Lecture 14: Linear Programming Relaxation and Rounding

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

June 24, 2021

Overview

- Part I
- Why Relax \& Round?
- Vertex Cover
- Set Cover
- Conclusion
- Acknowledgements

Motivation - NP-hard problems

- Many important optimization problems are NP-hard to solve.

Motivation - NP-hard problems

- Many important optimization problems are NP-hard to solve.
- What do we do when we see one?

Motivation - NP-hard problems

- Many important optimization problems are NP-hard to solve.
- What do we do when we see one?
(1) Find approximate solutions in polynomial time!

Motivation - NP-hard problems

- Many important optimization problems are NP-hard to solve.
- What do we do when we see one?
(1) Find approximate solutions in polynomial time!
(2) Sometimes we even do that for problems in P (but we want much much faster solutions)

Motivation - NP-hard problems

- Many important optimization problems are NP-hard to solve.
- What do we do when we see one?
(1) Find approximate solutions in polynomial time!
(2) Sometimes we even do that for problems in P (but we want much much faster solutions)
- Integer Linear Program (ILP):

Motivation - NP-hard problems

- Many important optimization problems are NP-hard to solve.
- What do we do when we see one?
(1) Find approximate solutions in polynomial time!
(2) Sometimes we even do that for problems in P (but we want much much faster solutions)
- Integer Linear Program (ILP):

$$
\begin{aligned}
\text { minimize } & c^{T} x \\
\text { subject to } A x & \leq b \\
x & \in \mathbb{N}^{n}
\end{aligned}
$$

- Advantage of ILPs: very expressive language to formulate optimization problems (capture many combinatorial optimization problems)

Motivation - NP-hard problems

- Many important optimization problems are NP-hard to solve.
- What do we do when we see one?
(1) Find approximate solutions in polynomial time!
(2) Sometimes we even do that for problems in P (but we want much much faster solutions)
- Integer Linear Program (ILP):

$$
\begin{aligned}
\text { minimize } & c^{T} x \\
\text { subject to } A x & \leq b \\
x & \in \mathbb{N}^{n}
\end{aligned}
$$

- Advantage of ILPs: very expressive language to formulate optimization problems (capture many combinatorial optimization problems)
- Disadvantage of ILPs: capture even NP-hard problems (thus NP-hard)

Motivation - NP-hard problems

- Many important optimization problems are NP-hard to solve.
- What do we do when we see one?
(1) Find approximate solutions in polynomial time!
(2) Sometimes we even do that for problems in P (but we want much much faster solutions)
- Integer Linear Program (ILP):

$$
\begin{aligned}
\text { minimize } & c^{\top} x \\
\text { subject to } A x & \leq b \\
x & \in \mathbb{N}^{n}
\end{aligned}
$$

- Advantage of ILPs: very expressive language to formulate optimization problems (capture many combinatorial optimization problems)
- Disadvantage of ILPs: capture even NP-hard problems (thus NP-hard)
- But we know how to solve LPs. Can we get partial credit in life?

Example
NP-hard
Maximum Independent Set:
input: $G(V, E)$ graph.
Independent set $S \subseteq V$ such that $u, v \in S \Rightarrow \underbrace{\{u, v\} \notin E .}_{\text {not connected }}$
Linear Program: by edge

$$
\operatorname{maximize} \sum_{v \in V} x_{v}=\operatorname{sice} \text { of } S
$$

subject to $x_{u}+x_{v} \leq 1$ for $\{u, v\} \in E$
if $\left\{n_{1} v\right\} \in E$

$$
\frac{x_{v} \in\{0,1\}}{} \text { for } v \in V=\left\{\begin{array}{lll}
0 & \text { if } & v \notin S \\
1 & \text { if } & v \in S
\end{array}\right.
$$

Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:

Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:
(1) Formulate combinatorial optimization problem as ILP

Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:
(1) Formulate combinatorial optimization problem as ILP
(2) Derive LP from the ILP by removing the integral constraints

This is called an LP relaxation.

Relax... \& Round!
In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:
(1) Formulate combinatorial optimization problem as ILP
(2) Derive LP from the ILP by removing the integral constraints This is called an LP relaxation.
(3) We are still minimizing the same objective function, but over a (potentially) larger set of solutions.

$$
\operatorname{opt}(L P) \leq \operatorname{opt}(I L P)
$$

because the LP has less constraints then the ILP

Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:
(1) Formulate combinatorial optimization problem as ILP
(2) Derive LP from the ILP by removing the integral constraints

This is called an $L P$ relaxation.
(3) We are still minimizing the same objective function, but over a (potentially) larger set of solutions.

$$
o p t(L P) \leq o p t(I L P)
$$

((Solve LP optimally using efficient algorithm.

Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:
(1) Formulate combinatorial optimization problem as ILP
(2) Derive LP from the ILP by removing the integral constraints

This is called an $L P$ relaxation.
(3) We are still minimizing the same objective function, but over a (potentially) larger set of solutions.

$$
o p t(L P) \leq o p t(I L P)
$$

(9) Solve LP optimally using efficient algorithm.
(1) If solution to LP has integral values, then it is a solution to ILP and we are done

Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:
(1) Formulate combinatorial optimization problem as ILP
(2) Derive LP from the ILP by removing the integral constraints

This is called an LP relaxation.
(3) We are still minimizing the same objective function, but over a (potentially) larger set of solutions.

$$
o p t(L P) \leq o p t(I L P)
$$

((Solve LP optimally using efficient algorithm.
(1) If solution to LP has integral values, then it is a solution to ILP and we are done
(2) If solution has fractional values, then we have to devise rounding procedure that transforms
$\min \alpha^{\top} x$

Not all LPs created equal
When solving LP

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

it is important to understand geometry of feasible set \& how nice the corner points are, as they are the candidates to optimum solution.

