Lecture 15: Approximation Algorithms for Travelling Salesman Problem

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

June 29, 2021

Overview

- Equivalent Versions of Traveling Salesman Problem
- Approximation Algorithms for Traveling Salesman Problem
- Conclusion
- Acknowledgements

Traveling Salesman Problem

- Input: set of points X and a symmetric distance function

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}
$$

Traveling Salesman Problem

- Input: set of points X and a symmetric distance function

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}
$$

- For any path $p_{0} \rightarrow p_{1} \rightarrow \cdots \rightarrow p_{t}$ in X, length of the path is sum of distances traveled

$$
\sum_{i=0}^{t-1} d\left(p_{i}, p_{i+1}\right)
$$

$d(1,2)+d(2,3)$

Traveling Salesman Problem

- Input: set of points X and a symmetric distance function

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}
$$

- Output: find a cycle that reaches all points in X of shortest length.

Traveling Salesman Problem

- Input: set of points X and a symmetric distance function

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}
$$

- Output: find a cycle that reaches all points in X of shortest length.
- Definitely a problem we would like to solve
- Efficient route planning (mail system, shuttle bus pick up and drop off...)

Traveling Salesman Problem

- Input: set of points X and a symmetric distance function

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}
$$

- Output: find a cycle that reaches all points in X of shortest length.
- Definitely a problem we would like to solve
- Efficient route planning (mail system, shuttle bus pick up and drop off...)
- One of the famous NP-complete problems

Traveling Salesman Problem

- Input: set of points X and a symmetric distance function

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}
$$

- Output: find a cycle that reaches all points in X of shortest length.
- Definitely a problem we would like to solve
- Efficient route planning (mail system, shuttle bus pick up and drop off...)
- One of the famous NP-complete problems
- Comes in many flavours...

Variants of TSP

(1) General TSP without repetitions (General TSP-NR)

Variants of TSP

(1) General TSP without repetitions (General TSP-NR)

- Input: X and symmetric distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$
- Output: find a cycle of shortest length that reaches each point of X exactly once.

Variants of TSP

(1) General TSP without repetitions (General TSP-NR)

- Input: X and symmetric distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$
- Output: find a cycle of shortest length that reaches each point of X exactly once.
(2) General TSP with repetitions (General TSP-R)

Variants of TSP

(1) General TSP without repetitions (General TSP-NR)

- Input: X and symmetric distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$
- Output: find a cycle of shortest length that reaches each point of X exactly once.
(2) General TSP with repetitions (General TSP-R)
- Input: X and a symmetric distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$
- Output: cycle that reaches all points in X of shortest length. Cycles may now have a point more than once.

Variants of TSP

(1) General TSP without repetitions (General TSP-NR)

- Input: X and symmetric distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$
- Output: find a cycle of shortest length that reaches each point of X exactly once.
(2) General TSP with repetitions (General TSP-R)
- Input: X and a symmetric distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$
- Output: cycle that reaches all points in X of shortest length. Cycles may now have a point more than once.
(3) Metric TSP without repetitions (Metric TSP-NR)

Variants of TSP

(1) General TSP without repetitions (General TSP-NR)

- Input: X and symmetric distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$
- Output: find a cycle of shortest length that reaches each point of X exactly once.
(2) General TSP with repetitions (General TSP-R)
- Input: X and a symmetric distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$
- Output: cycle that reaches all points in X of shortest length. Cycles may now have a point more than once.
(3) Metric TSP without repetitions (Metric TSP-NR)
- Input: X and a symmetric distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ which satisfies triangle inequality (thus gives a metric on X)
- Output: Cycle of shortest length that reaches each point of X exactly once. $d(x, y) \leq d(x, z)+d(z, y) \quad \forall z \in X$

Variants of TSP

(1) General TSP without repetitions (General TSP-NR)

- Input: X and symmetric distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$
- Output: find a cycle of shortest length that reaches each point of X exactly once.
(2) General TSP with repetitions (General TSP-R)
- Input: X and a symmetric distance function d : $X \times X \rightarrow \mathbb{R}_{\geq 0}$
- Output: cycle that reaches all points in X of shortest length. Cycles may now have a point more than once.
(3) Metric TSP without repetitions (Metric TSP-NR)
- Input: X and a symmetric distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ which satisfies triangle inequality (thus gives a metric on X)
- Output: cycle of shortest length that reaches each point of X exactly once.
(9) Metric TSP with repetitions (Metric TSP-R)

Variants of TSP

(1) General TSP without repetitions (General TSP-NR)

- Input: X and symmetric distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$
- Output: find a cycle of shortest length that reaches each point of X exactly once.
(2) General TSP with repetitions (General TSP-R)
- Input: X and a symmetric distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$
- Output: cycle that reaches all points in X of shortest length. Cycles may now have a point more than once.
(3) Metric TSP without repetitions (Metric TSP-NR)
- Input: X and a symmetric distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ which satisfies triangle inequality (thus gives a metric on X)
- Output: cycle of shortest length that reaches each point of X exactly once.
(9) Metric TSP with repetitions (Metric TSP-R)
- Input: X and symmetric distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ giving metric (setisfies Δ-inequality)
- Output: cycle that reaches all points in X of shortest length. Cycles may now have a point more than once.

Facts about variants

(1) General TSP without repetitions (General TSP-NR)

Facts about variants

(1) General TSP without repetitions (General TSP-NR)

- if $P \neq N P$ then there is no poly-time constant-approximation algorithm for General TSP-NR.

