
Lecture 15: Approximation Algorithms for Travelling
Salesman Problem

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

June 29, 2021

1 / 95



Overview

Equivalent Versions of Traveling Salesman Problem

Approximation Algorithms for Traveling Salesman Problem

Conclusion

Acknowledgements

2 / 95



Traveling Salesman Problem

Input: set of points X and a symmetric distance function

d : X × X → R≥0

For any path p0 → p1 → · · · → pt in X , length of the path is sum of
distances traveled

t−1∑
i=0

d(pi , pi+1)

Output: find a cycle that reaches all points in X of shortest length.

Definitely a problem we would like to solve

Efficient route planning (mail system, shuttle bus pick up and drop
off...)

One of the famous NP-complete problems

Comes in many flavours...

3 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Traveling Salesman Problem

Input: set of points X and a symmetric distance function

d : X × X → R≥0

For any path p0 → p1 → · · · → pt in X , length of the path is sum of
distances traveled

t−1∑
i=0

d(pi , pi+1)

Output: find a cycle that reaches all points in X of shortest length.

Definitely a problem we would like to solve

Efficient route planning (mail system, shuttle bus pick up and drop
off...)

One of the famous NP-complete problems

Comes in many flavours...

4 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Traveling Salesman Problem

Input: set of points X and a symmetric distance function

d : X × X → R≥0

For any path p0 → p1 → · · · → pt in X , length of the path is sum of
distances traveled

t−1∑
i=0

d(pi , pi+1)

Output: find a cycle that reaches all points in X of shortest length.

Definitely a problem we would like to solve

Efficient route planning (mail system, shuttle bus pick up and drop
off...)

One of the famous NP-complete problems

Comes in many flavours...

5 / 95



Traveling Salesman Problem

Input: set of points X and a symmetric distance function

d : X × X → R≥0

For any path p0 → p1 → · · · → pt in X , length of the path is sum of
distances traveled

t−1∑
i=0

d(pi , pi+1)

Output: find a cycle that reaches all points in X of shortest length.

Definitely a problem we would like to solve

Efficient route planning (mail system, shuttle bus pick up and drop
off...)

One of the famous NP-complete problems

Comes in many flavours...

6 / 95



Traveling Salesman Problem

Input: set of points X and a symmetric distance function

d : X × X → R≥0

For any path p0 → p1 → · · · → pt in X , length of the path is sum of
distances traveled

t−1∑
i=0

d(pi , pi+1)

Output: find a cycle that reaches all points in X of shortest length.

Definitely a problem we would like to solve

Efficient route planning (mail system, shuttle bus pick up and drop
off...)

One of the famous NP-complete problems

Comes in many flavours...

7 / 95



Traveling Salesman Problem

Input: set of points X and a symmetric distance function

d : X × X → R≥0

For any path p0 → p1 → · · · → pt in X , length of the path is sum of
distances traveled

t−1∑
i=0

d(pi , pi+1)

Output: find a cycle that reaches all points in X of shortest length.

Definitely a problem we would like to solve

Efficient route planning (mail system, shuttle bus pick up and drop
off...)

One of the famous NP-complete problems

Comes in many flavours...

8 / 95



Variants of TSP
1 General TSP without repetitions (General TSP-NR)

Input: X and symmetric distance function d : X × X → R≥0
Output: find a cycle of shortest length that reaches each point of X
exactly once.

2 General TSP with repetitions (General TSP-R)

Input: X and a symmetric distance function d : X × X → R≥0
Output: cycle that reaches all points in X of shortest length. Cycles
may now have a point more than once.

3 Metric TSP without repetitions (Metric TSP-NR)

Input: X and a symmetric distance function d : X × X → R≥0 which
satisfies triangle inequality (thus gives a metric on X )
Output: cycle of shortest length that reaches each point of X exactly
once.

4 Metric TSP with repetitions (Metric TSP-R)

Input: X and symmetric distance function d : X × X → R≥0 giving
metric
Output: cycle that reaches all points in X of shortest length. Cycles
may now have a point more than once.

9 / 95

Rafael Oliveira




Variants of TSP
1 General TSP without repetitions (General TSP-NR)

Input: X and symmetric distance function d : X × X → R≥0
Output: find a cycle of shortest length that reaches each point of X
exactly once.

2 General TSP with repetitions (General TSP-R)

Input: X and a symmetric distance function d : X × X → R≥0
Output: cycle that reaches all points in X of shortest length. Cycles
may now have a point more than once.

3 Metric TSP without repetitions (Metric TSP-NR)

Input: X and a symmetric distance function d : X × X → R≥0 which
satisfies triangle inequality (thus gives a metric on X )
Output: cycle of shortest length that reaches each point of X exactly
once.

4 Metric TSP with repetitions (Metric TSP-R)

Input: X and symmetric distance function d : X × X → R≥0 giving
metric
Output: cycle that reaches all points in X of shortest length. Cycles
may now have a point more than once.

10 / 95



Variants of TSP
1 General TSP without repetitions (General TSP-NR)

Input: X and symmetric distance function d : X × X → R≥0
Output: find a cycle of shortest length that reaches each point of X
exactly once.

2 General TSP with repetitions (General TSP-R)

Input: X and a symmetric distance function d : X × X → R≥0
Output: cycle that reaches all points in X of shortest length. Cycles
may now have a point more than once.

3 Metric TSP without repetitions (Metric TSP-NR)

Input: X and a symmetric distance function d : X × X → R≥0 which
satisfies triangle inequality (thus gives a metric on X )
Output: cycle of shortest length that reaches each point of X exactly
once.

4 Metric TSP with repetitions (Metric TSP-R)

Input: X and symmetric distance function d : X × X → R≥0 giving
metric
Output: cycle that reaches all points in X of shortest length. Cycles
may now have a point more than once.

11 / 95



Variants of TSP
1 General TSP without repetitions (General TSP-NR)

Input: X and symmetric distance function d : X × X → R≥0
Output: find a cycle of shortest length that reaches each point of X
exactly once.

2 General TSP with repetitions (General TSP-R)
Input: X and a symmetric distance function d : X × X → R≥0
Output: cycle that reaches all points in X of shortest length. Cycles
may now have a point more than once.

3 Metric TSP without repetitions (Metric TSP-NR)

Input: X and a symmetric distance function d : X × X → R≥0 which
satisfies triangle inequality (thus gives a metric on X )
Output: cycle of shortest length that reaches each point of X exactly
once.

4 Metric TSP with repetitions (Metric TSP-R)

Input: X and symmetric distance function d : X × X → R≥0 giving
metric
Output: cycle that reaches all points in X of shortest length. Cycles
may now have a point more than once.

12 / 95

Rafael Oliveira


Rafael Oliveira




Variants of TSP
1 General TSP without repetitions (General TSP-NR)

Input: X and symmetric distance function d : X × X → R≥0
Output: find a cycle of shortest length that reaches each point of X
exactly once.

2 General TSP with repetitions (General TSP-R)
Input: X and a symmetric distance function d : X × X → R≥0
Output: cycle that reaches all points in X of shortest length. Cycles
may now have a point more than once.