Not all LPs created equal

When solving LP

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

it is important to understand geometry of feasible set \& how nice the corner points are, as they are the candidates to optimum solution.

- Let $P:=\left\{x \in \mathbb{R}_{\geq 0}^{n} \mid A x=b\right\}$

Not all LPs created equal

When solving LP

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

it is important to understand geometry of feasible set \& how nice the corner points are, as they are the candidates to optimum solution.

- Let $P:=\left\{x \in \mathbb{R}_{\geq 0}^{n} \mid A x=b\right\}$
- Vertex Solutions: a solution $x \in P$ is a vertex solution if $\nexists y \neq 0$ such that $x+y \in P$ and $x-y \in P$

Not all LPs created equal

When solving LP

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

it is important to understand geometry of feasible set \& how nice the corner points are, as they are the candidates to optimum solution.

- Let $P:=\left\{x \in \mathbb{R}_{\geq 0}^{n} \mid A x=b\right\}$
- Vertex Solutions: a solution $x \in P$ is a vertex solution if $\nexists y \neq 0$ such that $x+y \in P$ and $x-y \in P$
- Extreme Point Solutions: $x \in P$ is an extreme point solution if $\exists u \in \mathbb{R}^{n}$ such that x is the unique optimum solution to the LP with constraint P and objective $u^{T} x$.

Not all LPs created equal

When solving LP

$$
\operatorname{minimize} \quad c^{T} x
$$

are equivalent 1 subject to $A x=b$

$$
x \geq 0
$$

it is important to understand geometry of feasible set \& how nice the corner points are, as they are the candidates to optimum solution.

- Let $P:=\left\{x \in \mathbb{R}_{\geq 0}^{n} \mid A x=b\right\}$
- Vertex Solutions: a solution $x \in P$ is a vertex solution if $\nexists y \neq 0$ such that $x+y \in P$ and $x-y \in P$
- Extreme Point Solutions: $x \in P$ is an extreme point solution if $\exists u \in \mathbb{R}^{n}$ such that x is the unique optimum solution to the LP with constraint P and objective $u^{T} x$.
- Basic Solutions: let $\operatorname{supp}(x):=\left\{i \in[n] \mid x_{i}>0\right\}$ be the set of nonzero coordinates of x. Then $x \in P$ is a basic solution \Leftrightarrow the columns of A indexed by $\operatorname{supp}(x)$ are linearly independent.
- Part I
- Why Relax \& Round?
- Vertex Cover
- Set Cover
- Conclusion
- Acknowledgements

Vertex Cover

Setup:

- Input: a graph $G(V, E)$.
- Output: Minimum number of vertices that "touches" all edges of graph. That is, minimum set S such that for each edge $\{u, v\} \in E$ we have

$$
|S \cap\{u, v\}| \geq 1
$$

G

vertex
care
(o) -

subgroph
M

Vertex Cover

Setup:

- Input: a graph $G(V, E)$.
- Output: Minimum number of vertices that "touches" all edges of graph. That is, minimum set S such that for each edge $\{u, v\} \in E$ we have

$$
|S \cap\{u, v\}| \geq 1
$$

- Weighted version: associate to each vertex $v \in V$ a cost $c_{v} \in \mathbb{R}_{\geq 0}$.

Vertex Cover

Setup:

- Input: a graph $G(V, E)$.
- Output: Minimum number of vertices that "touches" all edges of graph. That is, minimum set S such that for each edge $\{u, v\} \in E$ we have

$$
|S \cap\{u, v\}| \geq 1
$$

- Weighted version: associate to each vertex $v \in V$ a cost $c_{v} \in \mathbb{R}_{\geq 0}$.
(1) Setup ILP:

Simple 2-approximation (unweighted)

(1) List edges of E in any order. Set $S=\emptyset$

Simple 2-approximation (unweighted)

(1) List edges of E in any order. Set $S=\emptyset$
(2) For each $\{u, v\} \in E$:
(1) If $S \cap\{u, v\}=\emptyset$, then $S \leftarrow S \cup\{u, v\}$

Simple 2-approximation (unweighted)

(1) List edges of E in any order. Set $S=\emptyset$
(2) For each $\{u, v\} \in E$:
(1) If $S \cap\{u, v\}=\emptyset$, then $S \leftarrow S \cup\{u, v\}$
(3) return S

Simple 2-approximation (unweighted)

(1) List edges of E in any order. Set $S=\emptyset$
(2) For each $\{u, v\} \in E$:
(1) If $S \cap\{u, v\}=\emptyset$, then $S \leftarrow S \cup\{u, v\}$
(3) return S

Proof of correctness:

Simple 2-approximation (unweighted)

(1) List edges of E in any order. Set $S=\emptyset$
(2) For each $\{u, v\} \in E$:
(1) If $S \cap\{u, v\}=\emptyset$, then $S \leftarrow S \cup\{u, v\}$
(3) return S

Proof of correctness:

- By construction, S is a vertex cover.

