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Motivation - NP-hard problems

@ Many important optimization problems are NP-hard to solve.
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Motivation - NP-hard problems

@ Many important optimization problems are NP-hard to solve.
@ What do we do when we see one?

@ Find approximate solutions in polynomial time!
@ Sometimes we even do that for problems in P (but we want much
much faster solutions)

o Integer Linear Program (ILP):

o c minimize ¢’ x L?
A?‘ / subject to Ax < b
Fawt } r wm*w"‘h
o g Jo [ oeproliy
1

(mqﬁa net & IIV\W)
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Motivation - NP-hard problems

@ Many important optimization problems are NP-hard to solve.
@ What do we do when we see one?

@ Find approximate solutions in polynomial time!
@ Sometimes we even do that for problems in P (but we want much
much faster solutions)

o Integer Linear Program (ILP):

minimize ¢’ x

subject to Ax < b
x e N"

@ Advantage of ILPs: very expressive language to formulate
optimization problems (capture many combinatorial optimization
problems)
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o Integer Linear Program (ILP):
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Motivation - NP-hard problems

Many important optimization problems are NP-hard to solve.
What do we do when we see one?

@ Find approximate solutions in polynomial time!
@ Sometimes we even do that for problems in P (but we want much
much faster solutions)

Integer Linear Program (ILP):

minimize ¢’ x

subject to Ax < b
x e N"

Advantage of ILPs: very expressive language to formulate
optimization problems (capture many combinatorial optimization
problems)

Disadvantage of ILPs: capture even NP-hard problems (thus NP-hard)

But we know how to solve LPs. Can we get partial credit in life?
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Example pe- hoxd

lMaximum Independent Set:

inpat: G(V E) graph.

Independent set S C V such that u,v € S = {u,v} ¢ E.
= o
Integer Linear Program: Vot Commeckot
bv ecfa4
maximize va = Arde -76 S

/—subject to xy+x, <1 for {u,v} €E
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Relax... & Round!

In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:
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Relax... & Round!

In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:

@ Formulate combinatorial optimization problem as ILP
@ Derive LP from the ILP by removing the integral constraints
This is called an LP relaxation.

© We are still minimizing the same objective function, but over a
(potentially) larger set of solutions.

opt(LP) < opt(ILP)
pocamae th LP her Moo combraink Hoon

Yg ILP

15100


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira



Relax... & Round!

In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:

@ Formulate combinatorial optimization problem as ILP
@ Derive LP from the ILP by removing the integral constraints
This is called an LP relaxation.

© We are still minimizing the same objective function, but over a
(potentially) larger set of solutions.

opt(LP) < opt(ILP)
@ Solve LP optimally using efficient algorithm.
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Relax... & Round!

In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:

@ Formulate combinatorial optimization problem as ILP
@ Derive LP from the ILP by removing the integral constraints
This is called an LP relaxation.

© We are still minimizing the same objective function, but over a
(potentially) larger set of solutions.

opt(LP) < opt(ILP)

@ Solve LP optimally using efficient algorithm.

@ If solution to LP has integral values, then it is a solution to ILP and we
are done
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Relax... & Round!

In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:

@ Formulate combinatorial optimization problem as ILP
@ Derive LP from the ILP by removing the integral constraints
This is called an LP relaxation.
© We are still minimizing the same objective function, but over a
(potentially) larger set of solutions.
| opt(LP) < opt(ILP)

@ Solve LP optimally using efficient algorithm.
@ If solution to LP has integral values, then it is a solution to ILP and we

are done
@ |If solution has fractional values, then we have to devise rounding
procedure that transforms W PTA de
fractional solutions — mteg_ral solutions ?)
= ¢ OPI(x
. T,
wmin ®'x 2 3 kgl

ol2: bt (3 - % ™t ¢ €7 OPF(LLP) &
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Not all LPs created equal
When solving LP

minimize ¢’ x
subjectto Ax=0b
x>0

it is important to understand geometry of feasible set & how nice the
corner pomts are, as they are the candidates to opt:mum solut on