3 Metric TSP without repetitions (Metric TSP-NR)

Input: X and a symmetric distance function d : X × X → R≥0 which
satisfies triangle inequality (thus gives a metric on X )
Output: cycle of shortest length that reaches each point of X exactly
once.

4 Metric TSP with repetitions (Metric TSP-R)

Input: X and symmetric distance function d : X × X → R≥0 giving
metric
Output: cycle that reaches all points in X of shortest length. Cycles
may now have a point more than once.

13 / 95



Variants of TSP
1 General TSP without repetitions (General TSP-NR)

Input: X and symmetric distance function d : X × X → R≥0
Output: find a cycle of shortest length that reaches each point of X
exactly once.

2 General TSP with repetitions (General TSP-R)
Input: X and a symmetric distance function d : X × X → R≥0
Output: cycle that reaches all points in X of shortest length. Cycles
may now have a point more than once.

3 Metric TSP without repetitions (Metric TSP-NR)
Input: X and a symmetric distance function d : X × X → R≥0 which
satisfies triangle inequality (thus gives a metric on X )
Output: cycle of shortest length that reaches each point of X exactly
once.

4 Metric TSP with repetitions (Metric TSP-R)

Input: X and symmetric distance function d : X × X → R≥0 giving
metric
Output: cycle that reaches all points in X of shortest length. Cycles
may now have a point more than once.

14 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Variants of TSP
1 General TSP without repetitions (General TSP-NR)

Input: X and symmetric distance function d : X × X → R≥0
Output: find a cycle of shortest length that reaches each point of X
exactly once.

2 General TSP with repetitions (General TSP-R)
Input: X and a symmetric distance function d : X × X → R≥0
Output: cycle that reaches all points in X of shortest length. Cycles
may now have a point more than once.

3 Metric TSP without repetitions (Metric TSP-NR)
Input: X and a symmetric distance function d : X × X → R≥0 which
satisfies triangle inequality (thus gives a metric on X )
Output: cycle of shortest length that reaches each point of X exactly
once.

4 Metric TSP with repetitions (Metric TSP-R)

Input: X and symmetric distance function d : X × X → R≥0 giving
metric
Output: cycle that reaches all points in X of shortest length. Cycles
may now have a point more than once.

15 / 95



Variants of TSP
1 General TSP without repetitions (General TSP-NR)

Input: X and symmetric distance function d : X × X → R≥0
Output: find a cycle of shortest length that reaches each point of X
exactly once.

2 General TSP with repetitions (General TSP-R)
Input: X and a symmetric distance function d : X × X → R≥0
Output: cycle that reaches all points in X of shortest length. Cycles
may now have a point more than once.

3 Metric TSP without repetitions (Metric TSP-NR)
Input: X and a symmetric distance function d : X × X → R≥0 which
satisfies triangle inequality (thus gives a metric on X )
Output: cycle of shortest length that reaches each point of X exactly
once.

4 Metric TSP with repetitions (Metric TSP-R)
Input: X and symmetric distance function d : X × X → R≥0 giving
metric
Output: cycle that reaches all points in X of shortest length. Cycles
may now have a point more than once.

16 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Facts about variants
1 General TSP without repetitions (General TSP-NR)

if P 6= NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
More generally, if there is any function r : N→ N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P 6= NP

2 Other three versions are equivalent from the point of view of
approximation algorithms!

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R.

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
General TSP-R.

17 / 95



Facts about variants
1 General TSP without repetitions (General TSP-NR)

if P 6= NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.

More generally, if there is any function r : N→ N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P 6= NP

2 Other three versions are equivalent from the point of view of
approximation algorithms!

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R.

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
General TSP-R.

18 / 95



Facts about variants
1 General TSP without repetitions (General TSP-NR)

if P 6= NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
More generally, if there is any function r : N→ N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P 6= NP

2 Other three versions are equivalent from the point of view of
approximation algorithms!

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R.

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
General TSP-R.

19 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Facts about variants
1 General TSP without repetitions (General TSP-NR)

if P 6= NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
More generally, if there is any function r : N→ N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P 6= NP

2 Other three versions are equivalent from the point of view of
approximation algorithms!

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R.

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
General TSP-R.

20 / 95



Facts about variants
1 General TSP without repetitions (General TSP-NR)

if P 6= NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
More generally, if there is any function r : N→ N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P 6= NP

2 Other three versions are equivalent from the point of view of
approximation algorithms!

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R.

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
General TSP-R.

21 / 95



Facts about variants
1 General TSP without repetitions (General TSP-NR)

if P 6= NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
More generally, if there is any function r : N→ N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P 6= NP

2 Other three versions are equivalent from the point of view of
approximation algorithms!

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R.

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
General TSP-R.

22 / 95



Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R. In particular:

1 If (X , d) is an input to Metric TSP, the cost of the optimum is the
same whether or not we allow repetitions.

2 Every c-approximation algorithm for Metric TSP-NR is also a
c-approximation algorithm for Metric TSP-R.

3 Every c-approximation algorithm for Metric TSP-R can be turned into
a c-approximate algorithm for Metric TSP-NR, after adding a linear
time post-processing.

OPTR(X , d) be cost of optimal solution for (X , d) in Metric TSP-R

OPTNR(X , d) be the cost of optimal solution for (X , d) in Metric
TSP-NR.

23 / 95



Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R. In particular:

1 If (X , d) is an input to Metric TSP, the cost of the optimum is the
same whether or not we allow repetitions.

2 Every c-approximation algorithm for Metric TSP-NR is also a
c-approximation algorithm for Metric TSP-R.

3 Every c-approximation algorithm for Metric TSP-R can be turned into
a c-approximate algorithm for Metric TSP-NR, after adding a linear
time post-processing.

OPTR(X , d) be cost of optimal solution for (X , d) in Metric TSP-R

OPTNR(X , d) be the cost of optimal solution for (X , d) in Metric
TSP-NR.

24 / 95



Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R. In particular:

1 If (X , d) is an input to Metric TSP, the cost of the optimum is the
same whether or not we allow repetitions.

2 Every c-approximation algorithm for Metric TSP-NR is also a
c-approximation algorithm for Metric TSP-R.

3 Every c-approximation algorithm for Metric TSP-R can be turned into
a c-approximate algorithm for Metric TSP-NR, after adding a linear
time post-processing.

OPTR(X , d) be cost of optimal solution for (X , d) in Metric TSP-R

OPTNR(X , d) be the cost of optimal solution for (X , d) in Metric
TSP-NR.

25 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R. In particular:

1 If (X , d) is an input to Metric TSP, the cost of the optimum is the
same whether or not we allow repetitions.

2 Every c-approximation algorithm for Metric TSP-NR is also a
c-approximation algorithm for Metric TSP-R.

3 Every c-approximation algorithm for Metric TSP-R can be turned into
a c-approximate algorithm for Metric TSP-NR, after adding a linear
time post-processing.

OPTR(X , d) be cost of optimal solution for (X , d) in Metric TSP-R

OPTNR(X , d) be the cost of optimal solution for (X , d) in Metric
TSP-NR.