Simple 2-approximation (unweighted)

(1) List edges of E in any order. Set $S=\emptyset$
(2) For each $\{u, v\} \in E$:

$$
\text { (1) If } S \cap\{u, v\}=\emptyset \text {, then } S \leftarrow S \cup\{u, v\}
$$

(3) return S

Proof of correctness:

- By construction, S is a vertex cover.
- If added elements to $S k$ times, then $|S|=2 k$ and G has a matching of size k, which means that optimum vertex cover is at least k.
$\left\{u_{1}, v_{1}\right\} \quad\left\{u_{2}, u_{2}\right\} \quad\left\{u_{3}, v_{3}\right\} \ldots\left\{\begin{array}{l}\left.u_{k}, v_{n}\right\}\end{array}\right.$
matching of G of size k

Simple 2-approximation (unweighted)

(1) List edges of E in any order. Set $S=\emptyset$
(2) For each $\{u, v\} \in E$:
(1) If $S \cap\{u, v\}=\emptyset$, then $S \leftarrow S \cup\{u, v\}$
(3) return S

Proof of correctness:

- By construction, S is a vertex cover.
- If added elements to $S k$ times, then $|S|=2 k$ and G has a matching of size k, which means that optimum vertex cover is at least k.
- Thus, we get a 2-approximation.

What can go wrong in the weighted case?

Heuristic: pick lowest weight only

$$
\begin{aligned}
& S=\{a, b\} \quad \omega(s)=101 \\
& S^{*}=\{b, c, d, e\} \quad \omega\left(s^{*}\right)=4
\end{aligned}
$$

$$
S=\left\{b_{1}, c_{1}, c\right\}
$$

$$
\omega(s)=200
$$

$$
s^{x}=\{a, b\} \quad \omega\left(s^{*}\right)=120
$$

Vertex Cover - LP relaxation

(1) Setup ILP:

$$
\begin{aligned}
\text { minimize } & \sum_{u \in V} c_{u} \cdot x_{u} \\
\text { subject to } x_{u}+x_{v} & \geq 1 \text { for }\{u, v\} \in E \\
x_{u} & \in\{0,1\} \text { for } u \in V
\end{aligned}
$$

Vertex Cover - LP relaxation

(1) Setup ILP:

$$
\begin{aligned}
\operatorname{minimize} & \sum_{u \in V} c_{u} \cdot x_{u} \\
\text { subject to } x_{u}+x_{v} & \geq 1 \text { for }\{u, v\} \in E \\
x_{u} & \in\{0,1\} \text { for } u \in V\} \text { hard }
\end{aligned}
$$

(2) Drop integrality constraints

$$
\operatorname{minimize} \sum_{u \in V} c_{U} \cdot x_{u}
$$

subject to $x_{u}+x_{v} \geq 1$ for $\{u, v\} \in E$

$$
0 \leq x_{u} \leq 1 \text { for } u \in V \text { new inequalities }
$$

Vertex Cover - LP relaxation

(1) Setup ILP:

$$
\begin{aligned}
\text { minimize } & \sum_{u \in V} c_{u} \cdot x_{u} \\
\text { subject to } x_{u}+x_{v} & \geq 1 \text { for }\{u, v\} \in E \\
x_{u} & \in\{0,1\} \text { for } u \in V
\end{aligned}
$$

(2) Drop integrality constraints

$$
\begin{aligned}
& \text { minimize } \sum_{u \in V} c_{u} \cdot x_{u} \\
& \text { subject to } \begin{aligned}
& x_{u}+x_{v} \geq 1 \\
& \text { for }\{u, v\} \in E \\
& 0 \leq x_{u} \leq 1
\end{aligned} \text { for } u \in V
\end{aligned}
$$

(3) Solve LP. Get optimal solution z for LP, where $z=\left(z_{u}\right)_{u \in V}$.

Vertex Cover - LP relaxation

(1) Setup ILP:

$$
\begin{aligned}
\text { minimize } & \sum_{u \in V} c_{u} \cdot x_{u} \\
\text { subject to } x_{u}+x_{v} & \geq 1 \text { for }\{u, v\} \in E \\
x_{u} & \in\{0,1\} \text { for } u \in V
\end{aligned}
$$

(2) Drop integrality constraints

$$
\begin{aligned}
& \text { minimize } \sum_{u \in V} c_{u} \cdot x_{u} \\
& \text { subject to } x_{u}+x_{v} \geq 1 \text { for }\{u, v\} \in E \\
& 0 \leq x_{u} \leq 1 \text { for } u \in V
\end{aligned}
$$

(3) Solve LP. Get optimal solution z for LP, where $z=\left(z_{u}\right)_{u \in V}$.
(9) Round LP as follows: round z_{v} to nearest integer.

Vertex Cover - Analysis

(1) Drop integrality constraints

$$
\begin{gathered}
\text { minimize } \sum_{u \in V} c_{u} \cdot x_{u} \\
\text { subject to } \begin{aligned}
x_{u}+x_{v} & \geq 1 \text { for }\{u, v\} \in E \\
0 \leq x_{u} \leq 1 & \text { for } u \in V
\end{aligned}
\end{gathered}
$$

(2) Solve LP. Get optimal solution z for LP.

Vertex Cover - Analysis

(1) Drop integrality constraints

$$
\begin{gathered}
\text { minimize } \sum_{u \in V} c_{u} \cdot x_{u} \\
\text { subject to } \begin{aligned}
x_{u}+x_{v} & \geq 1 \text { for }\{u, v\} \in E \\
0 \leq x_{u} \leq 1 & \text { for } u \in V
\end{aligned}
\end{gathered}
$$

(2) Solve LP. Get optimal solution z for LP.
(3) Round z_{v} to nearest integer. That is $y_{v}= \begin{cases}1, & \text { if } z_{v} \geq 1 / 2 \\ 0, & \text { if } 0 \leq z_{v}<1 / 2\end{cases}$
rounded solution

Vertex Cover - Analysis

(1) Drop integrality constraints

$$
\begin{gathered}
\text { minimize } \sum_{u \in V} c_{u} \cdot x_{u} \\
\text { subject to } x_{u}+x_{v} \geq 1 \text { for }\{u, v\} \in E \\
0 \leq x_{u} \leq 1 \text { for } u \in V
\end{gathered}
$$

