Lecture 12: Linear Programming and Duality Theorems

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com
June 17, 2021

Overview

- Part I
- Why Linear Programming?
- Structural Results on Linear Programming
- Duality Theory
- Part II
- Game Theory
- Learning Theory - Boosting
- Conclusion
- Acknowledgements

Mathematical Programming

Mathematical Programming deals with problems of the form

Mathematical Programming

Mathematical Programming deals with problems of the form

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{1}(x) \leq 0 \\
& \vdots \\
& g_{m}(x) \leq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

- Very general family of problems.

For instance: NP-hard when g 's ave quadratic polynomials!
Question: how much horde can it get? (much harden!)

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & g_{1}(x) \leq 0 \\
& \vdots \\
& g_{m}(x) \leq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

- Very general family of problems.
- Special case is when all functions f, g_{1}, \ldots, g_{m} are linear functions (called Linear Programming - LP for short)

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & g_{1}(x) \leq 0 \\
& \vdots \\
& g_{m}(x) \leq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

- Very general family of problems.
- Special case is when all functions f, g_{1}, \ldots, g_{m} are linear functions (called Linear Programming - LP for short)
- Traces of idea of LP in works of Fourier [Fourier 1823, Fourier 1824]

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & g_{1}(x) \leq 0 \\
& \vdots \\
& g_{m}(x) \leq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

- Very general family of problems.
- Special case is when all functions f, g_{1}, \ldots, g_{m} are linear functions (called Linear Programming - LP for short)
- Traces of idea of LP in works of Fourier [Fourier 1823, Fourier 1824]
- Formally studied \& importance of LP recognized in 1940's by Dantzig, Kantorovich, Koopmans and von Neumann.

What is a Linear Program?

A linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given by

$$
\begin{aligned}
f(x)= & \underset{\underset{\sim}{c} \mathbb{R}}{c_{1}} \cdot x_{1}+\ldots+\underset{\in \mathbb{R}}{c_{n}} \cdot x_{n}=\underbrace{c^{\top} x} \\
& \boldsymbol{c}=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right) \quad c^{\top}=\left(\begin{array}{llll}
c_{1} & c_{2} & -c_{n}
\end{array}\right)
\end{aligned}
$$

What is a Linear Program?

A linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given by

$$
f(x)=c_{1} \cdot x_{1}+\ldots+c_{n} \cdot x_{n}=c^{T} x
$$

Linear Programming deals with problems of the form

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A_{1}^{T} x \leq 0 \quad A_{i} \in \mathbb{R}^{1} \\
& \vdots \\
& A_{m}^{T} x \leq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

What is a Linear Program?

A linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given by

$$
f(x)=c_{1} \cdot x_{1}+\ldots+c_{n} \cdot x_{n}=c^{T} x
$$

Linear Programming deals with problems of the form

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \leq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

What is a Linear Program?

A linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given by

$$
f(x)=c_{1} \cdot x_{1}+\ldots+c_{n} \cdot x_{n}=c^{T} x
$$

Linear Programming deals with problems of the form

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \leq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

We can always represent RPs in standard form:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Practice problem: Show that we can always repternt a LP in standard form.

Why should I care?

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!

Why should I care?

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Stock portfolio optimization:

Why should I care?

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Stock portfolio optimization:
- n companies, stock of company i costs $c_{i} \in \mathbb{R}$
- company i has expected profit $p_{i} \in \mathbb{R}$
- our budget is $B \in \mathbb{R}$

Why should I care?

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Stock portfolio optimization:
- n companies, stock of company i costs $c_{i} \in \mathbb{R}$
- company i has expected profit $p_{i} \in \mathbb{R}$
- our budget is $B \in \mathbb{R}$

$$
\begin{aligned}
\operatorname{maximize} & p_{1} \cdot x_{1}+\cdots+p_{n} \cdot x_{n} \\
\text { subject to } & c_{1} \cdot x_{1}+\cdots+c_{n} \cdot x_{n} \leq B \\
& x \geq 0
\end{aligned}
$$

total profit

Variables: x_{i} amount of stock i that y or want to nave
$x_{i} \cdot p_{i}$ profit from 1 tech:

Why should I care?