26 / 95



Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R. In particular:

1 If (X , d) is an input to Metric TSP, the cost of the optimum is the
same whether or not we allow repetitions.

2 Every c-approximation algorithm for Metric TSP-NR is also a
c-approximation algorithm for Metric TSP-R.

3 Every c-approximation algorithm for Metric TSP-R can be turned into
a c-approximate algorithm for Metric TSP-NR, after adding a linear
time post-processing.

OPTR(X , d) be cost of optimal solution for (X , d) in Metric TSP-R

OPTNR(X , d) be the cost of optimal solution for (X , d) in Metric
TSP-NR.

27 / 95



Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R. In particular:

1 If (X , d) is an input to Metric TSP, the cost of the optimum is the
same whether or not we allow repetitions.

2 Every c-approximation algorithm for Metric TSP-NR is also a
c-approximation algorithm for Metric TSP-R.

3 Every c-approximation algorithm for Metric TSP-R can be turned into
a c-approximate algorithm for Metric TSP-NR, after adding a linear
time post-processing.

OPTR(X , d) be cost of optimal solution for (X , d) in Metric TSP-R

OPTNR(X , d) be the cost of optimal solution for (X , d) in Metric
TSP-NR.

28 / 95



Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R. In particular:

1 If (X , d) is an input to Metric TSP, the cost of the optimum is the
same whether or not we allow repetitions.

Solution space of Metric TSP-R is larger than solution space of
Metric TSP-NR. Thus

OPTR(X , d) ≤ OPTNR(X , d)

Let C = p0 → p1 → p2 → · · · → pm = p0 be a solution to
OPTR(X , d). Now, create a cycle C′ from C simply by removing the
repetitions

a→ b → · · · c → a→ d → · · ·
becomes

a→ b → · · · c → d → · · ·

29 / 95



Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R. In particular:

1 If (X , d) is an input to Metric TSP, the cost of the optimum is the
same whether or not we allow repetitions.

Solution space of Metric TSP-R is larger than solution space of
Metric TSP-NR. Thus

OPTR(X , d) ≤ OPTNR(X , d)

Let C = p0 → p1 → p2 → · · · → pm = p0 be a solution to
OPTR(X , d). Now, create a cycle C′ from C simply by removing the
repetitions

a→ b → · · · c → a→ d → · · ·
becomes

a→ b → · · · c → d → · · ·

30 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R. In particular:

1 If (X , d) is an input to Metric TSP, the cost of the optimum is the
same whether or not we allow repetitions.

Solution space of Metric TSP-R is larger than solution space of
Metric TSP-NR. Thus

OPTR(X , d) ≤ OPTNR(X , d)

Let C = p0 → p1 → p2 → · · · → pm = p0 be a solution to
OPTR(X , d). Now, create a cycle C′ from C simply by removing the
repetitions

a→ b → · · · c → a→ d → · · ·
becomes

a→ b → · · · c → d → · · ·
31 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R. In particular:

(2) Every c-approximation algorithm for Metric TSP-NR is also a
c-approximation algorithm for Metric TSP-R.

If we have a c-approximation algorithm for Metric TSP-NR, then we
know that our solution (cycle C) satisfies:

cost(C ) ≤ c · OPTNR(X , d)

Since OPTNR(X , d) = OPTR(X , d) and C is also a solution to Metric
TSP-R, we are done.

32 / 95



Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R. In particular:

(2) Every c-approximation algorithm for Metric TSP-NR is also a
c-approximation algorithm for Metric TSP-R.

If we have a c-approximation algorithm for Metric TSP-NR, then we
know that our solution (cycle C) satisfies:

cost(C ) ≤ c · OPTNR(X , d)

Since OPTNR(X , d) = OPTR(X , d) and C is also a solution to Metric
TSP-R, we are done.

33 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R. In particular:

(2) Every c-approximation algorithm for Metric TSP-NR is also a
c-approximation algorithm for Metric TSP-R.

If we have a c-approximation algorithm for Metric TSP-NR, then we
know that our solution (cycle C) satisfies:

cost(C ) ≤ c · OPTNR(X , d)

Since OPTNR(X , d) = OPTR(X , d) and C is also a solution to Metric
TSP-R, we are done.

34 / 95



Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R. In particular:

(3) Every c-approximation algorithm for Metric TSP-R can be turned into
a c-approximate algorithm for Metric TSP-NR, after adding a linear
time post-processing.

Given any solution to Metric TSP-R, simply run the procedure that
removes repeated visits to a vertex. This only decreases cost by
metric property.

35 / 95



Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-NR if, and only if, there is a polynomial time c-approximation for
Metric TSP-R. In particular:

(3) Every c-approximation algorithm for Metric TSP-R can be turned into
a c-approximate algorithm for Metric TSP-NR, after adding a linear
time post-processing.

Given any solution to Metric TSP-R, simply run the procedure that
removes repeated visits to a vertex. This only decreases cost by
metric property.

36 / 95



Metric TSP-R equivalent to General TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-R if, and only if, there is a polynomial time c-approximation for
General TSP-R. In particular:

1 Every c-approximation algorithm for General TSP-R is also a
c-approximation algorithm for Metric TSP-R.

2 Every c-approximation algorithm for Metric TSP-R can be turned into
a c-approximate algorithm for General TSP-R, after adding a
polynomial time pre and post-processing.

First item follows by the fact that Metric TSP-R is a special case of
General TSP-R, when the distance function satisfies the triangle
inequality.

37 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Metric TSP-R equivalent to General TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-R if, and only if, there is a polynomial time c-approximation for
General TSP-R. In particular:

1 Every c-approximation algorithm for General TSP-R is also a
c-approximation algorithm for Metric TSP-R.

2 Every c-approximation algorithm for Metric TSP-R can be turned into
a c-approximate algorithm for General TSP-R, after adding a
polynomial time pre and post-processing.

First item follows by the fact that Metric TSP-R is a special case of
General TSP-R, when the distance function satisfies the triangle
inequality.

38 / 95



Metric TSP-R equivalent to General TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-R if, and only if, there is a polynomial time c-approximation for
General TSP-R. In particular:

(2) Every c-approximation algorithm for Metric TSP-R can be turned into
a c-approximate algorithm for General TSP-R, after adding a
polynomial time pre and post-processing.

On input (X , d) to General TSP-R, let G (X ,E ,w) be the complete
weighted graph such that w(x , y) = d(x , y). Now compute new
distance δ : X → R≥0 such that

δ(x , y)← length of shortest path from x to y in G

Note that δ satisfies triangle inequality!
Give input (X , δ) to our algorithm for Metric TSP-R. Let C be the
cycle it outputs. Thus

cost(C) ≤ c · OPTR(X , δ)

39 / 95



Metric TSP-R equivalent to General TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-R if, and only if, there is a polynomial time c-approximation for
General TSP-R. In particular:

(2) Every c-approximation algorithm for Metric TSP-R can be turned into
a c-approximate algorithm for General TSP-R, after adding a
polynomial time pre and post-processing.