Y (Yoo, cu

gt e

'§ I 0) Cots e

)uh'swnf

chb’ﬁ
wr\-'-\ M‘)

clensmmbow

nice ( - ‘5/‘) '
(et inWid )
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Not all LPs created equal
When solving LP

minimize ¢’ x
subjectto Ax=0b
x>0
it is important to understand geometry of feasible set & how nice the

corner points are, as they are the candidates to optimum solution.
o Let P:={x e R, | Ax = b}
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Not all LPs created equal
When solving LP

minimize ¢’ x
subjectto Ax=0b
x>0

it is important to understand geometry of feasible set & how nice the
corner points are, as they are the candidates to optimum solution.
o Let P:={x e R, | Ax = b}
o Vertex Solutions: a solution x € P is a vertex solution if Ay # 0
such that x+y e Pandx—y € P

? 2

A

P

>
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Not all LPs created equal
When solving LP

minimize ¢’ x
subjectto Ax=0b
x>0

it is important to understand geometry of feasible set & how nice the
corner points are, as they are the candidates to optimum solution.
o Let P:={x e R, | Ax = b}
o Vertex Solutions: a solution x € P is a vertex solution if Ay # 0
such that x+y e Pandx—y e P
o Extreme Point Solutions: x € P is an extreme point solution if
Ju € R" such that x is the unique optimum solution to the LP with
constraint P and objective u” x.

/A\

Q
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Not all LPs created equal
When solving LP

Preac hee P”H“‘ minimize ¢’ x

Oﬁ‘f‘ ‘2;::‘ Uﬁm subjectto Ax=0b
x>0

it is important to understand geometry of feasible set & how nice the

corner points are, as they are the candidates to optimum solution.

o Let P:={x e R, | Ax = b}

[ @ Vertex Solutions: a solution x € P is a vertex solution if Ay # 0
such that x+y e Pandx—y e P

J o Extreme Point Solutions: x € P is an extreme point solution if

Ju € R" such that x is the unique optimum solution to the LP with

constraint P and objective u' x.

e Basic Solutions: let supp(x) := {i € [n] | x; > 0} be the set of
k nonzero coordinates of x. Then x € P is a basic solution < the
columns of A indexed by supp(x) are linearly independent.
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Part |

Vertex Cover

Set Cover

Conclusion

Acknowledgements
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Vertex Cover

Setup:
o Input: a graph G(V, E).
@ Output: Minimum number of vertices that “touches” all edges of
graph. That is, minimum set S such that for each edge {u,v} € E

we have
Sn{u,v}i >1.
6 1SN {u, v}
G—0
06
, pubyeph
vetdx M
Comn
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Vertex Cover

Setup:
o Input: a graph G(V, E).
@ Output: Minimum number of vertices that “touches” all edges of
graph. That is, minimum set S such that for each edge {u,v} € E

we have
1SN {u,v} >1.

@ Weighted version: associate to each vertex v € V a cost ¢, € R>o.
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Vertex Cover

Setup:

o Input: a graph G(V, E).

@ Output: Minimum number of vertices that “touches” all edges of
graph. That is, minimum set S such that for each edge {u,v} € E
we have

1SN {u,v} >1.

@ Weighted version: associate to each vertex v € V a cost ¢, € Rxo.

© Setup ILP:

minimize Zcu-xu 'h’u oot

ueV
ks\ubjif? Xy +x, >1 for{u,v} €E

(> €{0,1} forue v)
‘gﬂwma covn

C 1 1{ ues
? 'uu:io‘;"e ud$
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Simple 2-approximation (unweighted)

@ List edges of E in any order. Set S = ()
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Simple 2-approximation (unweighted)

© List edges of E in any order. Set S = ()
@ For each {u,v} € E:
0 IfSn{u,v} =0 then S+ SU{u,v}

T dd ol wiv e my adS
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Simple 2-approximation (unweighted)

O List edges of E in any order. Set S =10
@ For each {u,v} € E:

0 IfSn{u,v} =0 then S+ SU{u,v}
© return S
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Simple 2-approximation (unweighted)