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Stock portfolio optimization:
- n companies, stock of company i costs $c_{i} \in \mathbb{R}$
- company i has expected profit $p_{i} \in \mathbb{R}$
- our budget is $B \in \mathbb{R}$

$$
\begin{aligned}
\operatorname{maximize} & p_{1} \cdot x_{1}+\cdots+p_{n} \cdot x_{n} \\
\text { subject to } & c_{1} \cdot x_{1}+\cdots+c_{n} \cdot x_{n} \leq B \\
& x \geq 0
\end{aligned}
$$

- Other problems, such as data fitting, linear classification can be modelled as linear programs.

Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \begin{array}{l}
A x=b \\
x \geq 0
\end{array}
\end{aligned}
$$

(1) When is a Linear Program feasible?

- Is there a solution to the constraints at all?

Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

(1) When is a Linear Program feasible?

- Is there a solution to the constraints at all?
(2) When is a Linear Program bounded?
- Is there a minimum? Or is the minimum $-\infty$?

Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

(1) When is a Linear Program feasible?

- Is there a solution to the constraints at all?
(2) When is a Linear Program bounded?
- Is there a minimum? Or is the minimum $-\infty$?
(3) Can we characterize optimality?
- How can we know that we found a minimum solution?
- Do these solutions have nice description?
- Do the solutions have small bit complexity?

Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

(1) When is a Linear Program feasible?

- Is there a solution to the constraints at all?
(2) When is a Linear Program bounded?
- Is there a minimum? Or is the minimum $-\infty$?
(3) Can we characterize optimality?
- How can we know that we found a minimum solution?
- Do these solutions have nice description?
- Do the solutions have small bit complexity?
(9) How do we design efficient algorithms that find optimal solutions to Linear Programs? interis peint methech \& ellipssid
- Part I
- Why Linear Programming?
- Structural Results on Linear Programming
- Duality Theory
- Part II
- Game Theory
- Learning Theory - Boosting
- Conclusion
- Acknowledgements

Fundamental Theorem of Linear Inequalities
Theorem (Farkas (1894, 1898), Minkowski (1896))
Let $a_{1}, \ldots, a_{m}, b \in \mathbb{R}^{n}$, and $t:=\operatorname{rank}\left\{a_{1}, \ldots, a_{m}, b\right\}$. Then either
(1) b is a non-negative linear combination of linearly independent vectors from a_{1}, \ldots, a_{m}, or
(2) there exists a hyperplane $H:=\left\{x \mid c^{\top} x=0\right\}$ s.t.

- $c^{\top} b<0$
- $c^{\top} a_{i} \geq 0$
- H contains $t-1$ linearly independent vectors from a_{1}, \ldots, a_{m}
 max number of linear
vector in $\left\{v_{1}, \ldots, v_{n}\right\}$

$24 / 100$

Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))

Let $a_{1}, \ldots, a_{m}, b \in \mathbb{R}^{n}$, and $t:=\operatorname{rank}\left\{a_{1}, \ldots, a_{m}, b\right\}$. Then either
(1) b is a non-negative linear combination of linearly independent vectors from a_{1}, \ldots, a_{m}, or
(2) there exists a hyperplane $H:=\left\{x \mid c^{\top} x=0\right\}$ s.t.

- $c^{\top} b<0$
- $c^{\top} a_{i} \geq 0$
- H contains $t-1$ linearly independent vectors from a_{1}, \ldots, a_{m}

Remark

The hyperplane H above is known as the separating hyperplane.

