Lecture 16: Semidefinite Programming and Duality Theorems

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

July 6, 2021

Overview

• Part I

- Administrivia
- Why Semidefinite Programming?
- Convex Algebraic Geometry

• Part II

• Duality Theory

Conclusion

• Acknowledgements

Career Workshop this Thursday!

- open to *all CS students* who are curious about the variety of careers to which they can apply their computing skills.
- speakers who hold careers in medical imaging, digital forensics, fintech, gaming/VR, film and entertainment, and graduate studies/research!
- Registration is via Eventbrite https://www.eventbrite.com/e/161507745013

Mathematical Programming deals with problems of the form

Mathematical Programming deals with problems of the form

minimize f(x)subject to $g_1(x) \ge 0$ \vdots $g_m(x) \ge 0$ $x \in \mathbb{R}^n$

Mathematical Programming deals with problems of the form

 $\begin{array}{ll} \text{minimize} & f(x)\\ \text{subject to} & g_1(x) \geq 0\\ & \vdots\\ & g_m(x) \geq 0\\ & x \in \mathbb{R}^n \end{array}$

• Very general family of problems.

Mathematical Programming deals with problems of the form

minimize f(x)subject to $g_1(x) \ge 0$ \vdots $g_m(x) \ge 0$ $x \in \mathbb{R}^n$

- Very general family of problems.
- Special case when all f, g_1, \ldots, g_m are *linear*. Linear Programming

Mathematical Programming deals with problems of the form

minimize
$$f(x)$$

subject to $g_1(x) \ge 0$
 \vdots
 $g_m(x) \ge 0$
 $x \in \mathbb{R}^n$

- Very general family of problems.
- Special case when all f, g_1, \ldots, g_m are *linear*. Linear Programming
- More general case: Semidefinite Programming

• $A_1, \ldots, A_n, B \in S^m$ are $m \times m$ symmetric matrices

Mathematical Programming deals with problems of the form

r

minimize
$$f(x)$$

subject to $g_1(x) \ge 0$
 \vdots
 $g_m(x) \ge 0$
 $x \in \mathbb{R}^n$

- Very general family of problems.
- Special case when all f, g_1, \ldots, g_m are *linear*. Linear Programming
- More general case: Semidefinite Programming

$$x_1 \cdot A_1 + \cdots + x_n \cdot A_n \succeq B$$

Minimize linear function $c^T x$

9/72

• $S^m := S^m(\mathbb{R})$ space of all $m \times m$ symmetric matrices (real entries)

$$\begin{pmatrix} l & 0 \\ 0 & l \end{pmatrix} \qquad \begin{pmatrix} l & 2 \\ 2 & 1 \end{pmatrix} \qquad M=2$$

- $\mathcal{S}^m := \mathcal{S}^m(\mathbb{R})$ space of all $m \times m$ symmetric matrices (real entries)
- $A \in S^m$ is *positive semidefinite* (PSD), denoted $A \succeq 0$ if

- $\mathcal{S}^m := \mathcal{S}^m(\mathbb{R})$ space of all $m \times m$ symmetric matrices (real entries)
- $A \in S^m$ is *positive semidefinite* (PSD), denoted $A \succeq 0$ if
 - **1** all eigenvalues of *A* are *non-negative* **2** $A = Y^T Y$ for some $Y \in \mathbb{R}^{d \times m}$ where $d \le m$ **3** $a^T A = 0$ for any $a \in \mathbb{R}^m$
 - $z^T A z \ge 0 \text{ for any } z \in \mathbb{R}^m$
 - and more...

Spectrual there is all symmetric matrices have real eigenvalues $A \succeq 0 \iff | \frac{\lambda_i(A) \ge 0}{g_i}$ & $i \in \mathbb{I}^m$ g_i constraints in SDP

- $\mathcal{S}^m := \mathcal{S}^m(\mathbb{R})$ space of all $m \times m$ symmetric matrices (real entries)
- $A \in S^m$ is *positive semidefinite* (PSD), denoted $A \succeq 0$ if
 - all eigenvalues of A are *non-negative*A = Y^T Y for some Y ∈ ℝ^{d×m} where d ≤ m
 z^T Az ≥ 0 for any z ∈ ℝ^m
 and more...