On input (X , d) to General TSP-R, let G (X ,E ,w) be the complete
weighted graph such that w(x , y) = d(x , y). Now compute new
distance δ : X → R≥0 such that

δ(x , y)← length of shortest path from x to y in G

Note that δ satisfies triangle inequality!
Give input (X , δ) to our algorithm for Metric TSP-R. Let C be the
cycle it outputs. Thus

cost(C) ≤ c · OPTR(X , δ)

40 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Metric TSP-R equivalent to General TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-R if, and only if, there is a polynomial time c-approximation for
General TSP-R. In particular:

(2) Every c-approximation algorithm for Metric TSP-R can be turned into
a c-approximate algorithm for General TSP-R, after adding a
polynomial time pre and post-processing.

On input (X , d) to General TSP-R, let G (X ,E ,w) be the complete
weighted graph such that w(x , y) = d(x , y). Now compute new
distance δ : X → R≥0 such that

δ(x , y)← length of shortest path from x to y in G

Note that δ satisfies triangle inequality!

Give input (X , δ) to our algorithm for Metric TSP-R. Let C be the
cycle it outputs. Thus

cost(C) ≤ c · OPTR(X , δ)

41 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Metric TSP-R equivalent to General TSP-R

Lemma

For every c ≥ 1 there is a polynomial time c-approximation for Metric
TSP-R if, and only if, there is a polynomial time c-approximation for
General TSP-R. In particular:

(2) Every c-approximation algorithm for Metric TSP-R can be turned into
a c-approximate algorithm for General TSP-R, after adding a
polynomial time pre and post-processing.

On input (X , d) to General TSP-R, let G (X ,E ,w) be the complete
weighted graph such that w(x , y) = d(x , y). Now compute new
distance δ : X → R≥0 such that

δ(x , y)← length of shortest path from x to y in G

Note that δ satisfies triangle inequality!
Give input (X , δ) to our algorithm for Metric TSP-R. Let C be the
cycle it outputs. Thus

cost(C) ≤ c · OPTR(X , δ)
42 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Metric TSP-R equivalent to General TSP-R
Give input (X , δ) to our algorithm for Metric TSP-R. Let C be the
cycle it outputs. Thus

costR(C) ≤ c · optR(X , δ) ≤ c · optGR(X , δ)

For every pair (x , y) ∈ X 2, note that δ(x , y) ≤ d(x , y), so

OPTR(X , δ) ≤ OPTGR(X , d)

Let Γ be the cycle obtained from C by simply replacing every x → y
by the shortest path x → p1 → · · · → pt → y in G .

1 Note that
cost(C, δ) = cost(Γ, d)

Combining the inequalities so far, we get:

cost(Γ, d) = cost(C, δ) ≤ c · optR(X , δ) ≤ c · optGR(X , d)

43 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Metric TSP-R equivalent to General TSP-R
Give input (X , δ) to our algorithm for Metric TSP-R. Let C be the
cycle it outputs. Thus

costR(C) ≤ c · optR(X , δ) ≤ c · optGR(X , δ)

For every pair (x , y) ∈ X 2, note that δ(x , y) ≤ d(x , y), so

OPTR(X , δ) ≤ OPTGR(X , d)

Let Γ be the cycle obtained from C by simply replacing every x → y
by the shortest path x → p1 → · · · → pt → y in G .

1 Note that
cost(C, δ) = cost(Γ, d)

Combining the inequalities so far, we get:

cost(Γ, d) = cost(C, δ) ≤ c · optR(X , δ) ≤ c · optGR(X , d)

44 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Metric TSP-R equivalent to General TSP-R
Give input (X , δ) to our algorithm for Metric TSP-R. Let C be the
cycle it outputs. Thus

costR(C) ≤ c · optR(X , δ) ≤ c · optGR(X , δ)

For every pair (x , y) ∈ X 2, note that δ(x , y) ≤ d(x , y), so

OPTR(X , δ) ≤ OPTGR(X , d)

Let Γ be the cycle obtained from C by simply replacing every x → y
by the shortest path x → p1 → · · · → pt → y in G .

1 Note that
cost(C, δ) = cost(Γ, d)

Combining the inequalities so far, we get:

cost(Γ, d) = cost(C, δ) ≤ c · optR(X , δ) ≤ c · optGR(X , d)

45 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Metric TSP-R equivalent to General TSP-R
Give input (X , δ) to our algorithm for Metric TSP-R. Let C be the
cycle it outputs. Thus

costR(C) ≤ c · optR(X , δ) ≤ c · optGR(X , δ)

For every pair (x , y) ∈ X 2, note that δ(x , y) ≤ d(x , y), so

OPTR(X , δ) ≤ OPTGR(X , d)

Let Γ be the cycle obtained from C by simply replacing every x → y
by the shortest path x → p1 → · · · → pt → y in G .

1 Note that
cost(C, δ) = cost(Γ, d)

Combining the inequalities so far, we get:

cost(Γ, d) = cost(C, δ) ≤ c · optR(X , δ) ≤ c · optGR(X , d)

46 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Metric TSP-R equivalent to General TSP-R
Give input (X , δ) to our algorithm for Metric TSP-R. Let C be the
cycle it outputs. Thus

costR(C) ≤ c · optR(X , δ) ≤ c · optGR(X , δ)

For every pair (x , y) ∈ X 2, note that δ(x , y) ≤ d(x , y), so

OPTR(X , δ) ≤ OPTGR(X , d)

Let Γ be the cycle obtained from C by simply replacing every x → y
by the shortest path x → p1 → · · · → pt → y in G .

1 Note that
cost(C, δ) = cost(Γ, d)

Combining the inequalities so far, we get:

cost(Γ, d) = cost(C, δ) ≤ c · optR(X , δ) ≤ c · optGR(X , d)

47 / 95



Equivalent Versions of Traveling Salesman Problem

Approximation Algorithms for Traveling Salesman Problem

Conclusion

Acknowledgements

48 / 95



A 2-approximation algorithm

The following lemma gives us a way to get a 2-approximation algorithm:

Lemma

Let T (X ,E , d) be a weighted tree with vertices X and weights given by
the distance function d : X × X → R≥0. There is a cycle C that reaches
each vertex at least once, and such that

cost(C, d) = 2 · cost(T , d).

Consider a DFS visit of the tree.

Each edge traversed exactly twice

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.

Idea: find a minimum spanning tree on the complete weighted graph
G (X ,KX , d).

49 / 95



A 2-approximation algorithm

The following lemma gives us a way to get a 2-approximation algorithm:

Lemma

Let T (X ,E , d) be a weighted tree with vertices X and weights given by
the distance function d : X × X → R≥0. There is a cycle C that reaches
each vertex at least once, and such that

cost(C, d) = 2 · cost(T , d).

Consider a DFS visit of the tree.

Each edge traversed exactly twice

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.

Idea: find a minimum spanning tree on the complete weighted graph
G (X ,KX , d).