Farkas' Lemma
Lemma (Farkas Lemma)
Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. The following are equivalent:
(1) There exists $x \in \mathbb{R}^{n}$ such that $x \geq 0$ and $A x=b$ (san LP feasible)
(2) $y^{\top} b \geq 0$ for each $y \in \mathbb{R}^{m}$ such that $y^{\top} A \geq 0$

A_{1}, \ldots, A_{n} columns of $A, A_{1}, \ldots, A_{4}, b \in \mathbb{R}^{m}$
Fundamental the of linear inequalities $\Rightarrow \nexists x \geqslant 0$ ait. $\sum_{i=1}^{n} x_{i} A_{i}=b$ (i.e. b is not nonnegative combination of A_{1}, \ldots, A_{n}) then must have a reporting nypaplane Hy n.1. $y^{\top} A_{i} \geqslant 0 \quad \forall i$

$$
y^{\top} A_{i} \geqslant 0 \quad \forall i \Leftrightarrow y^{\top} A \geqslant 0
$$

$$
\begin{aligned}
& y^{\top} A_{i} \geqslant 0 \quad \forall i \\
& \frac{a n d}{y^{\top} b<0} \Rightarrow \operatorname{not}(2)
\end{aligned}
$$

Farkas' Lemma

Lemma (Farkas Lemma)

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. The following are equivalent:
(1) There exists $x \in \mathbb{R}^{n}$ such that $x \geq 0$ and $A x=b$
(2) $y^{\top} b \geq 0$ for each $y \in \mathbb{R}^{m}$ such that $y^{\top} A \geq 0$

Equivalent formulation

Lemma (Farkas Lemma)

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Then exactly one of the following statements hold:
(1) There exists $x \in \mathbb{R}^{n}$ such that $x \geq 0$ and $A x=b$
(2) There exists $y \in \mathbb{R}^{m}$ such that $y^{\top} b>0$ and $y^{\top} A \leq 0$

- Part I
- Why Linear Programming?
- Structural Results on Linear Programming
- Duality Theory
- Part II
- Game Theory
- Learning Theory - Boosting
- Conclusion
- Acknowledgements

Linear Programming Duality

Consider our linear program:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Linear Programming Duality

Consider our linear program:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

- From Farkas' lemma, we saw that $A x=b$ and $x \geq 0$ has a solution iff $y^{\top} b \geq 0$ for each $y \in \mathbb{R}^{m}$ such that $y^{T} A \geq 0$.

Linear Programming Duality

Consider our linear program:

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

- From Farkas' lemma, we saw that $A x=b$ and $x \geq 0$ has a solution iff $y^{\top} b \geq 0$ for each $y \in \mathbb{R}^{m}$ such that $y^{\top} A \geq 0$.
- If we look at what happens when we multiply $y^{\top} A$, note the following:

$$
\begin{aligned}
y^{\top} A \leq c^{T} & \Rightarrow y^{\top} A x \leq c^{\top} x \\
& \Rightarrow y^{\top} b \leq c^{T} x
\end{aligned}
$$

Linear Programming Duality

Consider our linear program:

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

- From Farkas' lemma, we saw that $A x=b$ and $x \geq 0$ has a solution iff $y^{T} b \geq 0$ for each $y \in \mathbb{R}^{m}$ such that $y^{T} A \geq 0$.
- If we look at what happens when we multiply $y^{\top} A$, note the following:

$$
\begin{aligned}
y^{T} A \leq c^{T} & \Rightarrow y^{T} A x \leq c^{T} x \\
& \Rightarrow y^{T} b \leq c^{T} x
\end{aligned}
$$

- Thus, if $y^{\top} A \leq c^{T}$, then we have that $y^{\top} b$ is a lower bound on the solution to our linear program!

Linear Programming Duality
Consider the following linear programs:

Primal LP	Dual LP
minimize	$c^{T} x$
best	maximize $y^{T} b$
subject to	$A x=b$
	subject to $\underbrace{y^{T} A \leq c^{T}}_{\text {constraint }}$

dual LP lower brands the objective function of the primal LP.