Semidefinite Programming deals with problems of the form

minimize
$$c^T x$$
 function
subject to $x_1 \cdot A_1 + \dots + x_n \cdot A_n \succeq B$ for the semidlefinite
 $x \in \mathbb{R}^m$ constants

- $\mathcal{S}^m := \mathcal{S}^m(\mathbb{R})$ space of all $m \times m$ symmetric matrices (real entries)
- $A \in S^m$ is *positive semidefinite* (PSD), denoted $A \succeq 0$ if
 - all eigenvalues of A are *non-negative*A = Y^T Y for some Y ∈ ℝ^{d×m} where d ≤ m
 z^T Az ≥ 0 for any z ∈ ℝ^m
 and more...

Semidefinite Programming deals with problems of the form

minimize
$$c^T x$$

subject to $x_1 \cdot A_1 + \dots + x_n \cdot A_n \succeq B$
 $x \in \mathbb{R}^n$

Where we use $C \succeq D$ to denote that $C - D \succeq 0$ (i.e., C - D is PSD).

How does it generalize Linear Programming?

Linear Programming

 $\begin{array}{ll} \text{minimize} & a^T x\\ \text{subject to} & Cx \ge b\\ & x \in \mathbb{R}^n \end{array}$

How does it generalize Linear Programming?

Linear Programming Semidefinite Programming

minimize $a^T x$ minimize $c^T x$ subject to $Cx \ge b$ subject to $x_1 \cdot A_1 + \dots + x_n \cdot A_n \succeq B$ $x \in \mathbb{R}^n$ $x \in \mathbb{R}^n$

Live ar Busgramming \subset Semidefinite Programming idea: encode each linear contraint of LP into a diagonal entry of SDP constraint. Ger each now $i \in [m] = \sum_{j=1}^{n} C_{ij} \times j \ge b_i$ How does it generalize Linear Programming?

Linear Programming Semidefinite Programming

minimize
$$a^T x$$
minimize $c^T x$ subject to $Cx \ge b$ subject to $x_1 \cdot A_1 + \dots + x_n \cdot A_n \succeq B$ $x \in \mathbb{R}^n$ $x \in \mathbb{R}^n$

Set A_i 's to be diagonal matrices, and $B = diag(b_1, \ldots, b_m)$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$$

17 / 72

• Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Semidefinite Programming is no different!

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Semidefinite Programming is no different!
 - equilibrium analysis of dynamics and control (flight controls, robotics, etc.)
 - robust optimization
 - statistics and ML
 - continuous games
 - software verification
 - filter design
 - quantum computation and information
 - automated theorem proving
 - packing problems
 - many more

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Semidefinite Programming is no different!
 - equilibrium analysis of dynamics and control (flight controls, robotics, etc.)
 - robust optimization
 - statistics and ML
 - continuous games
 - software verification
 - filter design
 - quantum computation and information
 - automated theorem proving
 - packing problems
 - many more
- See more here

https://windowsontheory.org/2016/08/27/

proofs-beliefs-and-algorithms-through-the-lens-of-sum-of-squares/

minimize
$$c^T x$$

subject to $x_1 \cdot A_1 + \dots + x_n \cdot A_n \succeq B$
 $x \in \mathbb{R}^n$

minimize
$$c^T x$$

subject to $x_1 \cdot A_1 + \dots + x_n \cdot A_n \succeq B$
 $x \in \mathbb{R}^n$

When is a Semidefinite Program *feasible*?

• Is there a solution to the constraints at all?

minimize
$$c^T x$$

subject to $x_1 \cdot A_1 + \dots + x_n \cdot A_n \succeq B$
 $x \in \mathbb{R}^n$

- When is a Semidefinite Program *feasible*?
 - Is there a solution to the constraints at all?
- When is a Semidefinite Program *bounded*?
 - Is there a minimum? Is the minimum achievable? Or is the minimum $-\infty?$

minimize
$$c^T x$$

subject to $x_1 \cdot A_1 + \dots + x_n \cdot A_n \succeq B$
 $x \in \mathbb{R}^n$

- When is a Semidefinite Program feasible?
 - Is there a solution to the constraints at all?
- When is a Semidefinite Program *bounded*?
 - Is there a minimum? Is the minimum achievable? Or is the minimum $-\infty?$
- On we characterize optimality?
 - How can we know that we found a minimum solution?
 - Do these solutions have nice description?
 - Do the solutions have *small bit complexity*?