Facts about variants
(1) General TSP without repetitions (General TSP-NR)

- if $P \neq N P$ then there is no poly-time constant-approximation algorithm for General TSP-NR.
- More generally, if there is any function $r: \mathbb{N} \rightarrow \mathbb{N}$ such that $r(n)$ computable in polynomial time, then it is hard to $r(n)$-approximate General TSP-NR if we assume that $P \neq N P$

$$
\begin{array}{ll}
x(n)=2^{n} & \text { no hopes of obtaining } \\
x(n)=n^{\prime} & \text { any reasonable approximation } \\
x(n)=2^{2^{n}} & \text { (repeated squaring) }
\end{array}
$$

Facts about variants

(1) General TSP without repetitions (General TSP-NR)

- if $P \neq N P$ then there is no poly-time constant-approximation algorithm for General TSP-NR.
- More generally, if there is any function $r: \mathbb{N} \rightarrow \mathbb{N}$ such that $r(n)$ computable in polynomial time, then it is hard to $r(n)$-approximate General TSP-NR if we assume that $P \neq N P$
(2) Other three versions are equivalent from the point of view of approximation algorithms!

Facts about variants

(1) General TSP without repetitions (General TSP-NR)

- if $P \neq N P$ then there is no poly-time constant-approximation algorithm for General TSP-NR.
- More generally, if there is any function $r: \mathbb{N} \rightarrow \mathbb{N}$ such that $r(n)$ computable in polynomial time, then it is hard to $r(n)$-approximate General TSP-NR if we assume that $P \neq N P$
(2) Other three versions are equivalent from the point of view of approximation algorithms!

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-NR if, and only if, there is a polynomial time c-approximation for Metric TSP-R.

Facts about variants

(1) General TSP without repetitions (General TSP-NR)

- if $P \neq N P$ then there is no poly-time constant-approximation algorithm for General TSP-NR.
- More generally, if there is any function $r: \mathbb{N} \rightarrow \mathbb{N}$ such that $r(n)$ computable in polynomial time, then it is hard to $r(n)$-approximate General TSP-NR if we assume that $P \neq N P$
(2) Other three versions are equivalent from the point of view of approximation algorithms!

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-NR if, and only if, there is a polynomial time c-approximation for Metric TSP-R.

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-NR if, and only if, there is a polynomial time c-approximation for General TSP-R.

Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-NR if, and only if, there is a polynomial time c-approximation for Metric TSP-R. In particular:

Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-NR if, and only if, there is a polynomial time c-approximation for Metric TSP-R. In particular:
(1) If (X, d) is an input to Metric TSP, the cost of the optimum is the same whether or not we allow repetitions.

Metric TSP-NR equivalent to Metric TSP-R
Lemma
For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-NR if, and only if, there is a polynomial time c-approximation for Metric TSP-R. In particular:
(1) If (X, d) is an input to Metric TSP, the cost of the optimum is the same whether or not we allow repetitions.
(2) Every c-approximation algorithm for Metric TSP-NR is also a c-approximation algorithm for Metric TSP-R.

$$
m T S P-N R \Rightarrow m T S P-R
$$

(1) cost of OPT is some

Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-NR if, and only if, there is a polynomial time c-approximation for Metric TSP-R. In particular:
(1) If (X, d) is an input to Metric TSP, the cost of the optimum is the same whether or not we allow repetitions.
(2) Every c-approximation algorithm for Metric TSP-NR is also a c-approximation algorithm for Metric TSP-R.
(3) Every c-approximation algorithm for Metric TSP-R can be turned into a c-approximate algorithm for Metric TSP-NR, after adding a linear time post-processing.

Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-NR if, and only if, there is a polynomial time c-approximation for Metric TSP-R. In particular:
(1) If (X, d) is an input to Metric TSP, the cost of the optimum is the same whether or not we allow repetitions.
(2) Every c-approximation algorithm for Metric TSP-NR is also a c-approximation algorithm for Metric TSP-R.
(3) Every c-approximation algorithm for Metric TSP-R can be turned into a c-approximate algorithm for Metric TSP-NR, after adding a linear time post-processing.

- $O P T_{R}(X, d)$ be cost of optimal solution for (X, d) in Metric TSP-R

Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-NR if, and only if, there is a polynomial time c-approximation for Metric TSP-R. In particular:
(1) If (X, d) is an input to Metric TSP, the cost of the optimum is the same whether or not we allow repetitions.
(2) Every c-approximation algorithm for Metric TSP-NR is also a c-approximation algorithm for Metric TSP-R.
(3) Every c-approximation algorithm for Metric TSP-R can be turned into a c-approximate algorithm for Metric TSP-NR, after adding a linear time post-processing.

- $O P T_{R}(X, d)$ be cost of optimal solution for (X, d) in Metric TSP-R
- $O P T_{N R}(X, d)$ be the cost of optimal solution for (X, d) in Metric TSP-NR.

Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-NR if, and only if, there is a polynomial time c-approximation for Metric TSP-R. In particular:
(1) If (X, d) is an input to Metric TSP, the cost of the optimum is the same whether or not we allow repetitions.

Metric TSP-NR equivalent to Metric TSP-R
Lemma
For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-NR if, and only if, there is a polynomial time c-approximation for Metric TSP-R. In particular:
(1) If (X, d) is an input to Metric TSP, the cost of the optimum is the same whether or not we allow repetitions.

- Solution space of Metric TSP-R is larger than solution space of Metric TSP-NR. Thus

$$
\int O P T_{R}(X, d) \leq O P T_{N R}(X, d)
$$

any uslution to $m T S P-N R$ in also a solution to $m T S P-R$

Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-NR if, and only if, there is a polynomial time c-approximation for Metric TSP-R. In particular:
(1) If (X, d) is an input to Metric TSP, the cost of the optimum is the same whether or not we allow repetitions.
removed $a \Rightarrow \operatorname{cost}\left(c^{\prime}\right) \leqslant \operatorname{cost}(c) \Rightarrow C^{\prime}$ abs OPT.

cycle

- Let $\mathcal{C}=\tilde{p}_{0} \rightarrow p_{1} \rightarrow p_{2} \rightarrow \cdots \rightarrow p_{m}=p_{0}$ be a solution to $O P T_{R}(X, d)$. Now, create a cycle \mathcal{C}^{\prime} from C simply by removing the repetitions

$$
\underline{a} \rightarrow \underline{b} \rightarrow \cdots c \rightarrow \underline{b} \rightarrow d \rightarrow \cdots
$$

becomes

$$
a \rightarrow b \rightarrow \cdots c \rightarrow d \rightarrow \cdots
$$

Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-NR if, and only if, there is a polynomial time c-approximation for Metric TSP-R. In particular:
(2) Every c-approximation algorithm for Metric TSP-NR is also a c-approximation algorithm for Metric TSP-R.

Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-NR if, and only if, there is a polynomial time c-approximation for Metric TSP-R. In particular:
(2) Every c-approximation algorithm for Metric TSP-NR is also a c-approximation algorithm for Metric TSP-R.

- If we have a c-approximation algorithm for Metric TSP-NR, then we know that our solution (cycle \mathcal{C}) satisfies:

$$
\operatorname{cost}(C) \leq c \cdot O P T_{N R}(X, d)
$$

$$
{ }_{\text {OPT }}^{R}(x, d)
$$

Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-NR if, and only if, there is a polynomial time c-approximation for Metric TSP-R. In particular:
(2) Every c-approximation algorithm for Metric TSP-NR is also a c-approximation algorithm for Metric TSP-R.

- If we have a c-approximation algorithm for Metric TSP-NR, then we know that our solution (cycle \mathcal{C}) satisfies:

$$
\operatorname{cost}(C) \leq c \cdot O P T_{N R}(X, d)
$$

- Since $O P T_{N R}(X, d)=O P T_{R}(X, d)$ and \mathcal{C} is also a solution to Metric TSP-R, we are done.

Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-NR if, and only if, there is a polynomial time c-approximation for Metric TSP-R. In particular:
(3) Every c-approximation algorithm for Metric TSP-R can be turned into a c-approximate algorithm for Metric TSP-NR, after adding a linear time post-processing.

Metric TSP-NR equivalent to Metric TSP-R

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-NR if, and only if, there is a polynomial time c-approximation for Metric TSP-R. In particular:
(3) Every c-approximation algorithm for Metric TSP-R can be turned into a c-approximate algorithm for Metric TSP-NR, after adding a linear time post-processing.

- Given any solution to Metric TSP-R, simply run the procedure that removes repeated visits to a vertex. This only decreases cost by metric property.

Metric TSP-R equivalent to General TSP-R

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-R if, and only if, there is a polynomial time c-approximation for General TSP-R. In particular:
(1) Every c-approximation algorithm for General TSP-R is also a c-approximation algorithm for Metric TSP-R.
(2) Every c-approximation algorithm for Metric TSP-R can be turned into a c-approximate algorithm for General TSP-R, after adding a polynomial time pre and post-processing.

Metric TSP-R equivalent to General TSP-R

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-R if, and only if, there is a polynomial time c-approximation for General TSP-R. In particular:
(1) Every c-approximation algorithm for General TSP-R is also a c-approximation algorithm for Metric TSP-R.
(2) Every c-approximation algorithm for Metric TSP-R can be turned into a c-approximate algorithm for General TSP-R, after adding a polynomial time pre and post-processing.

- First item follows by the fact that Metric TSP-R is a special case of General TSP-R, when the distance function satisfies the triangle inequality.

Metric TSP-R equivalent to General TSP-R

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-R if, and only if, there is a polynomial time c-approximation for General TSP-R. In particular:
(2) Every c-approximation algorithm for Metric TSP-R can be turned into a c-approximate algorithm for General TSP-R, after adding a polynomial time pre and post-processing.

Metric TSP-R equivalent to General TSP-R

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-R if, and only if, there is a polynomial time c-approximation for General TSP-R. In particular:
(2) Every c-approximation algorithm for Metric TSP-R can be turned into a c-approximate algorithm for General TSP-R, after adding a polynomial time pre and post-processing.

- On input (X, d) to General TSP-R, let $G(X, E, w)$ be the complete weighted graph such that $w(x, y)=d(x, y)$. Now compute new distance $\delta: X \rightarrow \mathbb{R}_{\geq 0}$ such that

$$
\delta(x, y) \leftarrow \underbrace{\text { length of shortest path from } x \text { to } y \text { in } G}
$$

Metric TSP-R equivalent to General TSP-R

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-R if, and only if, there is a polynomial time c-approximation for General TSP-R. In particular:
(2) Every c-approximation algorithm for Metric TSP-R can be turned into a c-approximate algorithm for General TSP-R, after adding a polynomial time pre and post-processing.

- On input (X, d) to General TSP-R, let $G(X, E, w)$ be the complete weighted graph such that $w(x, y)=d(x, y)$. Now compute new distance $\delta: X \rightarrow \mathbb{R}_{\geq 0}$ such that

$$
\delta(x, y) \leftarrow \text { length of shortest path from } x \text { to } y \text { in } G
$$

- Note that δ satisfies triangle inequality!

$$
\begin{aligned}
\delta(x, y) & \leqslant \delta(x, z)+\delta(z, y) \quad \forall z \\
& \text { 个 equality iffy. } z \text { is in a statist path form x toy. }
\end{aligned}
$$

Metric TSP-R equivalent to General TSP-R

Lemma

For every $c \geq 1$ there is a polynomial time c-approximation for Metric TSP-R if, and only if, there is a polynomial time c-approximation for General TSP-R. In particular:
(2) Every c-approximation algorithm for Metric TSP-R can be turned into a c-approximate algorithm for General TSP-R, after adding a polynomial time pre and post-processing.