(2) Solve LP. Get optimal solution z for LP.
(3) Round z_{v} to nearest integer. That is $y_{v}= \begin{cases}1, & \text { if } z_{v} \geq 1 / 2 \\ 0, & \text { if } 0 \leq z_{v}<1 / 2\end{cases}$
(c) y is an integral cover by construction

Vertex Cover - Analysis

(1) Drop integrality constraints

$$
\begin{aligned}
& \text { minimize } \sum_{u \in V} c_{u} \cdot x_{u} \\
& \text { subject to } x_{u}+x_{v} \geq 1 \text { for }\{u, v\} \in E \\
& 0 \leq x_{u} \leq 1 \text { for } u \in V
\end{aligned}
$$

(2) Solve LP. Get optimal solution z for LP.
(3) Round z_{v} to nearest integer. That is $y_{v}= \begin{cases}1, & \text { if } z_{v} \geq 1 / 2 \\ 0, & \text { if } 0 \leq z_{v}<1 / 2\end{cases}$
(9) y is an integral cover by construction
(6) each edge is covered, since given $\{u, v\} \in E$, at least one of z_{u}, z_{v} is $\geq 1 / 2$ (by feasibility of LP)

$$
\begin{aligned}
z_{u}+z_{v} \geqslant 1 & \Rightarrow \text { one of } z_{u}, z_{u} \text { is } \geqslant 1 / 2 \\
& \Rightarrow \text { one of } y_{u}, y_{v} \text { must be } 1
\end{aligned}
$$

y adution to ILP!

Vertex Cover - Analysis

$$
\begin{gathered}
y_{v}=1 \Rightarrow z_{v} \geqslant 1 / 2 \Rightarrow 2 z_{v} \geqslant 1=y_{v} \\
y_{v}=0 \Rightarrow z_{v} \geqslant 0 \Rightarrow 2 z_{2} \geqslant y_{v} \\
\therefore y_{v} \leqslant 2 z_{v}
\end{gathered}
$$

(2) Solve LP. Get optimal solution z for LP.

- Round z_{v} to nearest integer. That is $y_{v}=\left\{\begin{array}{l}1, \text { if } z_{v} \geq 1 / 2 \\ 0, \text { if } 0 \leq z_{v}<1 / 2\end{array}\right.$
- y is an integral cover by construction
- each edge is covered, since given $\{u, v\} \in E$, at least one of z_{u}, z_{v} is $\geq 1 / 2$ (by feasibility of LP)
- Cost of y is:

$$
\sum_{u \in V} c_{u} \cdot y_{u} \leq \underbrace{\sum_{u \in \operatorname{OPT}} c_{u} \cdot\left(2 \cdot z_{u}\right) \leq 2 \cdot O P T(I L P)}_{=2 \in V}
$$

- Part I
- Why Relax \& Round?
- Vertex Cover
- Set Cover
- Conclusion
- Acknowledgements

Set Cover

Setup:

- Input: a finite set U and a collection $S_{1}, S_{2}, \ldots, S_{n}$ of subsets of U.
- Output: The fewest collection of sets $I \subseteq[n]$ such that

$$
\bigcup_{i \in I} S_{j}=U .
$$

Set Cover

Setup:

- Input: a finite set U and a collection $S_{1}, S_{2}, \ldots, S_{n}$ of subsets of U.
- Output: The fewest collection of sets $I \subseteq[n]$ such that

$$
\bigcup_{i \in I} S_{j}=U .
$$

- Weighted version: associate to each set S_{i} a weight $w_{i} \in \mathbb{R}_{\geq 0}$.

Set Cover

Setup:

- Input: a finite set U and a collection $S_{1}, S_{2}, \ldots, S_{n}$ of subsets of U.
- Output: The fewest collection of sets $I \subseteq[n]$ such that

$$
\bigcup_{i \in I} S_{j}=U .
$$

- Weighted version: associate to each set S_{i} a weight $w_{i} \in \mathbb{R}_{\geq 0}$.
(1) Setup ILP:
collection
$\operatorname{minimize} \sum_{i \in[n]} w_{i} \cdot x_{i}$ minimize
must cover 〔 subject to

$$
\sum_{i: v \in S_{i}} x_{i} \geq 1 \text { for } v \in U \quad \begin{aligned}
& \text { mich or } \\
& x_{i} \in\{0,1\} \text { for } i \in[n] \quad \begin{array}{l}
\text { don't pish } \\
\text { let } S_{i}
\end{array}
\end{aligned}
$$

Set Cover - Relax...

(1) Obtain LP relaxation:

$$
\begin{gathered}
\text { minimize } \sum_{i \in[n]} w_{i} \cdot x_{i} \\
\text { subject to } \sum_{i: v \in S_{i}} x_{i} \geq 1 \text { for } v \in U \\
0 \leq x_{i} \leq 1 \text { for } i \in[n]
\end{gathered}
$$

Set Cover - Relax...

(1) Obtain LP relaxation:

$$
\begin{gathered}
\text { minimize } \sum_{i \in[n]} w_{i} \cdot x_{i} \\
\text { subject to } \sum_{i: v \in S_{i}} x_{i} \geq 1 \text { for } v \in U \\
0 \leq x_{i} \leq 1 \text { for } i \in[n]
\end{gathered}
$$

(2) Suppose we end up with fractional solution $z \in[0,1]^{n}$ when we solve the LP above. Now need to come up with a rounding scheme.

Set Cover - Relax...