minimize
$$c^T x$$

subject to $x_1 \cdot A_1 + \dots + x_n \cdot A_n \succeq B$
 $x \in \mathbb{R}^n$

- When is a Semidefinite Program feasible?
 - Is there a solution to the constraints at all?
- When is a Semidefinite Program bounded?
 - Is there a minimum? Is the minimum achievable? Or is the minimum $-\infty?$
- Gan we characterize optimality?
 - How can we know that we found a minimum solution?
 - Do these solutions have nice description?
 - Do the solutions have *small bit complexity*?
- How do we design *efficient algorithms* that find *optimal solutions* to Semidefinite Programs?

• Part I

- Administrivia
- Why Semidefinite Programming?
- Convex Algebraic Geometry
- Part II
 - Duality Theory
- Conclusion
- Acknowledgements

To understand SDPs, we need to understand their *feasible regions*, which are called *spectrahedra* and described as *Linear Matrix Inequalities* (LMIs).

X, A, + + + xn An & B

To understand SDPs, we need to understand their *feasible regions*, which are called *spectrahedra* and described as *Linear Matrix Inequalities* (LMIs).

Definition (Linear Matrix Inequalities)

A linear matrix inequality is an inequality of the form:

$$A_0 + \sum_{i=1}^n A_i x_i \succeq 0,$$

where A_0, \ldots, A_n are symmetric matrices.

To understand SDPs, we need to understand their *feasible regions*, which are called *spectrahedra* and described as *Linear Matrix Inequalities* (LMIs).

Definition (Linear Matrix Inequalities)

A linear matrix inequality is an inequality of the form:

$$A_0 + \sum_{i=1}^n A_i x_i \succeq 0,$$

where A_0, \ldots, A_n are symmetric matrices.

Definition (Spectrahedron)

A spectrahedron is a set defined by finitely many LMIs. In other words, it can be defined as:

$$S = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^n A_i x_i \succeq B, A_i, B \in S^m \right\}$$

To understand SDPs, we need to understand their *feasible regions*, which are called *spectrahedra* and described as *Linear Matrix Inequalities* (LMIs).

Suppose 5 defined by two LMIs $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n$

Definition (Spectrahedron)

A spectrahedron is a set defined by finitely many LMIs. In other words, it can be defined as:

$$S = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^n A_i x_i \succeq B, A_i, B \in S^m \right\}$$

To understand SDPs, we need to understand their *feasible regions*, which are called *spectrahedra* and described as *Linear Matrix Inequalities* (LMIs).

Definition (Spectrahedron)

A spectrahedron is a set defined by finitely many LMIs. In other words, it can be defined as:

$$S = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^n A_i x_i \succeq B, A_i, B \in S^m \right\}$$

Example of Spectrahedron

Polyhedron:

Cx36

B = (b)

<ロト < 回 ト < 目 ト < 目 ト 目 の Q (C 33 / 72

Example of Spectrahedron

Ci

rcle:

$$\begin{aligned}
\mathcal{C} = \left\{ (x, y) \in \mathbb{R}^{2} \mid z^{2} + y^{2} \leq L \right\} \\
\mathcal{C} = \left\{ (x, y) \in \mathbb{R}^{2} \mid \left(\frac{|x + x|}{y}, \frac{y}{|x - x|} \right) \geq 0 \right\} \\
\left(\left(1 \right) + x \left(\frac{|x + x|}{y}, \frac{y}{|x - x|} \right) \geq 0 \right) \\
\left(\left(1 \right) + x \left(\frac{|x - x|}{y} \right) \geq 0 \right) \\
\left(\frac{|x + x > 0}{|x + x|} \quad det\left(\frac{|x + x|}{y}, \frac{y}{|x - x|} \right) \geq 0 \\
\left(\frac{|x + x > 0}{|x + x|} \quad det\left(\frac{|x + x|}{y}, \frac{y}{|x - x|} \right) \geq 0 \right) \\
\left(\frac{|x + x > 0}{|x + x|} \quad det\left(\frac{|x + x|}{y}, \frac{y}{|x - x|} \right) \geq 0 \\
\left(\frac{|x + x > 0}{|x + x|} \quad det\left(\frac{|x + x|}{y}, \frac{y}{|x - x|} \right) \geq 0 \\
\left(\frac{|x + x > 0}{|x + x|} \quad det\left(\frac{|x + x|}{y}, \frac{y}{|x - x|} \right) \geq 0 \\
\left(\frac{|x + x > 0}{|x + x|} \quad det\left(\frac{|x + x|}{y}, \frac{y}{|x - x|} \right) \geq 0 \\
\left(\frac{|x + x > 0}{|x + x|} \quad det\left(\frac{|x + x|}{y}, \frac{y}{|x - x|} \right) \geq 0 \\
\left(\frac{|x + x > 0}{|x + x|} \quad det\left(\frac{|x + x|}{y}, \frac{y}{|x - x|} \right) \geq 0 \\
\left(\frac{|x + x > 0}{|x + x|} \quad det\left(\frac{|x + x|}{y}, \frac{y}{|x - x|} \right) \geq 0 \\
\left(\frac{|x + x > 0}{|x + x|} \quad det\left(\frac{|x + x|}{y}, \frac{y}{|x - x|} \right) \geq 0 \\
\left(\frac{|x + x > 0}{|x + x|} \quad det\left(\frac{|x + x|}{y}, \frac{y}{|x - x|} \right) \geq 0 \\
\left(\frac{|x + x > 0}{|x + x|} \quad det\left(\frac{|x + x|}{y}, \frac{y}{|x - x|} \right) \geq 0 \\
\left(\frac{|x + x > 0}{|x + x|} \quad det\left(\frac{|x + x|}{y} \right) \geq 0 \\
\left(\frac{|x + x > 0}{|x + x|} \quad det\left(\frac{|x + x > 0}{|x + x|} \right) \geq 0 \\
\left(\frac{|x + x > 0}{|x + x|} \quad det\left(\frac{|x + x > 0}{|x + x|} \right) \geq 0 \\
\left(\frac{|x + x > 0}{|x + x|} \quad det\left(\frac{|x + x > 0}{|x + x|} \right) \geq 0 \\
\left(\frac{|x + x > 0}{|x + x|} \quad det\left(\frac{|x + x > 0}{|x + x|} \right) \geq 0 \\
\left(\frac{|x + x > 0}{|x + x|} \right) = 0 \\
\left(\frac{|x + x > 0}{|x + x|} \right) = 0 \\
\left(\frac{|x + x > 0}{|x + x|} \right) = 0 \\
\left(\frac{|x + x > 0}{|x + x|} \right) = 0 \\
\left(\frac{|x + x > 0}{|x + x|} \right) = 0 \\
\left(\frac{|x + x > 0}{|x + x|} \right) = 0 \\
\left(\frac{|x + x > 0}{|x + x|} \right) = 0 \\
\left(\frac{|x + x > 0}{|x + x|} \right) = 0 \\
\left(\frac{|x + x > 0}{|x + x|} \right) = 0 \\
\left(\frac{|x + x > 0}{|x + x|} \right) = 0 \\
\left(\frac{|x + x > 0}{|x + x|} \right) = 0 \\
\left(\frac{|x + x > 0}{|x + x|} \right) = 0 \\
\left(\frac{|x + x > 0}{|x + x|} \right) = 0 \\
\left(\frac{|x + x > 0}{|x + x|} \right) = 0 \\
\left(\frac{|x + x > 0}{|x + x|} \right) = 0 \\
\left(\frac{|x + x > 0}{|x + x|} \right) = 0 \\
\left(\frac{|x + x > 0}{|x + x|} \right) = 0 \\
\left(\frac{|x + x > 0}{|x +$$

34 / 72

q(= {(x,y) ∈ R' | x>0, g>0 { xy31 { xy31 { $= \left\{ (x_{i}y) \in \mathbb{R}^{2} \mid \begin{pmatrix} x & i \\ i & y \end{pmatrix} \xi o \right\}$

x 20, y20 det (" 1) 20 + xy-120

Example of Spectrahedron

^{36 / 72}
Projected Spectrahedron

For both LPs and SDPs, it is enough to obtain a *linear projection of spectrahedron* (or polyhedron, if in LP).

