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Career Workshop this Thursday!

open to all CS students who are curious about the variety of careers
to which they can apply their computing skills.

speakers who hold careers in medical imaging, digital forensics,
fintech, gaming/VR, film and entertainment, and graduate
studies/research!

Registration is via Eventbrite
https://www.eventbrite.com/e/161507745013
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Mathematical Programming
Mathematical Programming deals with problems of the form

minimize f (x)

subject to g1(x) ≥ 0

...

gm(x) ≥ 0

x ∈ Rn

Very general family of problems.

Special case when all f , g1, . . . , gm are linear. Linear Programming

More general case: Semidefinite Programming

1 A1, . . . ,An,B ∈ Sm are m ×m symmetric matrices
2 Constraints:

x1 · A1 + · · ·+ xn · An � B

3 Minimize linear function cT x
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What is a Semidefinite Program?

Sm := Sm(R) space of all m ×m symmetric matrices (real entries)

A ∈ Sm is positive semidefinite (PSD), denoted A � 0 if

1 all eigenvalues of A are non-negative
2 A = Y TY for some Y ∈ Rd×m where d ≤ m
3 zTAz ≥ 0 for any z ∈ Rm

4 and more...

Semidefinite Programming deals with problems of the form

minimize cT x

subject to x1 · A1 + · · ·+ xn · An � B

x ∈ Rn

Where we use C � D to denote that C − D � 0 (i.e., C − D is PSD).
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How does it generalize Linear Programming?

Linear Programming

minimize aT x

subject to Cx ≥ b

x ∈ Rn

Semidefinite Programming

minimize cT x

subject to x1 · A1 + · · ·+ xn · An � B

x ∈ Rn

Set Ai ’s to be diagonal matrices, and B = diag(b1, . . . , bm)
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Why should I care?

Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!

Semidefinite Programming is no different!

equilibrium analysis of dynamics and control (flight controls, robotics,
etc.)
robust optimization
statistics and ML
continuous games
software verification
filter design
quantum computation and information
automated theorem proving
packing problems
many more

See more here

https://windowsontheory.org/2016/08/27/

proofs-beliefs-and-algorithms-through-the-lens-of-sum-of-squares/
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Important Questions

minimize cT x

subject to x1 · A1 + · · ·+ xn · An � B

x ∈ Rn

1 When is a Semidefinite Program feasible?

Is there a solution to the constraints at all?

2 When is a Semidefinite Program bounded?

Is there a minimum? Is the minimum achievable? Or is the minimum
−∞?

3 Can we characterize optimality?

How can we know that we found a minimum solution?
Do these solutions have nice description?
Do the solutions have small bit complexity?

4 How do we design efficient algorithms that find optimal solutions to
Semidefinite Programs?

22 / 72



Important Questions

minimize cT x

subject to x1 · A1 + · · ·+ xn · An � B

x ∈ Rn

1 When is a Semidefinite Program feasible?
Is there a solution to the constraints at all?

2 When is a Semidefinite Program bounded?

Is there a minimum? Is the minimum achievable? Or is the minimum
−∞?

3 Can we characterize optimality?

How can we know that we found a minimum solution?
Do these solutions have nice description?
Do the solutions have small bit complexity?

4 How do we design efficient algorithms that find optimal solutions to
Semidefinite Programs?

23 / 72



Important Questions

minimize cT x

subject to x1 · A1 + · · ·+ xn · An � B

x ∈ Rn

1 When is a Semidefinite Program feasible?
Is there a solution to the constraints at all?

2 When is a Semidefinite Program bounded?
Is there a minimum? Is the minimum achievable? Or is the minimum
−∞?

3 Can we characterize optimality?

How can we know that we found a minimum solution?
Do these solutions have nice description?
Do the solutions have small bit complexity?

4 How do we design efficient algorithms that find optimal solutions to
Semidefinite Programs?

24 / 72



Important Questions

minimize cT x

subject to x1 · A1 + · · ·+ xn · An � B

x ∈ Rn

1 When is a Semidefinite Program feasible?
Is there a solution to the constraints at all?

2 When is a Semidefinite Program bounded?
Is there a minimum? Is the minimum achievable? Or is the minimum
−∞?

3 Can we characterize optimality?
How can we know that we found a minimum solution?
Do these solutions have nice description?
Do the solutions have small bit complexity?