© List edges of E in any order. Set S = ()
@ For each {u,v} € E:
0 IfSn{u,v} =0 then S+ SU{u,v}
Q return S
Proof of correctness:
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Simple 2-approximation (unweighted)

© List edges of E in any order. Set S = ()
@ For each {u,v} € E:
0 IfSn{u,v} =0 then S+ SU{u,v}

@ return S
Proof of correctness:

@ By construction, S is a vertex cover. v
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Simple 2-approximation (unweighted)

© List edges of E in any order. Set S = ()
@ For each {u,v} € E:
0 IfSn{u,v} =0 then S+ SU{u,v}

@ return S
Proof of correctness:
@ By construction, S is a vertex cover.

o If added elements to S k times, then |S| = 2k and G has a matching
of size k, which means that optimum vertex coveris at least k.

f“-l I"cs {“1)‘”-‘ ;“5 )Vys T {““‘V“S

—_— ‘ma.+6h"“6 % G O‘( N Lk
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Simple 2-approximation (unweighted)

© List edges of E in any order. Set S = ()
@ For each {u,v} € E:
0 IfSn{u,v} =0 then S+ SU{u,v}
© return S
Proof of correctness:
@ By construction, S is a vertex cover.
o If added elements to S k times, then |S| = 2k and G has a matching
of size k, which means that optimum vertex cover is at least k.

@ Thus, we get a 2-approximation.
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What can go wrong in the weighted case?

Original Algo

5:%5“’4"“] w(e) = 10
cX o fabt  wls)e 12

g - fobh W)
- Jb,cdieh w()-U

U
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Vertex Cover - LP relaxation
@ Setup ILP:
minimize Z Cu* Xu
ueV

subject to x, +x, > 1 for {u,v} € E
x, € {0,1} forue V

36 /100



Vertex Cover - LP relaxation

@ Setup ILP:

minimize Z Cu Xu
ueVv
subject to x, +x, > 1 for {u,v} € E

xy € 0,1} for u e v(} hanot

cowmrirmint
@ Drop integrality constraints

minimize E Cu* Xu \‘

ueV
subject to x, +x, > 1 for {u,v} € E

l 0<x,<1 forueV t new I'I)W-'HUJ
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Vertex Cover - LP relaxation

@ Setup ILP:

minimize Z Cu Xu
ueVv
subject to x, +x, > 1 for {u,v} € E

x, €{0,1} forueV

@ Drop integrality constraints
/
minimize Z Cu* Xu
ueV LP

subject to x, +x, > 1 for {u,v} € E
0<x,<1 forueV

© Solve LP. Get optimal solution z for LP, where z = (z,),ecv.
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Vertex Cover - LP relaxation

@ Setup ILP:

minimize Z Cu* Xu
ueV
subject to x, +x, > 1 for {u,v} € E

x, € {0,1} forue V
@ Drop integrality constraints
minimize Z Cu* Xy
ueVv

subject to x, +x, > 1 for {u,v} € E
0<x,<1 forueV

© Solve LP. Get optimal solution z for LP, where z = (z,),ev.

@ Round LP as follows: round z, to nearest integer.
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Vertex Cover - Analysis
© Drop integrality constraints
minimize Z Cu " Xy
uev
subject to x, +x, > 1 for {u,v} € E
0<x,<1 forueV

@ Solve LP. Get optimal solution z for LP.
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Vertex Cover - Analysis
© Drop integrality constraints
minimize Z Cu " Xy
ueV
subject to x, +x, > 1 for {u,v} € E
0<x,<1 forueV

@ Solve LP. Get optimal solution z for LP.
1, ifz,>1/2

© Round z, to nearest integer. That is y, =
g Y {O, if0<z <1/2

Houmdsd ol hm
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Vertex Cover - Analysis
© Drop integrality constraints
minimize Z Cu " Xy
ueV
subject to x, +x, > 1 for {u,v} € E
0<x,<1 forueV