50 / 95



A 2-approximation algorithm

The following lemma gives us a way to get a 2-approximation algorithm:

Lemma

Let T (X ,E , d) be a weighted tree with vertices X and weights given by
the distance function d : X × X → R≥0. There is a cycle C that reaches
each vertex at least once, and such that

cost(C, d) = 2 · cost(T , d).

Consider a DFS visit of the tree.

Each edge traversed exactly twice

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.

Idea: find a minimum spanning tree on the complete weighted graph
G (X ,KX , d).

51 / 95



A 2-approximation algorithm

The following lemma gives us a way to get a 2-approximation algorithm:

Lemma

Let T (X ,E , d) be a weighted tree with vertices X and weights given by
the distance function d : X × X → R≥0. There is a cycle C that reaches
each vertex at least once, and such that

cost(C, d) = 2 · cost(T , d).

Consider a DFS visit of the tree.

Each edge traversed exactly twice

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.

Idea: find a minimum spanning tree on the complete weighted graph
G (X ,KX , d).

52 / 95



A 2-approximation algorithm

The following lemma gives us a way to get a 2-approximation algorithm:

Lemma

Let T (X ,E , d) be a weighted tree with vertices X and weights given by
the distance function d : X × X → R≥0. There is a cycle C that reaches
each vertex at least once, and such that

cost(C, d) = 2 · cost(T , d).

Consider a DFS visit of the tree.

Each edge traversed exactly twice

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.

Idea: find a minimum spanning tree on the complete weighted graph
G (X ,KX , d).

53 / 95



Example

54 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Proof of Theorem

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.

1 On input (X , d), find minimum spanning tree T (X ,KX , d).

2 By our lemma, there is a cycle from T with cost 2 · cost(T , d).
3 Need to show that this is a 2-approximation.

To do that, enough to show that OPTGR(X , d) ≥ cost(T , d)
If C is optimum cycle for (X , d), that is, cost(C, d) = OPTGR(X , d),
take all edges which are used in C. Call this set F .
Note that the weighted graph H(X ,F , d) is connected. Let T ′ be a
spanning tree of this graph.

cost(T ′, d) ≤ cost(C, d) = OPTGR(X , d)

Since T ′ is a spanning tree of X , we have that

cost(T , d) ≤ cost(T ′, d)

and we are done.

55 / 95



Proof of Theorem

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.

1 On input (X , d), find minimum spanning tree T (X ,KX , d).

2 By our lemma, there is a cycle from T with cost 2 · cost(T , d).
3 Need to show that this is a 2-approximation.

To do that, enough to show that OPTGR(X , d) ≥ cost(T , d)
If C is optimum cycle for (X , d), that is, cost(C, d) = OPTGR(X , d),
take all edges which are used in C. Call this set F .
Note that the weighted graph H(X ,F , d) is connected. Let T ′ be a
spanning tree of this graph.

cost(T ′, d) ≤ cost(C, d) = OPTGR(X , d)

Since T ′ is a spanning tree of X , we have that

cost(T , d) ≤ cost(T ′, d)

and we are done.

56 / 95



Proof of Theorem

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.

1 On input (X , d), find minimum spanning tree T (X ,KX , d).

2 By our lemma, there is a cycle from T with cost 2 · cost(T , d).

3 Need to show that this is a 2-approximation.

To do that, enough to show that OPTGR(X , d) ≥ cost(T , d)
If C is optimum cycle for (X , d), that is, cost(C, d) = OPTGR(X , d),
take all edges which are used in C. Call this set F .
Note that the weighted graph H(X ,F , d) is connected. Let T ′ be a
spanning tree of this graph.

cost(T ′, d) ≤ cost(C, d) = OPTGR(X , d)

Since T ′ is a spanning tree of X , we have that

cost(T , d) ≤ cost(T ′, d)

and we are done.

57 / 95



Proof of Theorem

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.

1 On input (X , d), find minimum spanning tree T (X ,KX , d).

2 By our lemma, there is a cycle from T with cost 2 · cost(T , d).
3 Need to show that this is a 2-approximation.

To do that, enough to show that OPTGR(X , d) ≥ cost(T , d)
If C is optimum cycle for (X , d), that is, cost(C, d) = OPTGR(X , d),
take all edges which are used in C. Call this set F .
Note that the weighted graph H(X ,F , d) is connected. Let T ′ be a
spanning tree of this graph.

cost(T ′, d) ≤ cost(C, d) = OPTGR(X , d)

Since T ′ is a spanning tree of X , we have that

cost(T , d) ≤ cost(T ′, d)

and we are done.

58 / 95



Proof of Theorem

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.

1 On input (X , d), find minimum spanning tree T (X ,KX , d).

2 By our lemma, there is a cycle from T with cost 2 · cost(T , d).
3 Need to show that this is a 2-approximation.

To do that, enough to show that OPTGR(X , d) ≥ cost(T , d)

If C is optimum cycle for (X , d), that is, cost(C, d) = OPTGR(X , d),
take all edges which are used in C. Call this set F .
Note that the weighted graph H(X ,F , d) is connected. Let T ′ be a
spanning tree of this graph.

cost(T ′, d) ≤ cost(C, d) = OPTGR(X , d)

Since T ′ is a spanning tree of X , we have that

cost(T , d) ≤ cost(T ′, d)

and we are done.

59 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Proof of Theorem

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.

1 On input (X , d), find minimum spanning tree T (X ,KX , d).

2 By our lemma, there is a cycle from T with cost 2 · cost(T , d).
3 Need to show that this is a 2-approximation.

To do that, enough to show that OPTGR(X , d) ≥ cost(T , d)
If C is optimum cycle for (X , d), that is, cost(C, d) = OPTGR(X , d),
take all edges which are used in C. Call this set F .

Note that the weighted graph H(X ,F , d) is connected. Let T ′ be a
spanning tree of this graph.

cost(T ′, d) ≤ cost(C, d) = OPTGR(X , d)

Since T ′ is a spanning tree of X , we have that

cost(T , d) ≤ cost(T ′, d)

and we are done.

60 / 95



Proof of Theorem

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.

1 On input (X , d), find minimum spanning tree T (X ,KX , d).

2 By our lemma, there is a cycle from T with cost 2 · cost(T , d).
3 Need to show that this is a 2-approximation.

To do that, enough to show that OPTGR(X , d) ≥ cost(T , d)
If C is optimum cycle for (X , d), that is, cost(C, d) = OPTGR(X , d),
take all edges which are used in C. Call this set F .
Note that the weighted graph H(X ,F , d) is connected. Let T ′ be a
spanning tree of this graph.

cost(T ′, d) ≤ cost(C, d) = OPTGR(X , d)

Since T ′ is a spanning tree of X , we have that

cost(T , d) ≤ cost(T ′, d)

and we are done.

61 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Proof of Theorem

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.