(1) Obtain LP relaxation:

$$
\begin{aligned}
& \text { minimize } \sum_{i \in[n]} w_{i} \cdot x_{i} \\
& \text { subject to } \sum_{i: v \in S_{i}} x_{i} \geq 1 \text { for } v \in U \\
& 0 \leq x_{i} \leq 1 \text { for } i \in[n]
\end{aligned}
$$

(2) Suppose we end up with fractional solution $z \in[0,1]^{n}$ when we solve the LP above. Now need to come up with a rounding scheme.
(3) Can we just round each coordinate z_{i} to the nearest integer (like in vertex cover)?

Set Cover - Relax...

(1) Obtain LP relaxation:

$$
\begin{gathered}
\text { minimize } \sum_{i \in[n]} w_{i} \cdot x_{i} \\
\text { subject to } \sum_{i: v \in S_{i}} x_{i} \geq 1 \text { for } v \in U \\
0 \leq x_{i} \leq 1 \text { for } i \in[n]
\end{gathered}
$$

(2) Suppose we end up with fractional solution $z \in[0,1]^{n}$ when we solve the LP above. Now need to come up with a rounding scheme.
(3) Can we just round each coordinate z_{i} to the nearest integer (like in vertex cover)?
(9) Not really. Say $v \in U$ is in 20 sets, and we got $z_{i}=1 / 20$ for each of the sets $v \in S_{i}$. Then rounding procedure above would not select any such set!

Set Cover - Rounding

(1) Think of z_{i} as the "probability" that we would pick set S_{i}.

Set Cover - Rounding
(1) Think of z_{i} as the "probability" that we would pick set S_{i}.
(2) Solution z describes an "optimal probability distribution" over ways to chose the sets S_{i}.
pick S_{i} with prob. Z_{i}
independent for each $i \in[n]$
pick si $B\left(z_{i}\right)$
$z_{i} \in[0,1]$ for exc i.

Set Cover - Rounding

(1) Think of z_{i} as the "probability" that we would pick set S_{i}.
(2) Solution z describes an "optimal probability distribution" over ways to chose the sets S_{i}.
(3) Okay, but how do we cover?

Set Cover - Rounding

(1) Think of z_{i} as the "probability" that we would pick set S_{i}.
(2) Solution z describes an "optimal probability distribution" over ways to chose the sets S_{i}.
(3) Okay, but how do we cover?

Algorithm (Random Pick)

(1) Input: values $z=\left(z_{1}, \ldots, z_{n}\right) \in[0,1]^{n}$ such that z is a solution to our LP
(2) Output: a set cover for U

Set Cover - Rounding

(1) Think of z_{i} as the "probability" that we would pick set S_{i}.
(2) Solution z describes an "optimal probability distribution" over ways to chose the sets S_{i}.
(3) Okay, but how do we cover?

Algorithm (Random Pick)

(1) Input: values $z=\left(z_{1}, \ldots, z_{n}\right) \in[0,1]^{n}$ such that z is a solution to our $L P$
(2) Output: a set cover for U
(3) Set $I=\emptyset$

Set Cover - Rounding

(1) Think of z_{i} as the "probability" that we would pick set S_{i}.
(2) Solution z describes an "optimal probability distribution" over ways to chose the sets S_{i}.
(3) Okay, but how do we cover?

Algorithm (Random Pick)

(1) Input: values $z=\left(z_{1}, \ldots, z_{n}\right) \in[0,1]^{n}$ such that z is a solution to our $L P$
(2) Output: a set cover for U
(3) Set $I=\emptyset$
(1) for $i=1, \ldots n$

- with probability z_{i}, set $I=I \cup\{i\}$

Set Cover - Rounding

(1) Think of z_{i} as the "probability" that we would pick set S_{i}.
(2) Solution z describes an "optimal probability distribution" over ways to chose the sets S_{i}.
(3) Okay, but how do we cover?

Algorithm (Random Pick)

(1) Input: values $z=\left(z_{1}, \ldots, z_{n}\right) \in[0,1]^{n}$ such that z is a solution to our $L P$
(2) Output: a set cover for U
(3) Set $I=\emptyset$
(4) for $i=1, \ldots n$

- with probability z_{i}, set $I=I \cup\{i\}$
- return I

Set Cover - Rounding

(1) Think of z_{i} as the "probability" that we would pick set S_{i}.
(2) Solution z describes an "optimal probability distribution" over ways to chose the sets S_{i}.
(3) Okay, but how do we cover?

Algorithm (Random Pick)

(1) Input: values $z=\left(z_{1}, \ldots, z_{n}\right) \in[0,1]^{n}$ such that z is a solution to our $L P$
(2) Output: a set cover for U
(3) Set $I=\emptyset$
(4) for $i=1, \ldots n$

- with probability z_{i}, set $I=I \cup\{i\}$
- return 1
(9) Expected cost of the sets is $\sum_{i=1}^{n} w_{i} \cdot z_{i}$, which is the optimum for the LP. But will this process cover U ?

Analyzing Random Pick

Let's consider the Random Pick process from point of view of $v \in U$.

Analyzing Random Pick

Let's consider the Random Pick process from point of view of $v \in U$.

- $v \in S_{1}, \ldots, S_{k}$ (for simplicity)

Analyzing Random Pick

Let's consider the Random Pick process from point of view of $v \in U$.

- $v \in S_{1}, \ldots, S_{k}$ (for simplicity)
- As long as we select one of S_{i} 's above we are good (w.r.t. v)

Analyzing Random Pick

Let's consider the Random Pick process from point of view of $v \in U$.

- $v \in S_{1}, \ldots, S_{k}$ (for simplicity)
- As long as we select one of S_{i} 's above we are good (w.r.t. v)
- We select S_{i} with probability z_{i} such that

$$
\sum_{i=1}^{k} z_{i} \geq 1
$$

Because z is a solution to our LP

Analyzing Random Pick

Let's consider the Random Pick process from point of view of $v \in U$.