@ Solve LP. Get optimal solution z for LP.
1, ifz,>1/2

© Round z, to nearest integer. That is y, =
g Y {0, if0<z <1/2

@ vy is an integral cover by construction
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Vertex Cover - Analysis
@ Drop integrality constraints
minimize Z Cu* Xy
ueV
subject to x, +x, > 1 for {u,v} € E
0<x,<1 forueV

@ Solve LP. Get optimal solution z for LP.
© Round z, to nearest integer. That is y, = {1’ !f 2 21/2
0,if0<z <1/2
@ y is an integral cover by construction
© each edge is covered, since given {u, v} € E, at least one of z,, z, is
> 1/2 (by feasibility of LP)

FutTr 2L = one Tu) b 42 z’/L
rd

= eme o Yui Yo wuwr? be 4

y Adakm to TLY!
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Vertex Cover - Analysis

Sv =L = El"y,/z:) 2202-{=ﬂv

@ Solve LP. Get optimal solution z for LP.
1, ifz,>1/2

© Round z, to nearest integer. Thatis y, =< I 221/
0,if0<z <1/2

@ y is an integral cover by construction
@ each edge is covered, since given {u, v} € E, at least one of z,, z, is

> 1/2 (by feasibility of LP)
Q Cost of y is:
Savu<Y e (2-2,) <2- OPT(ILP)
ueV ucV L
— > =
=2 O'P\'(.L?) -
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@ Set Cover
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Set Cover

Setup:
o Input: a finite set U and a collection 51, 5,,...,S, of subsets of U.
@ Output: The fewest collection of sets | C [n] such that

Us=u.

i€l
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Set Cover

Setup:
o Input: a finite set U and a collection 51, 5,,...,S, of subsets of U.
@ Output: The fewest collection of sets | C [n] such that

Us=u.

i€l

e Weighted version: associate to each set S; a weight w; € R>o.
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Set Cover

Setup:
@ Input: a finite set U and a collection 51, 5,,...,S, of subsets of U.
@ Output: The fewest collection of sets / C [n] such that

Us=v
iel
o Weighted version: associate to each set 5; a weight w; € R>q.
O Setup ILP:

" "eseght of
uuk-ﬂ‘ minimize Ig[;'] Wi - X; sun c.,&ochm
yywn’i’ N #— subject to Z x; >1[forvelU I
§] iveS; ich n
| xi € {0,1} forieln] | dow't pich
det S
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Set Cover - Relax...

@ Obtain LP relaxation:

subject to Z x;>1 forvelU
i:veS;

ngigl for i € [n]

49 /100


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira



Set Cover - Relax...

@ Obtain LP relaxation:

subject to Z xi >1 forvelU
i:veS;
0<x; <1 foric€|n]

@ Suppose we end up with fractional solution z € [0, 1]” when we solve
the LP above. Now need to come up with a rounding scheme.

50 /100



Set Cover - Relax...

@ Obtain LP relaxation:

subject to Z xi >1 forvelU
i:veS;
0<x; <1 foric€|n]

@ Suppose we end up with fractional solution z € [0, 1]” when we solve
the LP above. Now need to come up with a rounding scheme.

© Can we just round each coordinate z; to the nearest integer (like in
vertex cover)?
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Set Cover - Relax...

@ Obtain LP relaxation:

subject to Z xi >1 forvelU
i:veS;
0<x; <1 foric€|n]

@ Suppose we end up with fractional solution z € [0, 1]” when we solve
the LP above. Now need to come up with a rounding scheme.

© Can we just round each coordinate z; to the nearest integer (like in
vertex cover)?

© Not really. Say v € U is in 20 sets, and we got z; = 1/20 for each of
the sets v € 5;. Then rounding procedure above would not select any
such set!
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Set Cover - Rounding
@ Think of z; as the “probability” that we would pick set S;.
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Set Cover - Rounding

@ Think of z; as the “probability” that we would pick set S;.
to chose the sets S;.

ick Si
f

@ Solution z describes an “optimal probability distribution” over ways
. b

with P

ol pick S/

(4]
wi+h ,M-o") {(-
lﬂdld’md‘ﬂ‘* -651 \&Ch \

€ n)
»P"clq_ S 'BC'Z{)

2, el for b
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Set Cover - Rounding
@ Think of z; as the “probability” that we would pick set S;.

