{subject to } x_v^2 = 1$$

$$x_v^2 = 1 \quad \text{for } v \in$$

1 for
$$v \in V$$

$$x_u \in \{+1, -1\}$$

$$\in S$$

iff RARD =-1

38 / 79

maximize
$$\sum were$$
 $5 = \{ v \mid x_v = -1 \}$

ILP:

SDP Relaxation [Delorme, Poljak 1993]

G(V, E, w) weighted graph, |V| = n and $\sum_{e \in E} w_e = 1$

Semidefinite Program:

Program:
$$\sum_{\{u,v\}\in E} \frac{1}{2} \cdot w_{u,v} \cdot \underbrace{\left(1-y_u^T y_v\right)}_{\text{subject to } \|y_v\|_2^2 = 1 \text{ for } v \in V \text{ Capture } \mathbf{x}^{-1}_{\text{capture }}$$
 subject to
$$\|y_v\|_2^2 = 1 \text{ for } v \in V \text{ higher dimension }$$

QP:
$$\max_{\alpha \in A} \sum_{i=1}^{l} \omega_{\alpha_{i,0}} (1 - \gamma_{\alpha} \gamma_{\alpha})$$

OBS: if in the above program y. (j) =0 for all j>1 then we recove the Q?

SDP Relaxation [Delorme, Poljak 1993]

G(V, E, w) weighted graph, |V| = n and $\sum_{e \in F} w_e = 1$

Semidefinite Program:

maximize
$$\sum_{\{u,v\}\in E} \frac{1}{2} \cdot w_{u,v} \cdot \left(1 - y_u^T y_v\right)$$
 subject to
$$y_v \in \mathbb{R}^d \text{ for } v \in V$$

How is that an SDP?

Let X nxn metaix (symmetaic) where Xur = Yuyb

$$\therefore X = y^{T}y \quad \text{where} \quad Y = \left(y_{1}, y_{2}, \dots, y_{n}\right)^{T} \left(X_{p_{1}} = y_{1}^{T}y_{n} = y_{1}^{T}y_{n}\right)^{T}$$

```
5DP formulation
```

```
Meximize \( \frac{1}{2} \omega_{u,v} \cdot \left( 1 - \text{X}_{uv} \right)
```

(in primal frm!)

{u,v{€ E

X pr = 1

X 70

A DE N

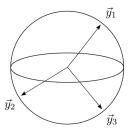


Figure 10.1: Vectors $\vec{y_v}$ embedded onto a unit sphere in \mathbb{R}^d .

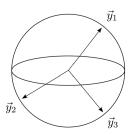
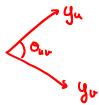


Figure 10.1: Vectors \vec{y}_v embedded onto a unit sphere in \mathbb{R}^d .

• Let
$$\gamma_{u,v} = y_u^T y_v = \cos(y_u, y_v)$$

$$y_u^T y_v = \underbrace{\|y_u\| \cdot \|y_v\|}_{=1} \cdot cos(o_{u,v})$$



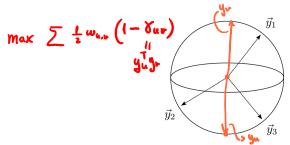


Figure 10.1: Vectors $\vec{y_v}$ embedded onto a unit sphere in \mathbb{R}^d .

- Let $\gamma_{u,v} = y_u^T y_v = \cos(y_u, y_v)$
- \bullet for any edge, want $\gamma_{\it uv}\approx -1$, as this maximizes our weight



Figure 10.1: Vectors $\vec{y_v}$ embedded onto a unit sphere in \mathbb{R}^d .

- Let $\gamma_{u,v} = y_u^T y_v = \cos(y_u, y_v)$
- \bullet for any edge, want $\gamma_{\it uv}\approx -1$, as this maximizes our weight
- ullet Geometrically, want vertices from our max-cut S to be as far away from the complement \overline{S} as possible

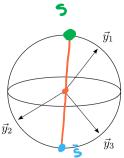
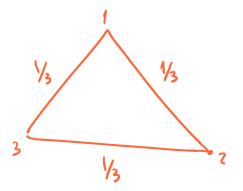


Figure 10.1: Vectors \vec{y}_v embedded onto a unit sphere in \mathbb{R}^d .