- On input (X, d) to General TSP-R, let $G(X, E, w)$ be the complete weighted graph such that $w(x, y)=d(x, y)$. Now compute new distance $\delta: X \rightarrow \mathbb{R}_{\geq 0}$ such that

$$
\delta(x, y) \leftarrow \text { length of shortest path from } x \text { to } y \text { in } G
$$

- Note that δ satisfies triangle inequality!
- Give input (X, δ) to our algorithm for Metric TSP-R. Let \mathcal{C} be the cycle it outputs. Thus from sur oppros. al goritom
proper inpert merric BP $\operatorname{cost}(\mathcal{C}) \leq c \cdot O P T_{R}(X, \delta)$

Metric TSP-R equivalent to General TSP-R

- Give input (X, δ) to our algorithm for Metric TSP-R. Let \mathcal{C} be the cycle it outputs. Thus

$$
\operatorname{cost}_{R}(\mathcal{C}) \leq c \cdot \operatorname{opt}_{R}(X, \delta) \mid \leq c \cdot o p t_{G R}(X, \delta)
$$

(X, δ) in a metric TSP

$$
\operatorname{OPT}_{R}(x, \delta)=\operatorname{OPT}_{G R}(x, \delta)
$$

\uparrow

Metric TSP-R equivalent to General TSP-R

- Give input (X, δ) to our algorithm for Metric TSP-R. Let \mathcal{C} be the cycle it outputs. Thus

$$
\operatorname{cost}_{R}(\mathcal{C}) \leq c \cdot \operatorname{opt}_{R}(X, \underline{\delta}) c \cdot \operatorname{opt}_{G R}(X, \underline{\delta})
$$

- For every pair $(x, y) \in X^{2}$, note that $\delta(x, y) \leq d(x, y)$, so

$$
O P T_{R}(X, \delta) \leq O P T_{G R}(X, d)
$$

$\delta(x, y)=$ length shortest pain from x tory $\leq \underbrace{d(x, y)}_{\text {one path }}$ \sum cycle in $X \quad \varepsilon=x_{0} \rightarrow x_{1} \rightarrow \ldots \rightarrow x_{m} \rightarrow x_{m n}=x_{0}$ for x is

$$
\cos _{\delta}(e)=\sum_{i=0}^{m} \delta\left(x_{i}, x_{i+1}\right) \leq \sum_{i=0}^{m} d\left(x_{i}, x_{i+1}\right)=\operatorname{eost}_{G R}(e)
$$

Metric TSP-R equivalent to General TSP-R

- Give input (X, δ) to our algorithm for Metric TSP-R. Let \mathcal{C} be the cycle it outputs. Thus

$$
\operatorname{cost}_{R}(\mathcal{C}) \leq c \cdot o p t_{R}(X, \delta) \leq c \cdot o p t_{G R}(X, \delta)
$$

- For every pair $(x, y) \in X^{2}$, note that $\delta(x, y) \leq d(x, y)$, so

$$
O P T_{R}(X, \delta) \leq O P T_{G R}(X, d)
$$

- Let Γ be the cycle obtained from \mathcal{C} by simply replacing every $x \rightarrow y$ by the shortest path $x \rightarrow p_{1} \rightarrow \cdots \rightarrow p_{t} \rightarrow y$ in G.
want cyck Γ nit. $\operatorname{ent} t_{d}(\Gamma)=\operatorname{cost}_{\delta}(\tau)$

$$
\cos _{d}(\Gamma)=\cos g(\varphi) \leqslant c \cdot \operatorname{opt} G R(X, d)
$$

Metric TSP-R equivalent to General TSP-R

- Give input (X, δ) to our algorithm for Metric TSP-R. Let \mathcal{C} be the cycle it outputs. Thus

$$
\operatorname{cost}_{R}(\mathcal{C}) \leq c \cdot o p t_{R}(X, \delta) \leq c \cdot o p t_{G R}(X, \delta)
$$

- For every pair $(x, y) \in X^{2}$, note that $\delta(x, y) \leq d(x, y)$, so

$$
O P T_{R}(X, \delta) \leq O P T_{G R}(X, d)
$$

- Let Γ be the cycle obtained from \mathcal{C} by simply replacing every $x \rightarrow y$ by the shortest path $x \rightarrow p_{1} \rightarrow \cdots \rightarrow p_{t} \rightarrow y$ in G.
(1) Note that

$$
\operatorname{cost}(\mathcal{C}, \delta)=\operatorname{cost}(\Gamma, d)
$$

Metric TSP-R equivalent to General TSP-R

- Give input (X, δ) to our algorithm for Metric TSP-R. Let \mathcal{C} be the cycle it outputs. Thus

$$
\operatorname{cost}_{R}(\mathcal{C}) \leq c \cdot o p t_{R}(X, \delta) \leq c \cdot o p t_{G R}(X, \delta)
$$

- For every pair $(x, y) \in X^{2}$, note that $\delta(x, y) \leq d(x, y)$, so

$$
O P T_{R}(X, \delta) \leq O P T_{G R}(X, d)
$$

- Let Γ be the cycle obtained from \mathcal{C} by simply replacing every $x \rightarrow y$ by the shortest path $x \rightarrow p_{1} \rightarrow \cdots \rightarrow p_{t} \rightarrow y$ in G.
(1) Note that

$$
\operatorname{cost}(\mathcal{C}, \delta)=\operatorname{cost}(\Gamma, d)
$$

- Combining the inequalities so far, we get:

$$
\operatorname{cost}(\Gamma, d)=\operatorname{cost}(\mathcal{C}, \delta) \leq c \cdot o p t_{R}(X, \delta) \leq c \cdot o p t_{G R}(X, d)
$$

- Equivalent Versions of Traveling Salesman Problem
- Approximation Algorithms for Traveling Salesman Problem
- Conclusion
- Acknowledgements

A 2-approximation algorithm

The following lemma gives us a way to get a 2-approximation algorithm:

Lemma

Let $T(X, E, d)$ be a weighted tree with vertices X and weights given by the distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$. There is a cycle \mathcal{C} that reaches each vertex at least once, and such that

$$
\operatorname{cost}(\mathcal{C}, d)=2 \cdot \operatorname{cost}(T, d)
$$

A 2-approximation algorithm

The following lemma gives us a way to get a 2-approximation algorithm:

Lemma

Let $T(X, E, d)$ be a weighted tree with vertices X and weights given by the distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$. There is a cycle \mathcal{C} that reaches each vertex at least once, and such that

$$
\operatorname{cost}(\mathcal{C}, d)=2 \cdot \operatorname{cost}(T, d)
$$

- Consider a DFS visit of the tree.