- $v \in S_{1}, \ldots, S_{k}$ (for simplicity)
- As long as we select one of S_{i} 's above we are good (w.r.t. v)
- We select S_{i} with probability z_{i} such that

$$
\sum_{i=1}^{k} z_{i} \geq 1
$$

Because z is a solution to our LP

- What is probability that v is covered in Random Pick?

Analyzing Random Pick
Let's consider the Random Pick process from point of view of $v \in U$.

- $v \in S_{1}, \ldots, S_{k}$ (for simplicity)

$$
\begin{aligned}
v \in S_{1}, S_{2} \quad z_{1} & =z_{2}=1 / 2 \\
P_{n}[\text { not cover } v] & =\underbrace{P_{r}\left[\text { not pick } S_{1}\right]}_{1 / 2} \cdot \underbrace{P_{n}[n o t ~ p i c h ~}_{1 / 2} s_{2}] \\
& =1 / 4
\end{aligned}
$$

- Definitely not 1 . Think about case $k=2$ and $z_{1}=z_{2}=1 / 2$.

$$
P_{r}[\cos v]=3 / 4 .
$$

Analyzing Random Pick

Let's consider the Random Pick process from point of view of $v \in U$.

- $v \in S_{1}, \ldots, S_{k}$ (for simplicity)

$$
\mathbb{F}[\# \text { uncovered elements }]=\frac{1}{4} \cdot|U|
$$

- Definitely not 1 . Think about case $k=2$ and $z_{1}=z_{2}=1 / 2$.
- If had many elements like that, would expect many elements uncovered. How to deal with this?

Analyzing Random Pick

Let's consider the Random Pick process from point of view of $v \in U$.

- $v \in S_{1}, \ldots, S_{k}$ (for simplicity)
- Definitely not 1 . Think about case $k=2$ and $z_{1}=z_{2}=1 / 2$.
- If had many elements like that, would expect many elements uncovered. How to deal with this?
- By perseverance! :)

Probability that Element is Covered

Lemma (Probability of Covering an Element)

In a sequence of k independent experiments, in which the $i^{\text {th }}$ experiment has success probability p_{i}, and

$$
\sum_{i=1}^{k} p_{i} \geq 1
$$

then there is a probability $\geq 1-1$ /e that at least one experiment is successful.

Probability that Element is Covered

Lemma (Probability of Covering an Element)

In a sequence of k independent experiments, in which the $i^{\text {th }}$ experiment has success probability p_{i}, and

$$
\sum_{i=1}^{k} p_{i} \geq 1
$$

then there is a probability $\geq 1-1$ /e that at least one experiment is successful.

- Probability that no experiment is successful:

Probability that Element is Covered

Lemma (Probability of Covering an Element)

In a sequence of k independent experiments, in which the $i^{\text {th }}$ experiment has success probability p_{i}, and

$$
\sum_{i=1}^{k} p_{i} \geq 1
$$

then there is a probability $\geq 1-1$ /e that at least one experiment is successful.

- Probability that no experiment is successful:

$$
\left(1-p_{1}\right) \cdot\left(1-p_{2}\right) \cdots\left(1-p_{k}\right)
$$

- $1-x \leq e^{-x}$ for $x \in[0,1]$

Probability that Element is Covered

Lemma (Probability of Covering an Element)

In a sequence of k independent experiments, in which the $i^{\text {th }}$ experiment has success probability p_{i}, and

$$
\sum_{i=1}^{k} p_{i} \geq 1
$$

then there is a probability $\geq 1-1$ /e that at least one experiment is successful.

- Probability that no experiment is successful:

$$
\left(1-p_{1}\right) \cdot\left(1-p_{2}\right) \cdots\left(1-p_{k}\right)
$$

- $1-x \leq e^{-x}$ for $x \in[0,1]$
- Thus probability of failure is

$$
\prod_{i=1}^{k}\left(1-p_{i}\right) \leq \prod_{i=1}^{k} e^{-p_{i}}=e^{-\sum p_{i} \leqslant-1}
$$

Randomized Rounding

Algorithm (Randomized Rounding)

(1) Input: values $z=\left(z_{1}, \ldots, z_{n}\right) \in[0,1]^{n}$ s.t. z is a solution to our $L P$
(2) Output: a set cover for U

Randomized Rounding

Algorithm (Randomized Rounding)

(1) Input: values $z=\left(z_{1}, \ldots, z_{n}\right) \in[0,1]^{n}$ s.t. z is a solution to our $L P$
(2) Output: a set cover for U
(3) Set I = \emptyset
(9) While there is element $v \in U$ uncovered:

For $i=1, \ldots, n$:

- with probability z_{i}, set $I=I \cup\{i\}$

(3) return I
perseverance

Randomized Rounding

Algorithm (Randomized Rounding)

(1) Input: values $z=\left(z_{1}, \ldots, z_{n}\right) \in[0,1]^{n}$ s.t. z is a solution to our $L P$
(2) Output: a set cover for U
(3) Set $I=\emptyset$
(9) While there is element $v \in U$ uncovered:

For $i=1, \ldots, n$:

- with probability z_{i}, set $I=I \cup\{i\}$

Random pick
(6) return I

To analyze this, need to show that we don't execute the for loop too many times.

Randomized Rounding

Algorithm (Randomized Rounding)

(1) Input: values $z=\left(z_{1}, \ldots, z_{n}\right) \in[0,1]^{n}$ s.t. z is a solution to our $L P$
(2) Output: a set cover for U
(3) Set $I=\emptyset$
(9) While there is element $v \in U$ uncovered:

For $i=1, \ldots, n$:

- with probability z_{i}, set $I=I \cup\{i\}$
(3) return I

To analyze this, need to show that we don't execute the for loop too many times.