Linear Programming Duality

Consider the following linear programs:

$$
\begin{array}{rlr}
\text { Primal } L P & \text { Dual } L P \\
\text { minimize } & c^{T} x & \text { maximize } \\
\text { subject to } & A x=b & \text { subject to } \\
& y^{T} A \leq c^{T} \\
& x \geq 0 &
\end{array}
$$

- From previous slide

$$
y^{T} A \leq c^{T} \Rightarrow y^{T} b \text { is a lower bound on value of Primal }
$$

Linear Programming Duality

Consider the following linear programs:

$$
\begin{array}{rlr}
\text { Primal } L P & \text { Dual } L P \\
\text { minimize } & c^{T} x & \text { maximize } \quad y^{T} b \\
\text { subject to } & A x=b & \text { subject to } y^{\top} A \leq c^{T} \\
& x \geq 0 &
\end{array}
$$

- From previous slide

$$
y^{T} A \leq c^{T} \Rightarrow y^{T} b \text { is a lower bound on value of Primal }
$$

- Thus, the optimal (maximum) value of dual LP lower bounds the optimal (minimum) value of the Primal LP!

Linear Programming Duality

Consider the following linear programs:

Primal LP

$$
\operatorname{minimize} \quad c^{T} x
$$

$$
\text { subject to } \quad A x=b
$$

$$
x \geq 0
$$

maximize $y^{T} b$
subject to $y^{T} A \leq c^{T}$

- From previous slide

$$
y^{T} A \leq c^{T} \Rightarrow y^{T} b \text { is a lower bound on value of Primal }
$$

- Thus, the optimal (maximum) value of dual $L P$ lower bounds the optimal (minimum) value of the Primal LP!

Theorem (Weak Duality)

Let x be a feasible solution of the primal LP and y be a feasible solution of the dual LP. Then

$$
y^{\top} b \leq c^{\top} x
$$

Remarks on Duality

$$
\begin{aligned}
\text { Primal } & L P \\
\text { minimize } & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Dual LP

maximize $y^{\top} b$
subject to $y^{\top} A \leq c^{\top}$

Remarks on Duality

$$
\begin{array}{rlr}
\text { Primal } L P & \text { Dual } L P \\
\text { minimize } & c^{T} x & \text { maximize } \quad y^{T} b \\
\text { subject to } & A x=b & \text { subject to } \\
& y^{T} A \leq c^{T}
\end{array}
$$

- Optimal (maximum) value of dual LP lower bounds the optimal (minimum) value of the Primal $L P$!

Remarks on Duality

Primal LP

Dual LP

$\alpha^{*}:=$ minimize $\quad c^{T} x$
subject to $A x=b$

$$
x \geq 0
$$

- Optimal (maximum) value of dual LP lower bounds the optimal (minimum) value of the Primal LP!
- If $\alpha^{*}, \beta^{*} \in \mathbb{R}$ are the optimal values for primal and dual, respectively.

Remarks on Duality

Primal LP

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Dual LP

$\begin{aligned} \text { maximize } & y^{T} b \\ \text { subject to } & y^{T} A \leq c^{T}\end{aligned}$

- Optimal (maximum) value of dual LP lower bounds the optimal (minimum) value of the Primal LP!
- If $\alpha^{*}, \beta^{*} \in \mathbb{R}$ are the optimal values for primal and dual, respectively.
- We showed that when both primal and dual are feasible, we have

$$
\max \text { dual }=\beta^{*} \leq \alpha^{*}=\text { min of primal }
$$

Remarks on Duality

Primal LP

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Dual LP

maximize $y^{\top} b$
subject to $y^{T} A \leq c^{T}$

- Optimal (maximum) value of dual $L P$ lower bounds the optimal (minimum) value of the Primal $L P$!
- If $\alpha^{*}, \beta^{*} \in \mathbb{R}$ are the optimal values for primal and dual, respectively.
- We showed that when both primal and dual are feasible, we have

$$
\max \text { dual }=\beta^{*} \leq \alpha^{*}=\text { min of primal }
$$

- if primal unbounded $\left(\alpha^{*}=-\infty\right)$ then dual infeasible $\left(\beta^{*}=-\infty\right)$