1 On input (X , d), find minimum spanning tree T (X ,KX , d).

2 By our lemma, there is a cycle from T with cost 2 · cost(T , d).
3 Need to show that this is a 2-approximation.

To do that, enough to show that OPTGR(X , d) ≥ cost(T , d)
If C is optimum cycle for (X , d), that is, cost(C, d) = OPTGR(X , d),
take all edges which are used in C. Call this set F .
Note that the weighted graph H(X ,F , d) is connected. Let T ′ be a
spanning tree of this graph.

cost(T ′, d) ≤ cost(C, d) = OPTGR(X , d)

Since T ′ is a spanning tree of X , we have that

cost(T , d) ≤ cost(T ′, d)

and we are done.
62 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Eulerian Tours

Definition (Eulerian Cycle)

An Eulerian cycle in a multigraph G (V ,E ) is a cycle
p0 → p1 → · · · → pm = p0 such that the number of edges {u, v} ∈ E is
equal to the number of times {u, v} is used in the cycle.

In other words, each edge is used exactly once.

Theorem (Eulerian Cycle Existence and Algorithm)

A multi-graph G (V ,E ) has an Eulerian cycle if, and only if, every vertex
has even degree and the vertices of positive degree are connected.

Moreover, there is a polynomial time algorithm that, on input a connected
graph G (V ,E ) in which every vertex has even degree, outputs an Eulerian
cycle.

63 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Eulerian Tours

Definition (Eulerian Cycle)

An Eulerian cycle in a multigraph G (V ,E ) is a cycle
p0 → p1 → · · · → pm = p0 such that the number of edges {u, v} ∈ E is
equal to the number of times {u, v} is used in the cycle.

In other words, each edge is used exactly once.

Theorem (Eulerian Cycle Existence and Algorithm)

A multi-graph G (V ,E ) has an Eulerian cycle if, and only if, every vertex
has even degree and the vertices of positive degree are connected.

Moreover, there is a polynomial time algorithm that, on input a connected
graph G (V ,E ) in which every vertex has even degree, outputs an Eulerian
cycle.

64 / 95

Rafael Oliveira




Proof of Theorem I
(⇒)

65 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Proof of Theorem II

(⇐)

66 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Better Approximation Algorithm

In our previous TSP algorithm, we computed a minimum spanning
tree and took our cycle to be a 2-pass over the tree.

In Eulerian cycle words: we doubled the edges to make sure each
vertex in our “double tree” had even degree, then did an Eulerian
cycle.

This is a bit wasteful.

Doubling every edge works, but what if a node has degree 1001?
Could we just add 1 extra edge, instead of 1001?

Idea: take vertices of odd degree in the tree (there must be an even
number of these). Let this set be O ⊆ X

Find a minimum cost perfect matching (in the weighted graph
(O, d))!

Why would that improve our previous algorithm?

Min-cost matching will have half the total cost of optimum TSP cycle!
Thus we get a 3/2-approximation!

67 / 95



Better Approximation Algorithm

In our previous TSP algorithm, we computed a minimum spanning
tree and took our cycle to be a 2-pass over the tree.

In Eulerian cycle words: we doubled the edges to make sure each
vertex in our “double tree” had even degree, then did an Eulerian
cycle.

This is a bit wasteful.

Doubling every edge works, but what if a node has degree 1001?
Could we just add 1 extra edge, instead of 1001?

Idea: take vertices of odd degree in the tree (there must be an even
number of these). Let this set be O ⊆ X

Find a minimum cost perfect matching (in the weighted graph
(O, d))!

Why would that improve our previous algorithm?

Min-cost matching will have half the total cost of optimum TSP cycle!
Thus we get a 3/2-approximation!

68 / 95



Better Approximation Algorithm

In our previous TSP algorithm, we computed a minimum spanning
tree and took our cycle to be a 2-pass over the tree.

In Eulerian cycle words: we doubled the edges to make sure each
vertex in our “double tree” had even degree, then did an Eulerian
cycle.

This is a bit wasteful.

Doubling every edge works, but what if a node has degree 1001?
Could we just add 1 extra edge, instead of 1001?

Idea: take vertices of odd degree in the tree (there must be an even
number of these). Let this set be O ⊆ X

Find a minimum cost perfect matching (in the weighted graph
(O, d))!

Why would that improve our previous algorithm?

Min-cost matching will have half the total cost of optimum TSP cycle!
Thus we get a 3/2-approximation!

69 / 95



Better Approximation Algorithm

In our previous TSP algorithm, we computed a minimum spanning
tree and took our cycle to be a 2-pass over the tree.

In Eulerian cycle words: we doubled the edges to make sure each
vertex in our “double tree” had even degree, then did an Eulerian
cycle.

This is a bit wasteful.

Doubling every edge works, but what if a node has degree 1001?

Could we just add 1 extra edge, instead of 1001?

Idea: take vertices of odd degree in the tree (there must be an even
number of these). Let this set be O ⊆ X

Find a minimum cost perfect matching (in the weighted graph
(O, d))!

Why would that improve our previous algorithm?

Min-cost matching will have half the total cost of optimum TSP cycle!
Thus we get a 3/2-approximation!

70 / 95



Better Approximation Algorithm

In our previous TSP algorithm, we computed a minimum spanning
tree and took our cycle to be a 2-pass over the tree.

In Eulerian cycle words: we doubled the edges to make sure each
vertex in our “double tree” had even degree, then did an Eulerian
cycle.

This is a bit wasteful.

Doubling every edge works, but what if a node has degree 1001?
Could we just add 1 extra edge, instead of 1001?

Idea: take vertices of odd degree in the tree (there must be an even
number of these). Let this set be O ⊆ X

Find a minimum cost perfect matching (in the weighted graph
(O, d))!

Why would that improve our previous algorithm?

Min-cost matching will have half the total cost of optimum TSP cycle!
Thus we get a 3/2-approximation!

71 / 95



Better Approximation Algorithm

In our previous TSP algorithm, we computed a minimum spanning
tree and took our cycle to be a 2-pass over the tree.

In Eulerian cycle words: we doubled the edges to make sure each
vertex in our “double tree” had even degree, then did an Eulerian
cycle.

This is a bit wasteful.

Doubling every edge works, but what if a node has degree 1001?
Could we just add 1 extra edge, instead of 1001?

Idea: take vertices of odd degree in the tree (there must be an even
number of these). Let this set be O ⊆ X

Find a minimum cost perfect matching (in the weighted graph
(O, d))!

Why would that improve our previous algorithm?

Min-cost matching will have half the total cost of optimum TSP cycle!
Thus we get a 3/2-approximation!

72 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Better Approximation Algorithm

In our previous TSP algorithm, we computed a minimum spanning
tree and took our cycle to be a 2-pass over the tree.

In Eulerian cycle words: we doubled the edges to make sure each
vertex in our “double tree” had even degree, then did an Eulerian
cycle.

This is a bit wasteful.

Doubling every edge works, but what if a node has degree 1001?
Could we just add 1 extra edge, instead of 1001?

Idea: take vertices of odd degree in the tree (there must be an even
number of these). Let this set be O ⊆ X

Find a minimum cost perfect matching (in the weighted graph
(O, d))!

Why would that improve our previous algorithm?

Min-cost matching will have half the total cost of optimum TSP cycle!
Thus we get a 3/2-approximation!