Lemma (Probability Decay)

Let $t \in \mathbb{N}$. The probability that the for loop will be executed more than $\ln (|U|)+t$ times is at most e^{-t}.

Proof of Lemma

Lemma (Probability Decay)
Let $t \in \mathbb{N}$. The probability that the for loop will be executed more than $\ln (|U|)+t$ times is at most e^{-t}.

Proof of Lemma

Lemma (Probability Decay)

Let $t \in \mathbb{N}$. The probability that the for loop will be executed more than $\ln (|U|)+t$ times is at most e^{-t}.

- Probability that for loop is executed more than $\ln (|U|)+t$ times is the probability that there is an uncovered element after the $\ln (|U|)+t$ iteration.

Proof of Lemma

Lemma (Probability Decay)

Let $t \in \mathbb{N}$. The probability that the for loop will be executed more than $\ln (|U|)+t$ times is at most e^{-t}.

- Probability that for loop is executed more than $\ln (|U|)+t$ times is the probability that there is an uncovered element after the $\ln (|U|)+t$ iteration.
- Let $v \in U$. For each iteration of the loop, there is a probability of $1 / e$ that v is not covered. (by our previous lemma)

Proof of Lemma

Lemma (Probability Decay)

Let $t \in \mathbb{N}$. The probability that the for loop will be executed more than $\ln (|U|)+t$ times is at most e^{-t}.

- Probability that for loop is executed more than $\ln (|U|)+t$ times is the probability that there is an uncovered element after the $\ln (|U|)+t$ iteration.
- Let $v \in U$. For each iteration of the loop, there is a probability of $1 / e$ that v is not covered. (by our previous lemma)
- Probability that v not covered after $\ln (|U|)+t$ iterations is

$$
\left(\frac{1}{e}\right)^{\ln (|U|)+t}=\frac{1}{|U|} \cdot e^{-t}
$$

Proof of Lemma

Lemma (Probability Decay)

Let $t \in \mathbb{N}$. The probability that the for loop will be executed more than $\ln (|U|)+t$ times is at most e^{-t}.

- Probability that for loop is executed more than $\ln (|U|)+t$ times is the probability that there is an uncovered element after the $\ln (|U|)+t$ iteration.
- Let $v \in U$. For each iteration of the loop, there is a probability of $1 / e$ that v is not covered. (by our previous lemma)
- Probability that v not covered after $\ln (|U|)+t$ iterations is

$$
\left(\frac{1}{e}\right)^{\ln (|U|)+t}=\frac{1}{|U|} \cdot e^{-t}
$$

- Union bound.

Cost of Rounded Solution

Now that we know we will cover with high probability, we need to bound the cost of the solution we came up with.

Cost of Rounded Solution

Now that we know we will cover with high probability, we need to bound the cost of the solution we came up with.

- At each implementation of for loop, our expected cover weight is

$$
\sum_{i=1}^{k} w_{i} \cdot z_{i}=O P T(L P)
$$

Cost of Rounded Solution

Now that we know we will cover with high probability, we need to bound the cost of the solution we came up with.

- At each implementation of for loop, our expected cover weight is

$$
\sum_{i=1}^{k} w_{i} \cdot z_{i}
$$

- After t iterations of for loop, expected weight is

$$
t \cdot \sum_{i=1}^{k} w_{i} \cdot z_{i}=t \cdot O P T(L P)
$$

Cost of Rounded Solution

Now that we know we will cover with high probability, we need to bound the cost of the solution we came up with.

- At each implementation of for loop, our expected cover weight is

$$
\sum_{i=1}^{k} w_{i} \cdot z_{i}
$$

- After t iterations of for loop, expected weight is

$$
X=t \cdot \sum_{i=1}^{k} w_{i} \cdot z_{i}
$$

- By Markov:

$$
\operatorname{Pr}[X \geq 2 \cdot \mathbb{E}[X]] \leq 1 / 2
$$

$\begin{aligned} & \therefore \text { with prob. } \geqslant \frac{1}{2} \text { my total } \cos t \text { is } \\ & \leqslant 2 \cdot \mathbb{E}[\cos T] \\ &=2 \cdot t \cdot O P T(L P)\end{aligned}$

Cost of Rounded Solution

Now that we know we will cover with high probability, we need to bound the cost of the solution we came up with.

- At each implementation of for loop, our expected cover weight is

$$
\sum_{i=1}^{k} w_{i} \cdot z_{i}
$$

- After t iterations of for loop, expected weight is

$$
t \cdot \sum_{i=1}^{k} w_{i} \cdot z_{i}
$$

- By Markov:

$$
\operatorname{Pr}[X \geq 2 \cdot \mathbb{E}[X]] \leq 1 / 2
$$

Lemma (Cost of Rounding)

Given z optimal for the LP, our randomized rounding outputs, with probability ≥ 0.45 a feasible solution to set cover with $\leq 2 \cdot(\ln (|U|)+3) \cdot$ OPT $(I L P)$ sets

Cost of Rounding

Lemma (Cost of Rounding)

Given z optimal for the LP, our randomized rounding outputs, with probability ≥ 0.45 a feasible solution to set cover with $\leq 2 \cdot(\ln (|U|)+3) \cdot O P T(I L P)$ sets

Cost of Rounding

Lemma (Cost of Rounding)

Given z optimal for the LP, our randomized rounding outputs, with probability ≥ 0.45 a feasible solution to set cover with
$\leq 2 \cdot(\ln (|U|)+3) \cdot O P T(I L P)$ sets
(1) Let $t=\ln (|U|)+3$. There is a probability at most $e^{-3}<0.05$ that while loop runs for more than t steps.