A 2-approximation algorithm

The following lemma gives us a way to get a 2-approximation algorithm:

Lemma

Let $T(X, E, d)$ be a weighted tree with vertices X and weights given by the distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$. There is a cycle \mathcal{C} that reaches each vertex at least once, and such that

$$
\operatorname{cost}(\mathcal{C}, d)=2 \cdot \operatorname{cost}(T, d)
$$

- Consider a DFS visit of the tree.
- Each edge traversed exactly twice

A 2-approximation algorithm

The following lemma gives us a way to get a 2-approximation algorithm:

Lemma

Let $T(X, E, d)$ be a weighted tree with vertices X and weights given by the distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$. There is a cycle \mathcal{C} that reaches each vertex at least once, and such that

$$
\operatorname{cost}(\mathcal{C}, d)=2 \cdot \operatorname{cost}(T, d)
$$

- Consider a DFS visit of the tree.
- Each edge traversed exactly twice

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.

A 2-approximation algorithm

The following lemma gives us a way to get a 2-approximation algorithm:

Lemma

Let $T(X, E, d)$ be a weighted tree with vertices X and weights given by the distance function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$. There is a cycle \mathcal{C} that reaches each vertex at least once, and such that

$$
\operatorname{cost}(\mathcal{C}, d)=2 \cdot \operatorname{cost}(T, d)
$$

- Consider a DFS visit of the tree.
- Each edge traversed exactly twice

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.
Idea: find a minimum spanning tree on the complete weighted graph $G\left(X, K_{X}, d\right)$.

Example

DFS:

$$
\begin{aligned}
& a \rightarrow b \rightarrow a \rightarrow c \rightarrow d \\
& \rightarrow c \rightarrow e \rightarrow c \rightarrow a
\end{aligned}
$$

Proof of Theorem

Theorem
There is a polynomial-time 2-approximation algorithm for General TSP-R.

Proof of Theorem

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.
(1) On input (X, d), find minimum spanning tree $T\left(X, K_{X}, d\right)$.

Proof of Theorem

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.
(1) On input (X, d), find minimum spanning tree $T\left(X, K_{X}, d\right)$.
(2) By our lemma, there is a cycle from T with $\operatorname{cost} 2 \cdot \operatorname{cost}(T, d)$.

Proof of Theorem

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.
(1) On input (X, d), find minimum spanning tree $T\left(X, K_{X}, d\right)$.
(2) By our lemma, there is a cycle from T with $\operatorname{cost} 2 \cdot \operatorname{cost}(T, d)$.
(3) Need to show that this is a 2-approximation.

Proof of Theorem
Theorem
There is a polynomial-time 2-approximation algorithm for General TSP-R.
(1) On input (X, d), find minimum spanning tree $T\left(X, K_{X}, d\right)$.
(2) By our lemma, there is a cycle from T with $\operatorname{cost} 2 \cdot \operatorname{cost}(T, d)$.
(3) Need to show that this is a 2-approximation.

- To do that, enough to show that $O P T_{G R}(X, d) \geq \operatorname{cost}(T, d)$
cost of $\frac{\text { minimum spanning tree (cosy to get) }}{\text { proxy }}$
is a lower bound on optimum solution
idea: find a proxy of OPT which in cory to construct then constrmet a valid solution foo it.

Proof of Theorem

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.
(1) On input (X, d), find minimum spanning tree $T\left(X, K_{X}, d\right)$.
(2) By our lemma, there is a cycle from T with $\operatorname{cost} 2 \cdot \operatorname{cost}(T, d)$.
(3) Need to show that this is a 2-approximation.

- To do that, enough to show that $O P T_{G R}(X, d) \geq \operatorname{cost}(T, d)$
- If \mathcal{C} is optimum cycle for (X, d), that is, $\operatorname{cost}(\mathcal{C}, d)=O P T_{G R}(X, d)$, take all edges which are used in \mathcal{C}. Call this set F.

Proof of Theorem

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.
(1) On input (X, d), find minimum spanning tree $T\left(X, K_{X}, d\right)$.
(2) By our lemma, there is a cycle from T with $\operatorname{cost} 2 \cdot \operatorname{cost}(T, d)$.
(3) Need to show that this is a 2-approximation.

- To do that, enough to show that $O P T_{G R}(X, d) \geq \operatorname{cost}(T, d)$
- If \mathcal{C} is optimum cycle for (X, d), that is, $\operatorname{cost}(\mathcal{C}, d)=O P T_{G R}(X, d)$, take all edges which are used in \mathcal{C}. Call this set F.
- Note that the weighted graph $H(X, \underline{F}, d)$ is connected. Let T^{\prime} be a spanning tree of this graph.

$$
\operatorname{cost}\left(T^{\prime}, d\right) \leq \operatorname{cost}(\mathcal{C}, d)=O P T_{G R}(X, d)
$$

Proof of Theorem

Theorem

There is a polynomial-time 2-approximation algorithm for General TSP-R.
(1) On input (X, d), find minimum spanning tree $T\left(X, K_{X}, d\right)$.
(2) By our lemma, there is a cycle from T with $\operatorname{cost} 2 \cdot \operatorname{cost}(T, d)$.
(3) Need to show that this is a 2-approximation.