73 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Better Approximation Algorithm

In our previous TSP algorithm, we computed a minimum spanning
tree and took our cycle to be a 2-pass over the tree.

In Eulerian cycle words: we doubled the edges to make sure each
vertex in our “double tree” had even degree, then did an Eulerian
cycle.

This is a bit wasteful.

Doubling every edge works, but what if a node has degree 1001?
Could we just add 1 extra edge, instead of 1001?

Idea: take vertices of odd degree in the tree (there must be an even
number of these). Let this set be O ⊆ X

Find a minimum cost perfect matching (in the weighted graph
(O, d))!

Why would that improve our previous algorithm?

Min-cost matching will have half the total cost of optimum TSP cycle!
Thus we get a 3/2-approximation!

74 / 95



Better Approximation Algorithm

In our previous TSP algorithm, we computed a minimum spanning
tree and took our cycle to be a 2-pass over the tree.

In Eulerian cycle words: we doubled the edges to make sure each
vertex in our “double tree” had even degree, then did an Eulerian
cycle.

This is a bit wasteful.

Doubling every edge works, but what if a node has degree 1001?
Could we just add 1 extra edge, instead of 1001?

Idea: take vertices of odd degree in the tree (there must be an even
number of these). Let this set be O ⊆ X

Find a minimum cost perfect matching (in the weighted graph
(O, d))!

Why would that improve our previous algorithm?

Min-cost matching will have half the total cost of optimum TSP cycle!

Thus we get a 3/2-approximation!

75 / 95



Better Approximation Algorithm

In our previous TSP algorithm, we computed a minimum spanning
tree and took our cycle to be a 2-pass over the tree.

In Eulerian cycle words: we doubled the edges to make sure each
vertex in our “double tree” had even degree, then did an Eulerian
cycle.

This is a bit wasteful.

Doubling every edge works, but what if a node has degree 1001?
Could we just add 1 extra edge, instead of 1001?

Idea: take vertices of odd degree in the tree (there must be an even
number of these). Let this set be O ⊆ X

Find a minimum cost perfect matching (in the weighted graph
(O, d))!

Why would that improve our previous algorithm?

Min-cost matching will have half the total cost of optimum TSP cycle!
Thus we get a 3/2-approximation!

76 / 95



Putting Everything Together

1 Input: (X , d) instance of Metric TSP-R

2 Output: Cycle C over X covering every vertex at least once, with

cost(C, d) ≤ 3/2 · OPTGR(X , d)

3 Find minimum cost spanning tree T in (X ,KX , d)

4 Let O be the set of vertices of odd degree in T

5 Find minimum cost perfect matching M in (O,KO , d)

6 Let E be the set of edges of T together with the set of edges of M
7 Find Eulerian Cycle C on E

8 Output C

77 / 95



Putting Everything Together

1 Input: (X , d) instance of Metric TSP-R

2 Output: Cycle C over X covering every vertex at least once, with

cost(C, d) ≤ 3/2 · OPTGR(X , d)

3 Find minimum cost spanning tree T in (X ,KX , d)

4 Let O be the set of vertices of odd degree in T

5 Find minimum cost perfect matching M in (O,KO , d)

6 Let E be the set of edges of T together with the set of edges of M
7 Find Eulerian Cycle C on E

8 Output C

78 / 95

Rafael Oliveira


Rafael Oliveira




Putting Everything Together

1 Input: (X , d) instance of Metric TSP-R

2 Output: Cycle C over X covering every vertex at least once, with

cost(C, d) ≤ 3/2 · OPTGR(X , d)

3 Find minimum cost spanning tree T in (X ,KX , d)

4 Let O be the set of vertices of odd degree in T

5 Find minimum cost perfect matching M in (O,KO , d)

6 Let E be the set of edges of T together with the set of edges of M
7 Find Eulerian Cycle C on E

8 Output C

79 / 95



Putting Everything Together

1 Input: (X , d) instance of Metric TSP-R

2 Output: Cycle C over X covering every vertex at least once, with

cost(C, d) ≤ 3/2 · OPTGR(X , d)

3 Find minimum cost spanning tree T in (X ,KX , d)

4 Let O be the set of vertices of odd degree in T

5 Find minimum cost perfect matching M in (O,KO , d)

6 Let E be the set of edges of T together with the set of edges of M
7 Find Eulerian Cycle C on E

8 Output C

80 / 95



Putting Everything Together

1 Input: (X , d) instance of Metric TSP-R

2 Output: Cycle C over X covering every vertex at least once, with

cost(C, d) ≤ 3/2 · OPTGR(X , d)

3 Find minimum cost spanning tree T in (X ,KX , d)

4 Let O be the set of vertices of odd degree in T

5 Find minimum cost perfect matching M in (O,KO , d)

6 Let E be the set of edges of T together with the set of edges of M

7 Find Eulerian Cycle C on E

8 Output C

81 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Putting Everything Together

1 Input: (X , d) instance of Metric TSP-R

2 Output: Cycle C over X covering every vertex at least once, with

cost(C, d) ≤ 3/2 · OPTGR(X , d)

3 Find minimum cost spanning tree T in (X ,KX , d)

4 Let O be the set of vertices of odd degree in T

5 Find minimum cost perfect matching M in (O,KO , d)

6 Let E be the set of edges of T together with the set of edges of M
7 Find Eulerian Cycle C on E

8 Output C

82 / 95



Analysis

Note that
cost(C, d) = cost(T , d) + cost(M, d)

Since we have Eulerian cycle.

We already showed that cost(T , d) ≤ OPTR(X , d)

Need to show that cost(M, d) ≤ 1
2 · OPTR(X , d)

If Γ is a TSP cycle such that cost(Γ, d) = OPTR(X , d)

Let C be the cycle we obtain from Γ by skipping elements of X \O and
removing duplicate vertices from O
Triangle inequality ⇒ cost(C , d) ≤ cost(Γ, d)
Cycle C induces two matchings of O. One of them has weight
≤ 1

2 · cost(C , d).
Thus:

cost(M, d) ≤ 1

2
· cost(C , d) ≤ 1

2
· cost(Γ, d) =

1

2
· OPTR(X , d).

83 / 95

Rafael Oliveira


Rafael Oliveira




Analysis

Note that
cost(C, d) = cost(T , d) + cost(M, d)

Since we have Eulerian cycle.

We already showed that cost(T , d) ≤ OPTR(X , d)

Need to show that cost(M, d) ≤ 1
2 · OPTR(X , d)

If Γ is a TSP cycle such that cost(Γ, d) = OPTR(X , d)

Let C be the cycle we obtain from Γ by skipping elements of X \O and
removing duplicate vertices from O
Triangle inequality ⇒ cost(C , d) ≤ cost(Γ, d)
Cycle C induces two matchings of O. One of them has weight
≤ 1

2 · cost(C , d).
Thus:

cost(M, d) ≤ 1

2
· cost(C , d) ≤ 1

2
· cost(Γ, d) =

1

2
· OPTR(X , d).

84 / 95



Analysis

Note that
cost(C, d) = cost(T , d) + cost(M, d)

Since we have Eulerian cycle.