- Let $\gamma_{u,v} = y_u^T y_v = \cos(y_u, y_v)$
- ullet for any edge, want $\gamma_{uv} pprox -1$, as this maximizes our weight
- Geometrically, want vertices from our max-cut S to be as far away from the complement \overline{S} as possible
- If all y_v 's are in a one-dimensional space, then we get original quadratic program



Let's consider $G = K_3$ with equal weights on edges.

• Embed $y_1, y_2, y_3 \in \mathbb{R}^2$ 120 degrees apart in unit circle

- Embed $y_1, y_2, y_3 \in \mathbb{R}^2$ 120 degrees apart in unit circle
- We get:

all angles are (20° weight
$$OPT(SDP) = \sum_{i < j} \frac{1}{2} \cdot \frac{1}{3} \left(1 - Cos\left(\frac{2\pi}{3}\right)\right)$$
$$= 3 \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \left(1 + \frac{1}{2}\right)$$

max cut = OPT(Q?) =
$$\frac{2}{3}$$

- Embed $y_1, y_2, y_3 \in \mathbb{R}^2$ 120 degrees apart in unit circle
- We get:
- $OPT_{SDP}(K_3) = 3/4$
- $OPT_{max-cut}(K_3) = 2/3$

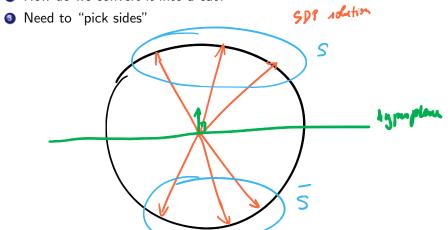
- Embed $y_1, y_2, y_3 \in \mathbb{R}^2$ 120 degrees apart in unit circle
- We get:
- $OPT_{SDP}(K_3) = 3/4$
- $OPT_{max-cut}(K_3) = 2/3$
- ullet So we get approximation 8/9 (better than the LP relaxation)

- Embed $y_1, y_2, y_3 \in \mathbb{R}^2$ 120 degrees apart in unit circle
- We get:
- $OPT_{SDP}(K_3) = 3/4$
- $OPT_{max-cut}(K_3) = 2/3$
- So we get approximation 8/9 (better than the LP relaxation)
- **Practice problem:** try this with C_5 .

1 Let $z_u \in \mathbb{R}^n$ be an optimal solution to our SDP

- **1** Let $z_u \in \mathbb{R}^n$ be an optimal solution to our SDP
- 4 How do we convert it into a cut?

- **1** Let $z_u \in \mathbb{R}^n$ be an optimal solution to our SDP
- 4 How do we convert it into a cut?



- **1** Let $z_u \in \mathbb{R}^n$ be an optimal solution to our SDP
- 4 How do we convert it into a cut?
- Need to "pick sides"
- Goemans, Williamson 1994]: Choose a random hyperplane though origin!

- **1** Let $z_u \in \mathbb{R}^n$ be an optimal solution to our SDP
- 4 How do we convert it into a cut?
- Need to "pick sides"
- [Goemans, Williamson 1994]: Choose a random hyperplane though origin!
- **o** Choose normal vector $g \in \mathbb{R}^n$ from a Gaussian distribution.
- Set $x_u = \text{sign}(g^T z_u)$ as our solution $\int \text{nelleting} \quad \text{with}$

- **1** Let $z_u \in \mathbb{R}^n$ be an optimal solution to our SDP
- 4 How do we convert it into a cut?
- Need to "pick sides"
- Goemans, Williamson 1994]: Choose a random hyperplane though origin!
- **o** Choose normal vector $g \in \mathbb{R}^n$ from a Gaussian distribution.
- Set $x_u = sign(g^T z_u)$ as our solution

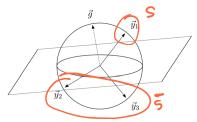


Figure 10.2: Vectors being separated by a hyperplane with normal \vec{g} .