- To do that, enough to show that $O P T_{G R}(X, d) \geq \operatorname{cost}(T, d)$
- If \mathcal{C} is optimum cycle for (X, d), that is, $\operatorname{cost}(\mathcal{C}, d)=O P T_{G R}(X, d)$, take all edges which are used in \mathcal{C}. Call this set F.
- Note that the weighted graph $H(X, F, d)$ is connected. Let T^{\prime} be a spanning tree of this graph.

$$
\operatorname{cost}\left(T^{\prime}, d\right) \leq \operatorname{cost}(\mathcal{C}, d)=O P T_{G R}(X, d)
$$

- Since T^{\prime} is a spanning tree of X, we have that

$$
G(\hat{x}, k x, d) \quad \operatorname{cost}(T, d) \leq \operatorname{cost}\left(T^{\prime}, d\right)
$$

and we are done.

Eulerian Tours

Definition (Eulerian Cycle)
An Eulerian cycle in a multigraph $G(V, E)$ is a cycle $p_{0} \rightarrow p_{1} \rightarrow \cdots \rightarrow p_{m}=p_{0}$ such that the number of edges $\{u, v\} \in E$ is equal to the number of times $\{u, v\}$ is used in the cycle.

In other words, each edge is used exactly once.
6.

hos Euleriam cycle

dos not have Eulcion cycle

Eulerian Tours

Definition (Eulerian Cycle)

An Eulerian cycle in a multigraph $G(V, E)$ is a cycle $p_{0} \rightarrow p_{1} \rightarrow \cdots \rightarrow p_{m}=p_{0}$ such that the number of edges $\{u, v\} \in E$ is equal to the number of times $\{u, v\}$ is used in the cycle.

In other words, each edge is used exactly once.

Theorem (Eulerian Cycle Existence and Algorithm)

A multi-graph $G(V, E)$ has an Eulerian cycle if, and only if, every vertex has even degree and the vertices of positive degree are connected.

Moreover, there is a polynomial time algorithm that, on input a connected graph $G(V, E)$ in which every vertex has even degree, outputs an Eulerian cycle.

Proof of Theorem I (\Rightarrow)

$$
G(V, E) \text { has Eulerian cycle } \Rightarrow \begin{aligned}
& \text { vertices of }>0 \text { deg. } \\
& \text { connected }
\end{aligned}
$$

$u \in V$ need to prove that $\operatorname{deg}(u)$ even by condonation take eulesion cyck P for each time vertox u appears

Proof of Theorem II
(\Leftrightarrow) Induction on $\#$ edges in graph:
If $G(V, E)$ connected and all vertion have even degree, then O has a cycle.
If every vertex has degree $=2$, the G must be a cycle (becaux G is connected) in thin cone we are done.
Otherwise take cycle without repetitions starting from vertex of degree $\geqslant 4$ (such cycle must exist as 6 in corrected). Removing thin cycle and vertices of degree 0 we get amollen connect graph with even deus. Induction \Rightarrow we get Enherim excl. procedure gives poty-time dgerithy! How to find

Better Approximation Algorithm

- In our previous TSP algorithm, we computed a minimum spanning tree and took our cycle to be a 2-pass over the tree.

Better Approximation Algorithm

- In our previous TSP algorithm, we computed a minimum spanning tree and took our cycle to be a 2-pass over the tree.
- In Eulerian cycle words: we doubled the edges to make sure each vertex in our "double tree" had even degree, then did an Eulerian cycle.

Better Approximation Algorithm

- In our previous TSP algorithm, we computed a minimum spanning tree and took our cycle to be a 2-pass over the tree.
- In Eulerian cycle words: we doubled the edges to make sure each vertex in our "double tree" had even degree, then did an Eulerian cycle.
- This is a bit wasteful.

Better Approximation Algorithm

- In our previous TSP algorithm, we computed a minimum spanning tree and took our cycle to be a 2-pass over the tree.
- In Eulerian cycle words: we doubled the edges to make sure each vertex in our "double tree" had even degree, then did an Eulerian cycle.
- This is a bit wasteful.
- Doubling every edge works, but what if a node has degree 1001 ?

Better Approximation Algorithm

- In our previous TSP algorithm, we computed a minimum spanning tree and took our cycle to be a 2-pass over the tree.
- In Eulerian cycle words: we doubled the edges to make sure each vertex in our "double tree" had even degree, then did an Eulerian cycle.
- This is a bit wasteful.
- Doubling every edge works, but what if a node has degree 1001 ?
- Could we just add 1 extra edge, instead of 1001 ?

Better Approximation Algorithm

- In our previous TSP algorithm, we computed a minimum spanning tree and took our cycle to be a 2-pass over the tree.
- In Eulerian cycle words: we doubled the edges to make sure each vertex in our "double tree" had even degree, then did an Eulerian cycle.
- This is a bit wasteful.
- Doubling every edge works, but what if a node has degree 1001 ?
- Could we just add 1 extra edge, instead of 1001 ?
- Idea: take vertices of odd degree in the tree (there must be an even number of these). Let this set be $O \subseteq X$

$$
\begin{gathered}
{\underset{\text { even }}{ }}_{Q|E|}=\sum_{v \in v} \operatorname{deg}(v)=\sum_{v \in 0} \sum_{|0|=\text { even }}^{\operatorname{dug}(v)}+\sum_{\text {even }}^{\sum_{u \in X \mid 0} \operatorname{deg}(u)} \\
\hline
\end{gathered}
$$

Better Approximation Algorithm

- In our previous TSP algorithm, we computed a minimum spanning tree and took our cycle to be a 2-pass over the tree.
- In Eulerian cycle words: we doubled the edges to make sure each vertex in our "double tree" had even degree, then did an Eulerian cycle.
- This is a bit wasteful.
- Doubling every edge works, but what if a node has degree 1001 ?
- Could we just add 1 extra edge, instead of 1001 ?
- Idea: take vertices of odd degree in the tree there must be an even number of these). Let this set be $O \subseteq X$
- Find a minimum cost perfect matching (in the weighted graph (O, d))!