@ Solution z describes an “optimal probability distribution” over ways
to chose the sets S;.

© Okay, but how do we cover?
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Set Cover - Rounding
@ Think of z; as the “probability” that we would pick set S;.

@ Solution z describes an “optimal probability distribution” over ways
to chose the sets S;.

© Okay, but how do we cover?
Algorithm (Random Pick)

@ Input: values z = (zi,...,z,) € [0,1]" such that z is mrion to our LP

@ Output: a set cover for U
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Set Cover - Rounding
@ Think of z; as the “probability” that we would pick set S;.

@ Solution z describes an “optimal probability distribution” over ways
to chose the sets S;.

© Okay, but how do we cover?
Algorithm (Random Pick)

® Input: values z = (zi,...,z,) € [0,1]" such that z is a solution to our LP
@ Output: a set cover for U
© Setl=10
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Set Cover - Rounding
@ Think of z; as the “probability” that we would pick set S;.

@ Solution z describes an “optimal probability distribution” over ways
to chose the sets S;.

© Okay, but how do we cover?
Algorithm (Random Pick)

® Input: values z = (zi,...,z,) € [0,1]" such that z is a solution to our LP
@ Output: a set cover for U
@ Setl=10
Q@ fori=1,...n
o with probability zj, set | = [ U {i}
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Set Cover - Rounding

@ Think of z; as the “probability” that we would pick set S;.

@ Solution z describes an “optimal probability distribution” over ways
to chose the sets S;.

© Okay, but how do we cover?
Algorithm (Random Pick)

® Input: values z = (zi,...,z,) € [0,1]" such that z is a solution to our LP
@ Output: a set cover for U
@ Setl=10
Q@ fori=1,...n
o with probability zj, set | = [ U {i}

@ return |
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Set Cover - Rounding
@ Think of z; as the “probability” that we would pick set S;.

@ Solution z describes an “optimal probability distribution” over ways
to chose the sets S;.

© Okay, but how do we cover?
Algorithm (Random Pick)

® Input: values z = (zi,...,z,) € [0,1]" such that z is a solution to our LP
@ Output: a set cover for U
© Setl=1

Q@ fori=1,...n

o with probability zj, set | = [ U {i}

return |

(]

© Expected cost of the sets is > "_; w; - z;, which is the optimum for
the LP. But will this process cover U?
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Analyzing Random Pick

Let’s consider the Random Pick process from point of view of v € U.
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Analyzing Random Pick
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63/100



Analyzing Random Pick

Let’s consider the Random Pick process from point of view of v € U.
e veES,..., S (for simplicity)
@ As long as we select one of S;'s above we are good (w.r.t. v)

o We select S; with probability z; such that

k
ZZ,' > 1
i=1

Because z is a solution to our LP
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Analyzing Random Pick

Let’s consider the Random Pick process from point of view of v € U.
e veES,..., S (for simplicity)
@ As long as we select one of S;'s above we are good (w.r.t. v)

o We select S; with probability z; such that

k
ZZ,' > 1
i=1

Because z is a solution to our LP

@ What is probability that v is covered in Random Pick?
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Analyzing Random Pick

] VESl,

Let’s consider the Random Pick process from point of view of v € U.
., Sk (for simplicity)
¥ € S| /67.

I Z;-‘ '/7.

Pu [ ot cmon V] = Puloot 0k 6 - Pu [0 ek )

B —
o
l/‘1

2

On [ ¥ = ¥4

o Definitely not 1. Think about case k =2 and z; = z, = 1/2
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Analyzing Random Pick

Let’s consider the Random Pick process from point of view of v € U.

e veSy,. .., S (for simplicity)

H,# umevored elemh—) - ﬁ{'\- ol

@ Definitely not 1. Think about case k =2 and z; = zp = 1/2.

o If had many elements like that, would expect many elements
uncovered. How to deal with this?
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Analyzing Random Pick

Let’s consider the Random Pick process from point of view of v € U.

e veES,..., S (for simplicity)

@ Definitely not 1. Think about case k =2 and z; = zp = 1/2.

o If had many elements like that, would expect many elements
uncovered. How to deal with this?