4 How do we design efficient algorithms that find optimal solutions to
Semidefinite Programs?

25 / 72



Important Questions

minimize cT x

subject to x1 · A1 + · · ·+ xn · An � B

x ∈ Rn

1 When is a Semidefinite Program feasible?
Is there a solution to the constraints at all?

2 When is a Semidefinite Program bounded?
Is there a minimum? Is the minimum achievable? Or is the minimum
−∞?

3 Can we characterize optimality?
How can we know that we found a minimum solution?
Do these solutions have nice description?
Do the solutions have small bit complexity?

4 How do we design efficient algorithms that find optimal solutions to
Semidefinite Programs?

26 / 72



Part I
Administrivia
Why Semidefinite Programming?
Convex Algebraic Geometry

Part II
Duality Theory

Conclusion

Acknowledgements

27 / 72



Spectrahedra
To understand SDPs, we need to understand their feasible regions, which
are called spectrahedra and described as Linear Matrix Inequalities (LMIs).

Definition (Linear Matrix Inequalities)

A linear matrix inequality is an inequality of the form:

A0 +
n∑

i=1

Aixi � 0,

where A0, . . . ,An are symmetric matrices.

Definition (Spectrahedron)

A spectrahedron is a set defined by finitely many LMIs. In other words, it
can be defined as:

S =

{
x ∈ Rn |

n∑
i=1

Aixi � B, Ai ,B ∈ Sm
}
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Definition (Linear Matrix Inequalities)

A linear matrix inequality is an inequality of the form:

A0 +
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Definition (Spectrahedron)
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Spectrahedra
To understand SDPs, we need to understand their feasible regions, which
are called spectrahedra and described as Linear Matrix Inequalities (LMIs).

Definition (Linear Matrix Inequalities)

A linear matrix inequality is an inequality of the form:

A0 +
n∑

i=1

Aixi � 0,

where A0, . . . ,An are symmetric matrices.

Definition (Spectrahedron)

A spectrahedron is a set defined by finitely many LMIs. In other words, it
can be defined as:

S =

{
x ∈ Rn |

n∑
i=1

Aixi � B, Ai ,B ∈ Sm
}

32 / 72



Example of Spectrahedron

Polyhedron:
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Example of Spectrahedron

Circle:
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Example of Spectrahedron

Hyperbola:
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Example of Spectrahedron

Elliptic curve:
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Projected Spectrahedron
For both LPs and SDPs, it is enough to obtain a linear projection of
spectrahedron (or polyhedron, if in LP).

Definition (Projected Spectrahedron)

A set S ∈ Rn is a projected spectrahedron if it has the form:

S =

x ∈ Rn | ∃y ∈ Rt s.t.
n∑

i=1

Aixi +
t∑

j=1

Bjyj � C , Ai ,Bj ,C ∈ Sm

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Projected Spectrahedron
For both LPs and SDPs, it is enough to obtain a linear projection of
spectrahedron (or polyhedron, if in LP).

Definition (Projected Spectrahedron)

A set S ∈ Rn is a projected spectrahedron if it has the form:
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Projected Spectrahedron
For both LPs and SDPs, it is enough to obtain a linear projection of
spectrahedron (or polyhedron, if in LP).

Definition (Projected Spectrahedron)

A set S ∈ Rn is a projected spectrahedron if it has the form:

S =

x ∈ Rn | ∃y ∈ Rt s.t.
n∑

i=1

Aixi +
t∑
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Bjyj � C , Ai ,Bj ,C ∈ Sm
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Example of Projected Spectrahedron

Projection quadratic cone intersected with halfspace:
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Working with Symmetric Matrices

Definition (Frobenius Inner Product)

A,B ∈ Sm, define the Frobenius inner product as

〈A,B〉 := tr[AB] =
∑
i ,j

AijBij

This is the “usual inner product” if you think of the matrices as
vectors

Thus, have the norm

‖A‖F =
√
〈A,A〉 =

√∑
i ,j

A2
ij

With this norm, can talk about the polar dual to a given
spectrahedron S ⊆ Sm:

S◦ = {Y ∈ Sm | 〈Y ,X 〉 ≤ 1, ∀X ∈ S}
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Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

minimize 〈C ,X 〉
subject to 〈Ai ,X 〉 = bi

X � 0

Where now:

the variables are encoded in a positive semidefinite matrix X ,

each constraint is given by an inner product 〈Ai ,X 〉 = bi

Note the similarity with LP standard primal. Can obtain LP standard
form by making X and Ai ’s to be diagonal