$<$ tale Eulenian tore

Better Approximation Algorithm

- In our previous TSP algorithm, we computed a minimum spanning tree and took our cycle to be a 2-pass over the tree.
- In Eulerian cycle words: we doubled the edges to make sure each vertex in our "double tree" had even degree, then did an Eulerian cycle.
- This is a bit wasteful.
- Doubling every edge works, but what if a node has degree 1001 ?
- Could we just add 1 extra edge, instead of 1001 ?
- Idea: take vertices of odd degree in the tree (there must be an even number of these). Let this set be $O \subseteq X$
- Find a minimum cost perfect matching (in the weighted graph (O, d))!
- Why would that improve our previous algorithm?

Better Approximation Algorithm

- In our previous TSP algorithm, we computed a minimum spanning tree and took our cycle to be a 2-pass over the tree.
- In Eulerian cycle words: we doubled the edges to make sure each vertex in our "double tree" had even degree, then did an Eulerian cycle.
- This is a bit wasteful.
- Doubling every edge works, but what if a node has degree 1001 ?
- Could we just add 1 extra edge, instead of 1001 ?
- Idea: take vertices of odd degree in the tree (there must be an even number of these). Let this set be $O \subseteq X$
- Find a minimum cost perfect matching (in the weighted graph $(O, d))$!
- Why would that improve our previous algorithm?
- Min-cost matching will have half the total cost of optimum TSP cycle!

Better Approximation Algorithm

- In our previous TSP algorithm, we computed a minimum spanning tree and took our cycle to be a 2-pass over the tree.
- In Eulerian cycle words: we doubled the edges to make sure each vertex in our "double tree" had even degree, then did an Eulerian cycle.
- This is a bit wasteful.
- Doubling every edge works, but what if a node has degree 1001 ?
- Could we just add 1 extra edge, instead of 1001 ?
- Idea: take vertices of odd degree in the tree (there must be an even number of these). Let this set be $O \subseteq X$
- Find a minimum cost perfect matching (in the weighted graph $(O, d))$!
- Why would that improve our previous algorithm?
- Min-cost matching will have half the total cost of optimum TSP cycle!
- Thus we get a $3 / 2$-approximation!

Putting Everything Together

(1) Input: (X, d) instance of Metric TSP-R
(2) Output: Cycle \mathcal{C} over X covering every vertex at least once, with

$$
\operatorname{cost}(\mathcal{C}, d) \leq 3 / 2 \cdot O P T_{G R}(X, d)
$$

Putting Everything Together

(1) Input: (X, d) instance of Metric TSP-R
(2) Output: Cycle \mathcal{C} over X covering every vertex at least once, with

$$
\operatorname{cost}(\mathcal{C}, d) \leq 3 / 2 \cdot O P T_{G R}(X, d)
$$

(3) Find minimum cost spanning tree T in $\left(X, K_{X}, d\right)$

Putting Everything Together

(1) Input: (X, d) instance of Metric TSP-R
(2) Output: Cycle \mathcal{C} over X covering every vertex at least once, with

$$
\operatorname{cost}(\mathcal{C}, d) \leq 3 / 2 \cdot O P T_{G R}(X, d)
$$

(3) Find minimum cost spanning tree T in $\left(X, K_{X}, d\right)$
(9) Let O be the set of vertices of odd degree in T

Putting Everything Together

(1) Input: (X, d) instance of Metric TSP-R
(2) Output: Cycle \mathcal{C} over X covering every vertex at least once, with

$$
\operatorname{cost}(\mathcal{C}, d) \leq 3 / 2 \cdot O P T_{G R}(X, d)
$$

(3) Find minimum cost spanning tree T in $\left(X, K_{X}, d\right)$
(9) Let O be the set of vertices of odd degree in T
(0) Find minimum cost perfect matching \mathcal{M} in $\left(O, K_{O}, d\right)$

Putting Everything Together

(1) Input: (X, d) instance of Metric TSP-R
(2) Output: Cycle \mathcal{C} over X covering every vertex at least once, with

$$
\operatorname{cost}(\mathcal{C}, d) \leq 3 / 2 \cdot O P T_{G R}(X, d)
$$

(3) Find minimum cost spanning tree T in $\left(X, K_{X}, d\right)$
(9) Let O be the set of vertices of odd degree in T
(6) Find minimum cost perfect matching \mathcal{M} in $\left(O, K_{O}, d\right)$
(0) Let E be the set of edges of T together with the set of edges of \mathcal{M}

$$
E=T+M
$$

Putting Everything Together

(1) Input: (X, d) instance of Metric TSP-R
(2) Output: Cycle \mathcal{C} over X covering every vertex at least once, with

$$
\operatorname{cost}(\mathcal{C}, d) \leq 3 / 2 \cdot O P T_{G R}(X, d)
$$

(3) Find minimum cost spanning tree T in $\left(X, K_{X}, d\right)$
(9) Let O be the set of vertices of odd degree in T
(6) Find minimum cost perfect matching \mathcal{M} in $\left(O, K_{O}, d\right)$
(0) Let E be the set of edges of T together with the set of edges of \mathcal{M}
(3) Find Eulerian Cycle \mathcal{C} on E
(B) Output \mathcal{C}

Analysis

- Note that

$$
\operatorname{cost}(\mathcal{C}, d)=\operatorname{cost}(T, d)+\operatorname{cost}(\mathcal{M}, d)
$$

Since we have Eulerian cycle.

Analysis

- Note that

$$
\operatorname{cost}(\mathcal{C}, d)=\operatorname{cost}(T, d)+\operatorname{cost}(\mathcal{M}, d)
$$

Since we have Eulerian cycle.

- We already showed that $\operatorname{cost}(T, d) \leq O P T_{R}(X, d)$

Analysis

- Note that

$$
\operatorname{cost}(\mathcal{C}, d)=\operatorname{cost}(T, d)+\operatorname{cost}(\mathcal{M}, d)
$$

Since we have Eulerian cycle.