• Probability that edge $\{u, v\}$ crosses the cut is same as probability that z_u, z_v fall in different sides of hyperplane

 $Pr[\{u, v\} \text{ crosses cut }] = Pr[g \text{ splits } z_u, z_v]$

• Probability that edge $\{u,v\}$ crosses the cut is same as probability that z_u, z_v fall in different sides of hyperplane

$$Pr[\{u, v\} \text{ crosses cut }] = Pr[g \text{ splits } z_u, z_v]$$

Looking at the problem in the plane:



Figure 10.3: The plane of two vectors being cut by the hyperplane

• Probability that edge $\{u,v\}$ crosses the cut is same as probability that z_u,z_v fall in different sides of hyperplane

$$Pr[\{u, v\} \text{ crosses cut }] = Pr[g \text{ splits } z_u, z_v]$$

Looking at the problem in the plane:

Figure 10.3: The plane of two vectors being cut by the hyperplane

Probability of splitting
$$z_u, z_v$$
:
$$\Pr[\{u, v\} \text{ crosses cut}] = \frac{\theta}{\pi} = \frac{\cos^{-1}(z_u^T z_v)}{\pi} = \frac{\cos^{-1}(\gamma_{uv})}{\pi}$$

$$\mathbb{E}[\text{value of cut}] = \sum_{u, v} w_{u, v} \cdot \frac{\cos^{-1}(\gamma_{uv})}{\pi}$$

• Expected value of cut:

Expected value of cut:
$$\mathbb{E}[\text{value of cut}] = \sum_{\{u,v\} \in E} w_{u,v} \cdot \frac{\cos^{-1}(\gamma_{uv})}{\pi}$$
 we have consent taken

Expected value of cut:

$$\mathbb{E}[\text{value of cut}] = \sum_{\{u,v\} \in E} w_{u,v} \cdot \frac{\cos^{-1}(\gamma_{uv})}{\pi}$$

Recall that

$$OPT_{SDP} = \sum_{\{u,v\} \in E} \frac{1}{2} \cdot w_{u,v} \cdot \left(1 - z_u^T z_v\right) = \sum_{\{u,v\} \in E} \frac{1}{2} \cdot w_{u,v} \cdot (1 - \gamma_{uv})$$

Expected value of cut:

$$\mathbb{E}[\mathsf{value} \; \mathsf{of} \; \mathsf{cut}] = \sum_{\{u,v\} \in E} \mathsf{w}_{u,v} \cdot \frac{\mathsf{cos}^{-1}(\gamma_{uv})}{\pi}$$

Recall that

$$OPT_{SDP} = \sum_{\{u,v\} \in E} \frac{1}{2} \cdot w_{u,v} \cdot \left(1 - z_u^T z_v\right) = \sum_{\{u,v\} \in E} \frac{1}{2} \cdot w_{u,v} \left(1 - \gamma_{uv}\right)$$

• If we find α such that

$$\frac{\cos^{-1}(\gamma_{uv})}{\pi} \ge \frac{\cancel{\mathsf{c}}}{2}(1 - \gamma_{uv}), \quad \text{for all } \gamma_{uv} \in [-1, 1]$$

Then we have an α -approximation algorithm!

Expected value of cut:

$$\mathbb{E}[\text{value of cut}] = \sum_{\{u,v\} \in E} w_{u,v} \cdot \frac{\cos^{-1}(\gamma_{uv})}{\pi}$$

Recall that

$$OPT_{SDP} = \sum_{\{u,v\} \in E} \frac{1}{2} \cdot w_{u,v} \cdot \left(1 - z_u^T z_v\right) = \sum_{\{u,v\} \in E} \frac{1}{2} \cdot w_{u,v} \cdot (1 - \gamma_{uv})$$

• If we find α such that

$$\frac{\cos^{-1}(\gamma_{uv})}{\pi} \ge \frac{1}{2}(1 - \gamma_{uv}), \text{ for all } \gamma_{uv} \in [-1, 1]$$

Then we have an α -approximation algorithm!

Theorem ([Goemans, Williamson 1994])

lpha= 0.87856... works, and gives us our approximation algorithm.