Projected Spectrahedron

For both LPs and SDPs, it is enough to obtain a *linear projection of spectrahedron* (or polyhedron, if in LP).

Definition (Projected Spectrahedron)

A set $S \in \mathbb{R}^n$ is a *projected spectrahedron* if it has the form:

$$S = \left\{ x \in \mathbb{R}^n \mid \exists y \in \mathbb{R}^t \text{ s.t. } \sum_{i=1}^n A_i x_i + \sum_{j=1}^t B_j y_j \succeq C, A_i, B_j, C \in \mathcal{S}^m \right\}$$

38 / 72

Projected Spectrahedron

For both LPs and SDPs, it is enough to obtain a *linear projection of spectrahedron* (or polyhedron, if in LP).

Definition (Projected Spectrahedron)

A set $S \in \mathbb{R}^n$ is a *projected spectrahedron* if it has the form:

$$S = \left\{ x \in \mathbb{R}^n \mid \exists y \in \mathbb{R}^t \text{ s.t. } \sum_{i=1}^n A_i x_i + \sum_{j=1}^t B_j y_j \succeq C, A_i, B_j, C \in \mathcal{S}^m \right\}$$

minimize
$$C^{T}$$
?
 $p.1 \cdot z \in T$
 $c = \begin{pmatrix} x \\ 0 \end{pmatrix}$ $z = \begin{pmatrix} x \\ y \end{pmatrix}$

minimize
$$\sqrt[6]{x}$$

n.1 $\binom{\pi}{y} \in T(\Leftrightarrow x \in S)$
nince S is a projection
of T.
 $39/72$

Example of Projected Spectrahedron

Projection quadratic cone intersected with halfspace:

$$S = \left\{ (z_1 y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ n.t.} \\ (z_1 y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ n.t.} \\ (z_1 y) \geq \mathbb{R}^2 \mid z_2 - x \\ (z_2 - x) \geq z_2 \end{pmatrix} \notin \exists z \in \mathbb{R} \text{ n.t.} \\ (z_1 y) \geq z_2 - x \\ z_2 - x \quad z_2 \end{pmatrix} \notin \exists z \in \mathbb{R} \text{ n.t.} \\ (z_1 y) \geq z_2 - x \\ z_2 - x \quad z_2 \end{pmatrix} \notin \exists z \in \mathbb{R} \text{ n.t.} \\ (z_1 y) \geq z_2 - x \\ z_2 - x \quad z_2 \end{pmatrix} \notin \exists z \in \mathbb{R} \text{ n.t.} \\ (z_1 y) \geq z_2 - x \\ z_2 - x \quad z_2 \end{pmatrix} \notin \exists z \in \mathbb{R} \text{ n.t.} \\ (z_1 y) \geq z_2 - x \\ z_2 - x \quad z_2 \end{pmatrix} \notin \exists z \in \mathbb{R} \text{ n.t.} \\ (z_1 y) \geq z_2 - x \\ z_2 - x \quad z_2 \end{pmatrix} \notin \exists z \in \mathbb{R} \text{ n.t.} \\ (z_1 y) \in \mathbb{R}^2 \ z_2 - x \\ z_2 - x \quad z_2 \end{pmatrix} \notin \exists z \in \mathbb{R} \text{ n.t.} \\ (z_1 y) \in \mathbb{R}^2 \ z_2 - x \\ z_2 - x \quad z_2 \end{pmatrix} \notin \exists z \in \mathbb{R} \text{ n.t.} \\ (z_1 y) \in \mathbb{R}^2 \ z_2 - x \\ z_2 - x \quad z_2 \end{pmatrix} \notin \exists z \in \mathbb{R} \text{ n.t.} \\ (z_1 y) \in \mathbb{R}^2 \ z_2 - x \\ z_2 - x \quad z_2 \end{pmatrix}$$

• Part I

- Administrivia
- Why Semidefinite Programming?
- Convex Algebraic Geometry
- Part II
 - Duality Theory
- Conclusion
- Acknowledgements

Working with Symmetric Matrices

Definition (Frobenius Inner Product)