Remarks on Duality

Primal LP

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Dual LP

maximize $y^{\top} b$
subject to $y^{T} A \leq c^{\top}$

- Optimal (maximum) value of dual $L P$ lower bounds the optimal (minimum) value of the Primal LP!
- If $\alpha^{*}, \beta^{*} \in \mathbb{R}$ are the optimal values for primal and dual, respectively.
- We showed that when both primal and dual are feasible, we have

$$
\max \text { dual }=\beta^{*} \leq \alpha^{*}=\text { min of primal }
$$

- if primal unbounded $\left(\alpha^{*}=-\infty\right)$ then dual infeasible $\left(\beta^{*}=-\infty\right)$
- if dual unbounded $\left(\beta^{*}=\infty\right)$ then primal infeasible $\left(\alpha^{*}=\infty\right)$

Remarks on Duality

$$
\begin{aligned}
\text { Primal } & L P \\
\text { minimize } & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Dual LP

$$
\operatorname{maximize} \quad y^{\top} b
$$

$$
\text { subject to } y^{T} A \leq c^{T}
$$

- Optimal (maximum) value of dual $L P$ lower bounds the optimal (minimum) value of the Primal LP!
- If $\alpha^{*}, \beta^{*} \in \mathbb{R}$ are the optimal values for primal and dual, respectively.
- We showed that when both primal and dual are feasible, we have

$$
\max \text { dual }=\beta^{*} \leq \alpha^{*}=\min \text { of primal }
$$

- if primal unbounded $\left(\alpha^{*}=-\infty\right)$ then dual infeasible $\left(\beta^{*}=-\infty\right)$
- if dual unbounded $\left(\beta^{*}=\infty\right)$ then primal infeasible ($\alpha^{*}=\infty$)
- Practice problem: show that dual of the dual LP is the primal LP!

Remarks on Duality

Primal LP

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Dual LP

maximize $y^{\top} b$
subject to $y^{T} A \leq c^{\top}$

- Optimal (maximum) value of dual LP lower bounds the optimal (minimum) value of the Primal $L P$!
- If $\alpha^{*}, \beta^{*} \in \mathbb{R}$ are the optimal values for primal and dual, respectively.
- We showed that when both primal and dual are feasible, we have

$$
\max \text { dual }=\beta^{*} \leq \alpha^{*}=\text { min of primal }
$$

- if primal unbounded ($\alpha^{*}=-\infty$) then dual infeasible $\left(\beta^{*}=-\infty\right)$
- if dual unbounded $\left(\beta^{*}=\infty\right)$ then primal infeasible $\left(\alpha^{*}=\infty\right)$
- Practice problem: show that dual of the dual LP is the primal LP!
- When is the above inequality tight?

Strong Duality

$$
\begin{aligned}
\text { Primal } & L P \\
\text { minimize } & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Dual LP maximize $y^{\top} b$
subject to $y^{T} A \leq c^{T}$

- let $\alpha^{*}, \beta^{*} \in \mathbb{R}$ be optimal values for primal and dual, respectively.

Strong Duality

$$
\begin{aligned}
\text { Primal } & L P \\
\text { minimize } & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

$$
\begin{array}{cl}
\text { Dual } L P \\
\text { maximize } & y^{T} b \\
\text { subject to } & y^{T} A \leq c^{T}
\end{array}
$$

- let $\alpha^{*}, \beta^{*} \in \mathbb{R}$ be optimal values for primal and dual, respectively.

Theorem (Strong Duality)

If primal LP or dual LP is feasible, then

$$
\text { max dual }=\beta^{*}=\alpha^{*}=\text { min of primal. }
$$

always equdity

Proof of Strong Duality

Theorem (Strong Duality)
If primal LP or dual LP is feasible, then

$$
\max d u a l=\beta^{*}=\alpha^{*}=\text { min of primal. }
$$

Proof of Strong Duality

Theorem (Strong Duality)
If primal LP or dual LP is feasible, then

$$
\max d u a l=\beta^{*}=\alpha^{*}=\text { min of primal. }
$$

(1) Let x^{*} be such that $c^{T} x^{*}=\alpha^{*}$. Can assume that $\alpha^{*} \neq-\infty$.