@ By perseverance! :)

68 /100



Probability that Element is Covered

Lemma (Probability of Covering an Element)

In a sequence of k independent experiments, in which the ith experiment
has success probability p;, and

K
Zpi >1
i=1

then there is a probability > 1 — 1/e that at least one experiment is
successful.
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Probability that Element is Covered

Lemma (Probability of Covering an Element)

In a sequence of k independent experiments, in which the it" experiment
has success probability p;, and

K
Zpi >1
i=1

then there is a probability > 1 — 1/e that at least one experiment is
successful.

@ Probability that no experiment is successful:

(1=p1)-(1—=p2)--- (1= px)

EXporimmt

1 r?a;w

/\/’_—
\nﬂbpw"(‘"\'
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Probability that Element is Covered

Lemma (Probability of Covering an Element)

In a sequence of k independent experiments, in which the ith experiment
has success probability p;, and

K
ZP/‘ >1
i=1

then there is a probability > 1 — 1/e that at least one experiment is
successful.

@ Probability that no experiment is successful:

(L=p1) - (L=p2)-- (1= px)
o 1—x<e*forxe|01]
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Probability that Element is Covered

Lemma (Probability of Covering an Element)

In a sequence of k independent experiments, in which the ith

experiment
has success probability p;, and

K
ZP/‘ >1
i=1

then there is a probability > 1 — 1/e that at least one experiment is
successful.

@ Probability that no experiment is successful:
(I=p1) - (L=p2)--- (1= px)
o 1—x<e*forxe|01]
@ Thus probability of failure is Z
- [7. <
H(l—p, <He Pi=e ™ Pkl /e
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Randomized Rounding

Algorithm (Randomized Rounding)
Q Input: values z = (z1,...,2,) € [0,1]" s.t. z is a solution to our LP

@ Output: a set cover for U
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Randomized Rounding

Algorithm (Randomized Rounding)
Q Input: values z = (z1,...,2,) € [0,1]" s.t. z is a solution to our LP
@ Output: a set cover for U
Q Setl =1
(% ] ?/hi/e there is element v € U uncovered:

ori=1,...,n:
o with probability z;, set | = 1 U {i} & ,RO.TIJU'V\ XM

@ return |

BPOKMVM
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Randomized Rounding

Algorithm (Randomized Rounding)
Q Input: values z = (z1,...,2,) € [0,1]" s.t. z is a solution to our LP
@ Output: a set cover for U
Q Set/ =1

@ While there is element v € U uncovered:

Fori=1,...,n: (‘ qudom o”ial(

e with probability z;, set | =1 U {i}

@ return |

V.

To analyze this, need to show that we don’t execute the for loop too many
times.
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Randomized Rounding

Algorithm (Randomized Rounding)

Q Input: values z = (z1,...,2,) € [0,1]" s.t. z is a solution to our LP
@ Output: a set cover for U
Q Setl =10
@ While there is element v € U uncovered:
Fori=1,...,n:
o with probability z;, set | = 1 U {i}
@ return | )

To analyze this, need to show that we don’t execute the for loop too many
times.

Lemma (Probability Decay)

Let t € N. The probability that the for loop will be executed more than
In(JU|) + t times is at most e *.
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Proof of Lemma

Lemma (Probability Decay)

Let t € N. The probability that the for loop will be executed more than
In(JU|) + t times is at most e~ *.
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Proof of Lemma

Lemma (Probability Decay)

Let t € N. The probability that the for loop will be executed more than
In(JU|) + t times is at most e~ *.

@ Probability that for loop is executed more than In(|U]) 4 t times is
the probability that there is an uncovered element after the
In(JU|) + t iteration.
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Proof of Lemma

Lemma (Probability Decay)

Let t € N. The probability that the for loop will be executed more than
In(JU|) + t times is at most e~ *.