 $A, B \in \mathcal{S}^m$, define the *Frobenius inner product* as

$$\langle A,B
angle:= {\sf tr}[AB] = \sum_{i,j} A_{ij}B_{ij}$$

- This is the "usual inner product" if you think of the matrices as vectors
- Thus, have the norm

$$\|A\|_{F} = \sqrt{\langle A, A \rangle} = \sqrt{\sum_{i,j} A_{ij}^{2}}$$

With this norm, can talk about the *polar dual* to a given spectrahedron S ⊆ S^m:

$$S^{\circ} = \{Y \in S^m \mid \langle Y, X \rangle \leq 1, \ \forall X \in S\}$$

Just like in Linear Programming, we can represent SDPs in standard form:

$$\begin{array}{ll} \text{minimize} & \langle C, X \rangle \\ \text{subject to} & \langle A_i, X \rangle = b_i \\ & X \succeq 0 \end{array}$$

Where now:

$$\begin{array}{l} \chi & \underset{\text{Mathix}}{\text{Mathix}} & \underset{\text{Mathix}}{\text{Mat$$

Just like in Linear Programming, we can represent SDPs in standard form:

$$\begin{array}{ll} \text{minimize} & \langle C, X \rangle \\ \text{subject to} & \langle A_i, X \rangle = b_i \\ & X \succeq 0 \end{array}$$

Where now:

• the variables are encoded in a positive semidefinite matrix X,

Just like in Linear Programming, we can represent SDPs in standard form:

minimize
$$\langle C, X \rangle$$
 linear function over
subject to $\langle A_i, X \rangle = b_i$ x_{ij}
 $X \succeq 0$

Where now:

- the variables are encoded in a positive semidefinite matrix X,
- each constraint is given by an inner product $\langle A_i, X \rangle = b_i$

tn(AiX) = bi

Just like in Linear Programming, we can represent SDPs in standard form:

$$\begin{array}{ll} \text{minimize} & \langle C, X \rangle \\ \text{subject to} & \langle A_i, X \rangle = b_i \\ & X \succeq 0 \end{array}$$

Where now:

- the variables are encoded in a positive semidefinite matrix X,
- each constraint is given by an inner product $\langle A_i, X \rangle = b_i$
- Note the similarity with LP standard primal. Can obtain LP standard form by making X and A_i's to be diagonal

$$x_{ij} = 0$$
 if $i \neq j$ $\langle z_{ij}, x \rangle = 0$

Just like in Linear Programming, we can represent SDPs in standard form:

$$\begin{array}{ll} \text{minimize} & \langle C, X \rangle \\ \text{subject to} & \langle A_i, X \rangle = b_i \\ & X \succeq 0 \end{array}$$

Where now:

- the variables are encoded in a positive semidefinite matrix X,
- each constraint is given by an inner product $\langle A_i, X \rangle = b_i$
- Note the similarity with LP standard primal. Can obtain LP standard form by making X and A_i's to be diagonal
- How is that an LMI though?

Standard Primal Form as LMI

Example

Primal $A_{1} = \begin{pmatrix} \iota & \circ \\ \circ & \iota \end{pmatrix}$ $C = \begin{pmatrix} 2 & l \\ l & 0 \end{pmatrix}$

value (min) = 1 - 02 minimize $2x_{11} + 2x_{12}$ X OPT: subject to $x_{11} + x_{22} = 1$ $(x_{11} - x_{12})$ $\begin{array}{ll} x_{11} + x_{22} = 1 \\ \begin{pmatrix} x_{11} & x_{12} \\ x_{12} & x_{22} \end{pmatrix} \succeq 0 \\ \begin{array}{ll} \text{both OPT ond} \\ \text{value may not} \\ \text{be rational} \end{array}$

Semidefinite Programming Duality Consider our SDP:

 $\begin{array}{ll} \text{minimize} & \langle C, X \rangle \\ \text{subject to} & \langle A_i, X \rangle = b_i \\ & X \succeq 0 \end{array}$

Consider our SDP:

$$\begin{array}{ll} \text{minimize} & \langle C, X \rangle \\ \text{subject to} & \langle A_i, X \rangle = b_i & \checkmark \\ & X \succeq 0 \end{array}$$

• If we look at what happens when we multiply *i*th equality by a variable *y_i*:

$$\sum_{i=1}^{t} y_i \cdot \langle A_i, X \rangle = \sum_{i=1}^{t} y_i \cdot b_i \quad \Rightarrow \quad \left\langle \sum_{i=1}^{t} y_i A_i, X \right\rangle = y^T b$$