Formulate Max-Cut problem as Quadratic Programming

- Formulate Max-Cut problem as Quadratic Programming
- ② Derive SDP from the quadratic program

SDP relaxation

- Formulate Max-Cut problem as Quadratic Programming
- Oerive SDP from the quadratic program

SDP relaxation

- Formulate Max-Cut problem as Quadratic Programming
- Oerive SDP from the quadratic program
 SDP relaxation
- We are still maximizing the same objective function (weight of cut), but over a (potentially) larger (higher-dimensional) set of solutions.

$$OPT(SDP) \ge OPT(Max-Cut)$$

- Formulate Max-Cut problem as Quadratic Programming
- Oberive SDP from the quadratic program
 SDP relaxation
- We are still maximizing the same objective function (weight of cut), but over a (potentially) larger (higher-dimensional) set of solutions.

$$OPT(SDP) \ge OPT(Max-Cut)$$

Solve SDP optimally using efficient algorithm.

- Formulate Max-Cut problem as Quadratic Programming
- Oerive SDP from the quadratic program
 SDP relaxation
- We are still maximizing the same objective function (weight of cut), but over a (potentially) larger (higher-dimensional) set of solutions.

$$OPT(SDP) \ge OPT(Max-Cut)$$

- Solve SDP optimally using efficient algorithm.
 - If solution to SDP is integral and one dimensional, then it is a solution to Max-Cut and we are done

- Formulate Max-Cut problem as Quadratic Programming
- Oerive SDP from the quadratic program

SDP relaxation

We are still maximizing the same objective function (weight of cut), but over a (potentially) larger (higher-dimensional) set of solutions.

$$\mathit{OPT}(\mathit{SDP}) \geq \mathit{OPT}(\mathsf{Max}\text{-}\mathsf{Cut})$$

- Solve SDP optimally using efficient algorithm.
 - If solution to SDP is integral and one dimensional, then it is a solution to Max-Cut and we are done
 - If have higher dimensional solutions, rounding procedure
 Random Hyperplane Cut algorithm, with high probability we get
- OPT
- $cost(rounded solution) \ge 0.878 \cdot OPT(SDP) \ge 0.878 \cdot OPT(Max-Cut)$

 SDPs are very powerful for solving (approximating) many hard problems

- SDPs are very powerful for solving (approximating) many hard problems
- Recent and exciting work, driven by *Unique Games Conjecture* (UGC), shows that if UGC is true, then all these approximation algorithms are *tight*!

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf

- SDPs are very powerful for solving (approximating) many hard problems
- Recent and exciting work, driven by *Unique Games Conjecture* (UGC), shows that if UGC is true, then all these approximation algorithms are *tight*!

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf

Other applications in robust statistics, via the SDP & Sum-of-Squares connection

https://arxiv.org/abs/1711.11581

- SDPs are very powerful for solving (approximating) many hard problems
- Recent and exciting work, driven by *Unique Games Conjecture* (UGC), shows that if UGC is true, then all these approximation algorithms are *tight*!

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf

Other applications in robust statistics, via the SDP & Sum-of-Squares connection

https://arxiv.org/abs/1711.11581

Connections to automated theorem proving https://eccc.weizmann.ac.il/report/2019/106/

- SDPs are very powerful for solving (approximating) many hard problems
- Recent and exciting work, driven by *Unique Games Conjecture* (UGC), shows that if UGC is true, then all these approximation algorithms are *tight*!

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf

Other applications in robust statistics, via the SDP & Sum-of-Squares connection

https://arxiv.org/abs/1711.11581

Connections to automated theorem proving https://eccc.weizmann.ac.il/report/2019/106/

All of these are amazing final project topics!

Conclusion

- Mathematical programming very general, and pervasive in (combinatorial) algorithmic life
- Mathematical Programming hard in general
- Sometimes can get SDP rounding!
- Solve SDP and round the solution
 - Deterministic rounding when solutions are nice
 - Randomized rounding when things a bit more complicated

Max-cut

Acknowledgement

- Lecture based largely on:
 - Lecture 14 of Anupam Gupta and Ryan O'Donnell's Optimization class https://www.cs.cmu.edu/~anupamg/adv-approx/
- See their notes at

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture14.pdf

References I

Delorme, Charles, and Svatopluk Poljak (1993)

Laplacian eigenvalues and the maximum cut problem.

Mathematical Programming 62.1-3 (1993): 557-574.

Goemans, Michel and Williamson, David 1994

0.879-approximation algorithms for Max Cut and Max 2SAT.

Proceedings of the twenty-sixth annual ACM symposium on Theory of computing. 1994