@ Probability that for loop is executed more than In(|U]) 4 t times is
the probability that there is an uncovered element after the
In(JU|) + t iteration.

@ Let v € U. For each iteration of the loop, there is a probability of 1/e
that v is not covered. (by our previous lemma)
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Proof of Lemma

Lemma (Probability Decay)

Let t € N. The probability that the for loop will be executed more than

In(JU|) + t times is at most e~ *.

@ Probability that for loop is executed more than In(|U]) 4 t times is
the probability that there is an uncovered element after the
In(JU|) + t iteration.

@ Let v € U. For each iteration of the loop, there is a probability of 1/e
that v is not covered. (by our previous lemma)

@ Probability that v not covered after In(|U|) + t iterations is
1 In(|U[)+t 1
() U eit
e U]
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Proof of Lemma

Lemma (Probability Decay)

Let t € N. The probability that the for loop will be executed more than
In(JU|) + t times is at most e~ *.

@ Probability that for loop is executed more than In(|U]) 4 t times is
the probability that there is an uncovered element after the
In(JU|) + t iteration.

@ Let v € U. For each iteration of the loop, there is a probability of 1/e
that v is not covered. (by our previous lemma)

@ Probability that v not covered after In(|U|) + t iterations is

(1>|n(U|)+t 1 L
_ = — .e
e ||

@ Union bound.
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Cost of Rounded Solution

Now that we know we will cover with high probability, we need to bound
the cost of the solution we came up with.
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Cost of Rounded Solution

Now that we know we will cover with high probability, we need to bound
the cost of the solution we came up with.
@ At each implementation of for loop, our expected cover weight is

Swez = OPT(LP)
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Cost of Rounded Solution

Now that we know we will cover with high probability, we need to bound
the cost of the solution we came up with.
@ At each implementation of for loop, our expected cover weight is

k
> wiz
i=1
o After t iterations of for loop, expected weight is

t'iwi'zi = Tt O?((LP)
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Cost of Rounded Solution

Now that we know we will cover with high probability, we need to bound
the cost of the solution we came up with.
@ At each implementation of for loop, our expected cover weight is

k
E Wi - Z;
i=1

o After t iterations of for loop, expected weight is

k
X = f'ZWi'Zi
i=1

o By Markov:
Pr X >2-E[X]] <1/2.

; Y 4 }GM Cxnt =
with greeb T " ~ 5. gl
-: Z'C'OP(("?)
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Cost of Rounded Solution
Now that we know we will cover with high probability, we need to bound
the cost of the solution we came up with.

@ At each implementation of for loop, our expected cover weight is

k
E Wi - Z;
i=1

o After t iterations of for loop, expected weight is

o By Markov:
Pr X >2-E[X]] <1/2.

Lemma (Cost of Rounding)

Given z optimal for the LP, our randomized rounding outputs, with

probability > 0.45 a feasible solution to set cover W/th w 7 LW
<2-(In(jU])+3)- OPT(/LF_i)_—SE_t;.‘L\ Do w’_‘,
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Cost of Rounding

Lemma (Cost of Rounding)

Given z optimal for the LP, our randomized rounding outputs, with
probability > 0.45 a feasible solution to set cover with
<2-(In(|U]) +3) - OPT(ILP) sets
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Cost of Rounding

Lemma (Cost of Rounding)

Given z optimal for the LP, our randomized rounding outputs, with
probability > 0.45 a feasible solution to set cover with
<2-(In(|U]) +3) - OPT(ILP) sets

@ Let t = In(|U|) + 3. There is a probability at most e~3 < 0.05 that
while loop runs for more than t steps.
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Cost of Rounding

Lemma (Cost of Rounding)

Given z optimal for the LP, our randomized rounding outputs, with
probability > 0.45 a feasible solution to set cover with
<2-(In(|U]) +3) - OPT(ILP) sets

@ Let t = In(|U|) + 3. There is a probability at most e~3 < 0.05 that
while loop runs for more than t steps.