Semidefinite Programming Duality Consider our SDP:

 $\begin{array}{ll} \text{minimize} & \langle C, X \rangle \\ \text{subject to} & \langle A_i, X \rangle = b_i \\ & X \succeq 0 \end{array}$

If we look at what happens when we multiply *ith* equality by a variable y_i:

$$\sum_{i=1}^{t} y_i \cdot \langle A_i, X \rangle = \sum_{i=1}^{t} y_i \cdot b_i \quad \Rightarrow \quad \left\langle \sum_{i=1}^{t} y_i A_i , X \right\rangle = y^T b$$

• Thus, if $\sum_{i=1}^{t} y_i A_i \leq C$, then we have:

$$y^T b = \left\langle \sum_{i=1}^{t} y_i A_i , X \right\rangle \leq \langle C, X \rangle$$

$$\left\langle A_i B \rangle \geq 0 \quad i \notin A_i B \geq 0$$

52 / 72

Semidefinite Programming Duality Consider our SDP:

 $\begin{array}{ll} \text{minimize} & \langle C, X \rangle \\ \text{subject to} & \langle A_i, X \rangle = b_i \\ & X \succeq 0 \end{array}$

• If we look at what happens when we multiply *i*th equality by a variable *y_i*:

$$\sum_{i=1}^{t} y_i \cdot \langle A_i, X \rangle = \sum_{i=1}^{t} y_i \cdot b_i \quad \Rightarrow \quad \left\langle \sum_{i=1}^{t} y_i A_i , X \right\rangle = y^T b$$

• Thus, if $\sum_{i=1}^{t} y_i A_i \leq C$, then we have:

$$y^T b = \left\langle \sum_{i=1}^{t} y_i A_i , X \right\rangle \leq \langle C, X \rangle$$

• $y^T b$ is a *lower bound* on the solution to our SDP!

53 / 72

Consider the following SDPs:

Consider the following SDPs:

• From previous slide

 $\sum_{i=1}^{t} y_i A_i \preceq C \Rightarrow y^T b \text{ is a lower bound on value of Primal}$

Consider the following SDPs:

• From previous slide

 $\sum_{i=1}^{t} y_i A_i \preceq C \Rightarrow y^T b \text{ is a lower bound on value of Primal}$

• Thus, the optimal (maximum) value of *dual LP* lower bounds the optimal (minimum) value of the *Primal LP*!

Consider the following SDPs:

• From previous slide

 $\sum_{i=1}^{t} y_i A_i \preceq C \Rightarrow y^T b \text{ is a lower bound on value of Primal}$

• Thus, the optimal (maximum) value of *dual LP* lower bounds the optimal (minimum) value of the *Primal LP*!

Theorem (Weak Duality)

Let X be a feasible solution of the primal SDP and y be a feasible solution of the dual SDP. Then $y_{x} = \frac{1}{\sqrt{T}} \int_{0}^{1} \frac{1}{\sqrt$

Remarks on Duality

Primal SDPDual SDPminimize $\langle C, X \rangle$ maximize $y^T b$ subject to $\langle A_i, X \rangle = b_i$ subject to $\sum_{i=1}^t y_i A_i \preceq C$

Remarks on Duality

Primal SDPDual SDPminimize $\langle C, X \rangle$ maximize $y^T b$ subject to $\langle A_i, X \rangle = b_i$ subject to $\sum_{i=1}^{t} y_i A_i \preceq C$

Theorem (Complementary Slackness)

Let X be a feasible solution of the primal SDP and y be a feasible solution of the dual SDP. If (X, y) satisfy the complementary slackness condition

$$\left(C-\sum_{i=1}^t y_i A_i\right)X=0$$

Then (X, y) are primal and dual optimum solutions of the SDP problem.

Remarks on Duality

Primal SDPDual SDPminimize $\langle C, X \rangle$ maximize $y^T b$ subject to $\langle A_i, X \rangle = b_i$ subject to $\sum_{i=1}^{t} y_i A_i \preceq C$

Theorem (Complementary Slackness)

Let X be a feasible solution of the primal SDP and y be a feasible solution of the dual SDP. If (X, y) satisfy the complementary slackness condition

$$\left(C-\sum_{i=1}^t y_i A_i\right)X=0$$

Then (X, y) are primal and dual optimum solutions of the SDP problem.