Cost of Rounding

Lemma (Cost of Rounding)

Given z optimal for the LP, our randomized rounding outputs, with probability ≥ 0.45 a feasible solution to set cover with
$\leq 2 \cdot(\ln (|U|)+3) \cdot$ OPT $(I L P)$ sets
(1) Let $t=\ln (|U|)+3$. There is a probability at most $e^{-3}<0.05$ that while loop runs for more than t steps.
(2) After t steps, expected weight is

$$
\omega:=t \cdot \underbrace{\sum w_{i} \cdot z_{i}}_{\text {OPT(LP) }} \leq t \cdot O P T(I L P)
$$

Cost of Rounding

Lemma (Cost of Rounding)

Given z optimal for the LP, our randomized rounding outputs, with probability ≥ 0.45 a feasible solution to set cover with
$\leq 2 \cdot(\ln (|U|)+3) \cdot$ OPT $(I L P)$ sets
(1) Let $t=\ln (|U|)+3$. There is a probability at most $e^{-3}<0.05$ that while loop runs for more than t steps.
(2) After t steps, expected weight is

$$
\omega:=t \cdot \sum w_{i} \cdot z_{i} \leq t \cdot O P T(I L P)
$$

(3) Markov \Rightarrow probability that our solution has weight $\geq 2 \cdot \omega$ is $\leq 1 / 2$

Cost of Rounding

Lemma (Cost of Rounding)

Given z optimal for the LP, our randomized rounding outputs, with probability ≥ 0.45 a feasible solution to set cover with
$\leq 2 \cdot(\ln (|U|)+3) \cdot$ OPT $(I L P)$ sets
(1) Let $t=\ln (|U|)+3$. There is a probability at most $e^{-3}<0.05$ that while loop runs for more than t steps.
(2) After t steps, expected weight is

$$
\omega:=t \cdot \sum w_{i} \cdot z_{i} \leq t \cdot O P T(I L P)
$$

(3) Markov \Rightarrow probability that our solution has weight $\geq 2 \cdot \omega$ is $\leq 1 / 2$
(9) Union bound, with probability ≤ 0.55 either run for more than t times, or our solution has weight $\geq 2 \omega$

Cost of Rounding

Lemma (Cost of Rounding)

Given z optimal for the LP, our randomized rounding outputs, with probability ≥ 0.45 a feasible solution to set cover with
$\leq 2 \cdot(\ln (|U|)+3) \cdot O P T(I L P)$ sets
(1) Let $t=\ln (|U|)+3$. There is a probability at most $e^{-3}<0.05$ that while loop runs for more than t steps.
(2) After t steps, expected weight is

$$
\omega:=t \cdot \sum w_{i} \cdot z_{i} \leq t \cdot O P T(I L P)
$$

(3) Markov \Rightarrow probability that our solution has weight $\geq 2 \cdot \omega$ is $\leq 1 / 2$
(9) Union bound, with probability ≤ 0.55 either run for more than t times, or our solution has weight $\geq 2 \omega$
(9) Thus, with probability ≥ 0.45 we stop at t iterations and construct solution to set cover with cost $\leq 2 t \cdot O P T(I L P)$

Putting Everything Together

(1) Formulate set cover problem as ILP

Putting Everything Together

(1) Formulate set cover problem as ILP
(2) Derive LP from the ILP

Putting Everything Together

(1) Formulate set cover problem as ILP
(2) Derive LP from the ILP
(3) We are still minimizing the same objective function (weight of cover), but over a (potentially) larger (fractional) set of solutions.

$$
O P T(L P) \leq O P T(I L P)
$$

Putting Everything Together

(1) Formulate set cover problem as ILP
(2) Derive LP from the ILP
(3) We are still minimizing the same objective function (weight of cover), but over a (potentially) larger (fractional) set of solutions.

$$
O P T(L P) \leq O P T(I L P)
$$

(9) Solve LP optimally using efficient algorithm.

Putting Everything Together

(1) Formulate set cover problem as ILP
(2) Derive LP from the ILP
(3) We are still minimizing the same objective function (weight of cover), but over a (potentially) larger (fractional) set of solutions.

$$
O P T(L P) \leq O P T(I L P)
$$

(9) Solve LP optimally using efficient algorithm.
(1) If solution to LP has integral values, then it is a solution to ILP and we are done

Putting Everything Together

(1) Formulate set cover problem as ILP
(2) Derive LP from the ILP
(3) We are still minimizing the same objective function (weight of cover), but over a (potentially) larger (fractional) set of solutions.

$$
O P T(L P) \leq O P T(I L P)
$$

(9) Solve LP optimally using efficient algorithm.
(1) If solution to LP has integral values, then it is a solution to ILP and we are done
(2) If have fractional values, rounding procedure

Randomized Rounding algorithm, with probability ≥ 0.45 we get

$$
\begin{aligned}
& \operatorname{cost}(\text { rounded solution }) \leq 2 \cdot(\ln (|U|)+3) \cdot O P T(I L P) \\
& O(\log (|U|))-\text { appreximation algonithm }
\end{aligned}
$$

Conclusion

- Integer Linear programming - very general, and pervasive in (combinatorial) algorithmic life
- ILP NP-hard
- Rounding for the rescue!
- Solve LP and round the solution
- Deterministic rounding when solutions are nice
- Randomized rounding when things a bit more complicated

Acknowledgement

- Lecture based largely on:
- Lectures 7-8 of Luca's Optimization class
- See Luca's vertex cover notes at https://lucatrevisan.github. io/teaching/cs261-11/lecture07.pdf
- See Luca's set cover notes at https://lucatrevisan.github.io/ teaching/cs261-11/lecture08.pdf