@ After t steps, expected weight is
w = t-ZW;-z; < t-OPT(ILP)
—
o7 (L?) = OPT(1LP)
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Cost of Rounding

Lemma (Cost of Rounding)

Given z optimal for the LP, our randomized rounding outputs, with
probability > 0.45 a feasible solution to set cover with
<2-(In(|U]) +3) - OPT(ILP) sets

@ Let t = In(|U|) + 3. There is a probability at most e~3 < 0.05 that
while loop runs for more than t steps.

@ After t steps, expected weight is
w = t-ZW,'-Z,' < t-OPT(ILP)

© Markov = probability that our solution has weight > 2w is < 1/2
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Cost of Rounding

Lemma (Cost of Rounding)

Given z optimal for the LP, our randomized rounding outputs, with
probability > 0.45 a feasible solution to set cover with
<2-(In(|U]) +3) - OPT(ILP) sets

Let t = In(|U|) + 3. There is a probability at most e~3 < 0.05 that
while loop runs for more than t steps.

@ After t steps, expected weight is
w = t-ZW,'-Z,' < t-OPT(ILP)

Markov = probability that our solution has weight > 2w is <1/2

@ Union bound, with probability < 0.55 either run for more than ¢
times, or our solution has weight > 2w
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Cost of Rounding

Lemma (Cost of Rounding)

Given z optimal for the LP, our randomized rounding outputs, with
probability > 0.45 a feasible solution to set cover with
<2-(In(|U]) +3) - OPT(ILP) sets

@ Let t = In(|U|) + 3. There is a probability at most e~3 < 0.05 that
while loop runs for more than t steps.

@ After t steps, expected weight is
w = t-ZW,'-Z; < t-OPT(ILP)

© Markov = probability that our solution has weight > 2w is < 1/2

@ Union bound, with probability < 0.55 either run for more than ¢
times, or our solution has weight > 2w

© Thus, with probability > 0.45 we stop at t iterations and construct
solution to set cover with cost < 2t - OPT(ILP)
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Putting Everything Together

© Formulate set cover problem as ILP
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Putting Everything Together

© Formulate set cover problem as ILP
@ Derive LP from the ILP LP relaxation
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Putting Everything Together

© Formulate set cover problem as ILP
@ Derive LP from the ILP LP relaxation

© We are still minimizing the same objective function (weight of cover),
but over a (potentially) larger (fractional) set of solutions.

OPT(LP) < OPT(ILP)
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Putting Everything Together

© Formulate set cover problem as ILP
@ Derive LP from the ILP LP relaxation

© We are still minimizing the same objective function (weight of cover),
but over a (potentially) larger (fractional) set of solutions.

OPT(LP) < OPT(ILP)
@ Solve LP optimally using efficient algorithm.
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Putting Everything Together

© Formulate set cover problem as ILP
@ Derive LP from the ILP LP relaxation

© We are still minimizing the same objective function (weight of cover),
but over a (potentially) larger (fractional) set of solutions.

OPT(LP) < OPT(ILP)

@ Solve LP optimally using efficient algorithm.
@ If solution to LP has integral values, then it is a solution to ILP and we
are done
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Putting Everything Together

© Formulate set cover problem as ILP
@ Derive LP from the ILP LP relaxation

© We are still minimizing the same objective function (weight of cover),
but over a (potentially) larger (fractional) set of solutions.

OPT(LP) < OPT(ILP)
@ Solve LP optimally using efficient algorithm.
@ If solution to LP has integral values, then it is a solution to ILP and we

are done
@ If have fractional values, rounding procedure

Randomized Rounding algorithm, with probability > 0.45 we get
cost(rounded solution) < 2 - (In(|U]) 4 3) - OPT(ILP)

O( ﬂag,(ltﬂ))- Q“vwm‘mnh'vh olgon: Hhm
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Conclusion

Integer Linear programming - very general, and pervasive in
(combinatorial) algorithmic life

ILP NP-hard

Rounding for the rescue!
Solve LP and round the solution

o Deterministic rounding when solutions are nice
e Randomized rounding when things a bit more complicated
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