- We already showed that $\operatorname{cost}(T, d) \leq O P T_{R}(X, d)$
- Need to show that $\operatorname{cost}(\mathcal{M}, d) \leq \frac{1}{2} \cdot O P T_{R}(X, d)$

Analysis

- Note that

$$
\operatorname{cost}(\mathcal{C}, d)=\operatorname{cost}(T, d)+\operatorname{cost}(\mathcal{M}, d)
$$

Since we have Eulerian cycle.

- We already showed that $\operatorname{cost}(T, d) \leq O P T_{R}(X, d)$
- Need to show that $\operatorname{cost}(\mathcal{M}, d) \leq \frac{1}{2} \cdot O P T_{R}(X, d)$
- If Γ is a TSP cycle such that $\operatorname{cost}(\Gamma, d)=O P T_{R}(X, d)$

Analysis

- Note that

$$
\operatorname{cost}(\mathcal{C}, d)=\operatorname{cost}(T, d)+\operatorname{cost}(\mathcal{M}, d)
$$

Since we have Eulerian cycle.

- We already showed that $\operatorname{cost}(T, d) \leq O P T_{R}(X, d)$
- Need to show that $\operatorname{cost}(\mathcal{M}, d) \leq \frac{1}{2} \cdot O P T_{R}(X, d)$
- If Γ is a TSP cycle such that $\operatorname{cost}(\Gamma, d)=O P T_{R}(X, d)$
- Let C be the cycle we obtain from Γ by skipping elements of $X \backslash O$ and

Analysis

- Note that

$$
\operatorname{cost}(\mathcal{C}, d)=\operatorname{cost}(T, d)+\operatorname{cost}(\mathcal{M}, d)
$$

Since we have Eulerian cycle.

- We already showed that $\operatorname{cost}(T, d) \leq O P T_{R}(X, d)$
- Need to show that $\operatorname{cost}(\mathcal{M}, d) \leq \frac{1}{2} \cdot O P T_{R}(X, d)$
- If Γ is a TSP cycle such that $\operatorname{cost}(\Gamma, d)=O P T_{R}(X, d)$
- Let C be the cycle we obtain from Γ by skipping elements of $X \backslash O$ and removing duplicate vertices from O
- Triangle inequality $\Rightarrow \operatorname{cost}(C, d) \leq \operatorname{cost}(\Gamma, d)$

Analysis

- Note that

$$
\operatorname{cost}(\mathcal{C}, d)=\operatorname{cost}(T, d)+\operatorname{cost}(\mathcal{M}, d)
$$

Since we have Eulerian cycle.

- We already showed that $\operatorname{cost}(T, d) \leq O P T_{R}(X, d)$
- Need to show that $\operatorname{cost}(\mathcal{M}, d) \leq \frac{1}{2} \cdot O P T_{R}(X, d)$
- If Γ is a TSP cycle such that $\operatorname{cost}(\Gamma, d)=O P T_{R}(X, d)$
- Let C be the cycle we obtain from Γ by skipping elements of $X \backslash O$ and removing duplicate vertices from O
- Triangle inequality $\Rightarrow \operatorname{cost}(C, d) \leq \operatorname{cost}(\Gamma, d)$
- Cycle C induces two matchings of O. One of them has weight $\leq \frac{1}{2} \cdot \operatorname{cost}(C, d)$.
them $\underset{\substack{\text { min of } \\ \text { mathis } \\ \text { cot }}}{\sum \sum_{\text {matching }} d_{i} \leq \sum D_{i} \leq \frac{1}{2} O P T_{R} .}$

Analysis

- Note that

$$
\operatorname{cost}(\mathcal{C}, d)=\operatorname{cost}(T, d)+\operatorname{cost}(\mathcal{M}, d)
$$

Since we have Eulerian cycle.

- We already showed that $\operatorname{cost}(T, d) \leq O P T_{R}(X, d)$
- Need to show that $\operatorname{cost}(\mathcal{M}, d) \leq \frac{1}{2} \cdot O P T_{R}(X, d)$
- If Γ is a TSP cycle such that $\operatorname{cost}(\Gamma, d)=O P T_{R}(X, d)$
- Let C be the cycle we obtain from Γ by skipping elements of $X \backslash O$ and removing duplicate vertices from O
- Triangle inequality $\Rightarrow \operatorname{cost}(C, d) \leq \operatorname{cost}(\Gamma, d)$
- Cycle C induces two matchings of O. One of them has weight $\leq \frac{1}{2} \cdot \operatorname{cost}(C, d)$.
- Thus:

$$
\operatorname{cost}(\mathcal{M}, d) \leq \frac{1}{2} \cdot \operatorname{cost}(C, d) \leq \frac{1}{2} \cdot \operatorname{cost}(\Gamma, d)=\frac{1}{2} \cdot O P T_{R}(X, d)
$$

Conclusion

- Traveling Salesman Problem - important, but NP-hard
- Equivalent variants of TSP

Conclusion

- Traveling Salesman Problem - important, but NP-hard
- Equivalent variants of TSP
- Combinatorial Approximation Algorithms for TSP

Conclusion

- Traveling Salesman Problem - important, but NP-hard
- Equivalent variants of TSP
- Combinatorial Approximation Algorithms for TSP
- Achieve approximation algorithm by looking at an object (minimum spanning tree) which is a lower bound on the cost of the optimum

Conclusion

- Traveling Salesman Problem - important, but NP-hard
- Equivalent variants of TSP
- Combinatorial Approximation Algorithms for TSP
- Achieve approximation algorithm by looking at an object (minimum spanning tree) which is a lower bound on the cost of the optimum
- This object (minimum spanning tree) is also easy to find, so exploit that to our advantage to get approximation algorithm.

Acknowledgement

- Lecture based largely on:
- Lectures 2-4 of Luca's Optimization class
- See Luca's Lecture 3 notes at https://lucatrevisan.github.io/ teaching/cs261-11/lecture03.pdf
- See Luca's Lecture 4 notes at https://lucatrevisan.github.io/ teaching/cs261-11/lecture04.pdf