We already showed that cost(T , d) ≤ OPTR(X , d)

Need to show that cost(M, d) ≤ 1
2 · OPTR(X , d)

If Γ is a TSP cycle such that cost(Γ, d) = OPTR(X , d)

Let C be the cycle we obtain from Γ by skipping elements of X \O and
removing duplicate vertices from O
Triangle inequality ⇒ cost(C , d) ≤ cost(Γ, d)
Cycle C induces two matchings of O. One of them has weight
≤ 1

2 · cost(C , d).
Thus:

cost(M, d) ≤ 1

2
· cost(C , d) ≤ 1

2
· cost(Γ, d) =

1

2
· OPTR(X , d).

85 / 95



Analysis

Note that
cost(C, d) = cost(T , d) + cost(M, d)

Since we have Eulerian cycle.

We already showed that cost(T , d) ≤ OPTR(X , d)

Need to show that cost(M, d) ≤ 1
2 · OPTR(X , d)

If Γ is a TSP cycle such that cost(Γ, d) = OPTR(X , d)

Let C be the cycle we obtain from Γ by skipping elements of X \O and
removing duplicate vertices from O
Triangle inequality ⇒ cost(C , d) ≤ cost(Γ, d)
Cycle C induces two matchings of O. One of them has weight
≤ 1

2 · cost(C , d).
Thus:

cost(M, d) ≤ 1

2
· cost(C , d) ≤ 1

2
· cost(Γ, d) =

1

2
· OPTR(X , d).

86 / 95



Analysis

Note that
cost(C, d) = cost(T , d) + cost(M, d)

Since we have Eulerian cycle.

We already showed that cost(T , d) ≤ OPTR(X , d)

Need to show that cost(M, d) ≤ 1
2 · OPTR(X , d)

If Γ is a TSP cycle such that cost(Γ, d) = OPTR(X , d)

Let C be the cycle we obtain from Γ by skipping elements of X \O and
removing duplicate vertices from O

Triangle inequality ⇒ cost(C , d) ≤ cost(Γ, d)
Cycle C induces two matchings of O. One of them has weight
≤ 1

2 · cost(C , d).
Thus:

cost(M, d) ≤ 1

2
· cost(C , d) ≤ 1

2
· cost(Γ, d) =

1

2
· OPTR(X , d).

87 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Analysis

Note that
cost(C, d) = cost(T , d) + cost(M, d)

Since we have Eulerian cycle.

We already showed that cost(T , d) ≤ OPTR(X , d)

Need to show that cost(M, d) ≤ 1
2 · OPTR(X , d)

If Γ is a TSP cycle such that cost(Γ, d) = OPTR(X , d)

Let C be the cycle we obtain from Γ by skipping elements of X \O and
removing duplicate vertices from O
Triangle inequality ⇒ cost(C , d) ≤ cost(Γ, d)

Cycle C induces two matchings of O. One of them has weight
≤ 1

2 · cost(C , d).
Thus:

cost(M, d) ≤ 1

2
· cost(C , d) ≤ 1

2
· cost(Γ, d) =

1

2
· OPTR(X , d).

88 / 95



Analysis

Note that
cost(C, d) = cost(T , d) + cost(M, d)

Since we have Eulerian cycle.

We already showed that cost(T , d) ≤ OPTR(X , d)

Need to show that cost(M, d) ≤ 1
2 · OPTR(X , d)

If Γ is a TSP cycle such that cost(Γ, d) = OPTR(X , d)

Let C be the cycle we obtain from Γ by skipping elements of X \O and
removing duplicate vertices from O
Triangle inequality ⇒ cost(C , d) ≤ cost(Γ, d)
Cycle C induces two matchings of O. One of them has weight
≤ 1

2 · cost(C , d).

Thus:

cost(M, d) ≤ 1

2
· cost(C , d) ≤ 1

2
· cost(Γ, d) =

1

2
· OPTR(X , d).

89 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Analysis

Note that
cost(C, d) = cost(T , d) + cost(M, d)

Since we have Eulerian cycle.

We already showed that cost(T , d) ≤ OPTR(X , d)

Need to show that cost(M, d) ≤ 1
2 · OPTR(X , d)

If Γ is a TSP cycle such that cost(Γ, d) = OPTR(X , d)

Let C be the cycle we obtain from Γ by skipping elements of X \O and
removing duplicate vertices from O
Triangle inequality ⇒ cost(C , d) ≤ cost(Γ, d)
Cycle C induces two matchings of O. One of them has weight
≤ 1

2 · cost(C , d).
Thus:

cost(M, d) ≤ 1

2
· cost(C , d) ≤ 1

2
· cost(Γ, d) =

1

2
· OPTR(X , d).

90 / 95

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Conclusion

Traveling Salesman Problem - important, but NP-hard

Equivalent variants of TSP

Combinatorial Approximation Algorithms for TSP

Achieve approximation algorithm by looking at an object (minimum
spanning tree) which is a lower bound on the cost of the optimum

This object (minimum spanning tree) is also easy to find, so exploit
that to our advantage to get approximation algorithm.

91 / 95



Conclusion

Traveling Salesman Problem - important, but NP-hard

Equivalent variants of TSP

Combinatorial Approximation Algorithms for TSP

Achieve approximation algorithm by looking at an object (minimum
spanning tree) which is a lower bound on the cost of the optimum

This object (minimum spanning tree) is also easy to find, so exploit
that to our advantage to get approximation algorithm.

92 / 95



Conclusion

Traveling Salesman Problem - important, but NP-hard

Equivalent variants of TSP

Combinatorial Approximation Algorithms for TSP

Achieve approximation algorithm by looking at an object (minimum
spanning tree) which is a lower bound on the cost of the optimum

This object (minimum spanning tree) is also easy to find, so exploit
that to our advantage to get approximation algorithm.

93 / 95



Conclusion

Traveling Salesman Problem - important, but NP-hard

Equivalent variants of TSP

Combinatorial Approximation Algorithms for TSP

Achieve approximation algorithm by looking at an object (minimum
spanning tree) which is a lower bound on the cost of the optimum

This object (minimum spanning tree) is also easy to find, so exploit
that to our advantage to get approximation algorithm.

94 / 95



Acknowledgement

Lecture based largely on:

Lectures 2-4 of Luca’s Optimization class

See Luca’s Lecture 3 notes at https://lucatrevisan.github.io/
teaching/cs261-11/lecture03.pdf

See Luca’s Lecture 4 notes at https://lucatrevisan.github.io/
teaching/cs261-11/lecture04.pdf

95 / 95

https://lucatrevisan.github.io/teaching/cs261-11/lecture03.pdf
https://lucatrevisan.github.io/teaching/cs261-11/lecture03.pdf
https://lucatrevisan.github.io/teaching/cs261-11/lecture04.pdf
https://lucatrevisan.github.io/teaching/cs261-11/lecture04.pdf

	Equivalent Versions of Traveling Salesman Problem
	Approximation Algorithms for Traveling Salesman Problem
	Conclusion
	Acknowledgements