How is that an LMI though?
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Standard Primal Form as LMI

minimize 〈C ,X 〉
subject to 〈Ai ,X 〉 = bi

X � 0
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Example

minimize 2x11 + 2x12

subject to x11 + x22 = 1(
x11 x12
x12 x22

)
� 0

49 / 72

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Semidefinite Programming Duality
Consider our SDP:

minimize 〈C ,X 〉
subject to 〈Ai ,X 〉 = bi

X � 0

If we look at what happens when we multiply i th equality by a
variable yi :

t∑
i=1

yi · 〈Ai ,X 〉 =
t∑

i=1

yi · bi ⇒

〈
t∑

i=1

yiAi , X

〉
= yTb

Thus, if
t∑

i=1

yiAi � C , then we have:

yTb =

〈
t∑

i=1

yiAi , X

〉
≤ 〈C ,X 〉

yTb is a lower bound on the solution to our SDP!
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Semidefinite Programming Duality
Consider the following SDPs:

Primal SDP

minimize 〈C ,X 〉
subject to 〈Ai ,X 〉 = bi

X � 0

Dual SDP

maximize yTb

subject to
t∑

i=1

yiAi � C

From previous slide
t∑

i=1

yiAi � C ⇒ yTb is a lower bound on value of Primal

Thus, the optimal (maximum) value of dual LP lower bounds the
optimal (minimum) value of the Primal LP!

Theorem (Weak Duality)

Let X be a feasible solution of the primal SDP and y be a feasible solution
of the dual SDP. Then

yTb ≤ 〈C ,X 〉.
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Semidefinite Programming Duality
Consider the following SDPs:

Primal SDP

minimize 〈C ,X 〉
subject to 〈Ai ,X 〉 = bi

X � 0

Dual SDP

maximize yTb

subject to
t∑

i=1

yiAi � C

From previous slide
t∑

i=1

yiAi � C ⇒ yTb is a lower bound on value of Primal

Thus, the optimal (maximum) value of dual LP lower bounds the
optimal (minimum) value of the Primal LP!

Theorem (Weak Duality)

Let X be a feasible solution of the primal SDP and y be a feasible solution
of the dual SDP. Then

yTb ≤ 〈C ,X 〉.
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Remarks on Duality

Primal SDP

minimize 〈C ,X 〉
subject to 〈Ai ,X 〉 = bi

X � 0

Dual SDP

maximize yTb

subject to
t∑

i=1

yiAi � C

Theorem (Complementary Slackness)

Let X be a feasible solution of the primal SDP and y be a feasible solution
of the dual SDP. If (X , y) satisfy the complementary slackness condition(

C −
t∑

i=1

yiAi

)
X = 0

Then (X , y) are primal and dual optimum solutions of the SDP problem.

Complementary slackness gives us sufficient conditions to check optimality
of our solutions.
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Strong Duality

Primal SDP

minimize 〈C ,X 〉
subject to 〈Ai ,X 〉 = bi

X � 0

Dual SDP

maximize yTb

subject to
t∑

i=1

yiAi � C

Strong duality in SDPs is a bit more complex than in LPs.
Both primal and dual may be feasible, and yet strong duality may not
hold!
But under mild conditions, strong duality holds!
Primal SDP is strictly feasible if there is feasible solution X � 0.
Dual SDP is strictly feasible if there is feasible

∑t
i=1 yiAi ≺ C .

Theorem (Strong Duality under Slater Conditions)

If primal SDP and dual SDP are both strictly feasible, then

max dual = min of primal.
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Conclusion

Mathematical programming - very general, and pervasive in
Algorithmic life

General mathematical programming very hard

Special cases have very striking applications!

Linear Programming (previous lectures)
Today: Semidefinite Programming

Semidefinite Programming and Duality - fundamental concepts, lots
of applications!

Applications in Combinatorial Optimization (Max-Cut in next lecture!)
Applications in Control Theory
many more!

Check out connections to Sum of Squares and a bold1 attempt to
have one algorithm to solve all problems! (i.e., one algorithm to rule
them all)

https://windowsontheory.org/2016/08/27/

proofs-beliefs-and-algorithms-through-the-lens-of-sum-of-squares/

1pun intended
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