Complementary slackness gives us *sufficient* conditions to check optimality of our solutions.

Primal SDPDual SDPminimize $\langle C, X \rangle$ maximize $y^T b$ subject to $\langle A_i, X \rangle = b_i$ subject to $\sum_{i=1}^t y_i A_i \preceq C$

Strong duality in SDPs is a bit more complex than in LPs.

- Strong duality in SDPs is a bit more complex than in LPs.
- Both primal and dual may be feasible, and yet strong duality may not hold!
 Home wask

Primal SDP		Du	Dual SDP	
minimize	$\langle C, X \rangle$	maximize	у ^т b	
subject to	$\langle A_i, X \rangle = b_i$ $X \succeq 0$	subject to	$\sum_{i=1}^t y_i A_i \preceq C$	

- Strong duality in SDPs is a bit more complex than in LPs.
- Both primal and dual may be feasible, and yet strong duality may not hold!
- But under mild conditions, strong duality holds!

Primal SDP Dual SDP maximize $v^T b$ minimize $\langle C, X \rangle$ subject to $\sum_{i=1}^{t} y_i A_i \preceq C$ subject to $\langle A_i, X \rangle = b_i$ $X \succ 0$

- Strong duality in SDPs is a bit more complex than in LPs.
- Both primal and dual may be feasible, and yet strong duality may not hold! strict inequally
- But under mild conditions, strong duality holds!

• Primal SDP is strictly feasible if there is feasible solution $X \succ 0$. Dual SDP is strictly feasible if there is feasible $\sum_{i=1}^{t} y_i A_i \prec C$. Solution Condition

G Slater conditions

Primal SDP		Dual SDP	
minimize	$\langle C, X \rangle$	maximize	у ^т b
subject to	$\langle A_i, X \rangle = b_i$ $X \succeq 0$	subject to	$\sum_{i=1}^t y_i A_i \preceq C$

- Strong duality in SDPs is a bit more complex than in LPs.
- Both primal and dual may be feasible, and yet strong duality may not hold!
- But under mild conditions, strong duality holds!
- Primal SDP is *strictly feasible* if there is feasible solution $X \succ 0$.
- Dual SDP is *strictly feasible* if there is feasible $\sum_{i=1}^{t} y_i A_i \prec C$.

Theorem (Strong Duality under Slater Conditions)

If primal SDP and dual SDP are both strictly feasible, then

max dual = min of primal.

- Mathematical programming very general, and pervasive in Algorithmic life
- General mathematical programming very hard

- Mathematical programming very general, and pervasive in Algorithmic life
- General mathematical programming very hard
- Special cases have very striking applications!
 - Linear Programming (previous lectures)
 - Today: Semidefinite Programming

- Mathematical programming very general, and pervasive in Algorithmic life
- General mathematical programming very hard
- Special cases have very striking applications!
 - Linear Programming (previous lectures)
 - Today: Semidefinite Programming
- Semidefinite Programming and Duality fundamental concepts, lots of applications!
 - Applications in Combinatorial Optimization (Max-Cut in next lecture!)
 - Applications in Control Theory
 - many more!

- Mathematical programming very general, and pervasive in Algorithmic life
- General mathematical programming very hard
- Special cases have very striking applications!
 - Linear Programming (previous lectures)
 - Today: Semidefinite Programming
- Semidefinite Programming and Duality fundamental concepts, lots of applications!
 - Applications in Combinatorial Optimization (Max-Cut in next lecture!)
 - Applications in Control Theory
 - many more!
- Check out connections to Sum of Squares and a **bold**¹ attempt to have one algorithm to solve all problems! (i.e., one algorithm to rule them all)

https://windowsontheory.org/2016/08/27/

proofs-beliefs-and-algorithms-through-the-lens-of-sum-of-squares/

¹pun intended

Acknowledgement

- Lecture based largely on:
 - [Blekherman, Parrilo, Thomas 2012, Chapter 2]

References I

Blekherman, Grigoriy and Parrilo, Pablo and Thomas, Rekha (2012) Convex Algebraic Geometry