Proof of Strong Duality

Theorem (Strong Duality)

If primal LP or dual LP is feasible, then

$$
\text { max dual }=\beta^{*}=\alpha^{*}=\text { min of primal. }
$$

(1) Let x^{*} be such that $c^{T} x^{*}=\alpha^{*}$. Can assume that $\alpha^{*} \neq-\infty$.
(2) Let $B=\underbrace{\binom{A}{-c^{T}}}_{\mathbb{R}^{(n+1) \times n}}$ and $v(\varepsilon)=\underbrace{\left.\begin{array}{c}b \\ -\alpha^{*}+\varepsilon\end{array}\right)}_{-\left(\alpha^{*}-\varepsilon\right)}$

Proof of Strong Duality

Theorem (Strong Duality)
If primal LP or dual LP is feasible, then

$$
\max d u a l=\beta^{*}=\alpha^{*}=\min \text { of primal. }
$$

(1) Let x^{*} be such that $c^{T} x^{*}=\alpha^{*}$. Can assume that $\alpha^{*} \neq-\infty$.
(2) Let $B=\binom{A}{-c^{T}}$ and $v(\varepsilon)=\binom{b}{-\alpha^{*}+\varepsilon}$
(3) Apply Farkas' lemma on ${ }^{-} B x={ }^{-} v(0)$ and $x \geq 0$. This system has a solution, so we get:

$$
\begin{aligned}
& \text { solution, so we get: } \\
& \qquad \begin{array}{l}
\left(y^{\top} z\right) B \leq 0 \Rightarrow\left(y^{\top} z\right)\binom{b}{-\alpha^{*}} \leq 0 \Leftrightarrow y^{\top} b-z \alpha^{*} \leq 0 \\
y^{\top} A-z c^{\top} \leq 0 \Rightarrow y^{\top} b-z \alpha^{*} \leq 0 \quad \text { if } z=0 \text { then we have } \\
\left|y^{\top} A \leq z c^{\top} \Rightarrow y^{\top} b \leq z \alpha^{*}\right|
\end{array}
\end{aligned}
$$

Proof of Strong Duality

Theorem (Strong Duality)
If primal LP or dual LP is feasible, then

$$
\max d u a l=\beta^{*}=\alpha^{*}=\min \text { of primal. }
$$

(1) Let x^{*} be such that $c^{T} x^{*}=\alpha^{*}$. Can assume that $\alpha^{*} \neq-\infty$.
(2) Let $B=\binom{A}{-c^{T}}$ and $v(\varepsilon)=\binom{b}{-\alpha^{*}+\varepsilon}$
(3) Apply Farkas' lemma on $B x=v(0)$ and $x \geq 0$. This system has a solution, so we get:
(9) Now, if $\varepsilon>0$, applying Farkas' lemma on system $B x=v(\varepsilon)$ and $x \geq 0$ we get: $B x=v(b)$ has no solution (by optimality of α^{*}) $\left(y^{\top} t\right) \in \mathbb{R}^{m+1}$ A.1. $y^{\top} A \leq c^{\top} z$ and $y^{\top} b>z\left(x^{*}-i\right)$
Fanken lemma: thee is ($\left.y^{\top} t\right) \in \mathbb{R}^{m n 1}$ A.1. $y^{\top} A \leq c^{\top} z$ and $y^{\top} b>z(x)$ by previous slide $z \neq 0$ (cos assume the $z>0)$

Proof of Strong Duality

Theorem (Strong Duality)
If primal LP or dual LP is feasible, then

$$
\max d u a l=\beta^{*}=\alpha^{*}=\text { min of primal. }
$$

(1) Let x^{*} be such that $c^{T} x^{*}=\alpha^{*}$. Can assume that $\alpha^{*} \neq-\infty$.
(2) Let $B=\binom{A}{-c^{\top}}$ and $v(\varepsilon)=\binom{b}{-\alpha^{*}+\varepsilon}$
(3) Apply Farkas' lemma on $B x=v(0)$ and $x \geq 0$. This system has a solution, so we get:
(9) Now, if $\varepsilon>0$, applying Farkas' lemma on system $B x=v(\varepsilon)$ and $x \geq 0$ we get:
(0) Thus, for any $\varepsilon>0$ there is $y \in \mathbb{R}^{m}$ such that $v^{\top} A \leq c^{T}$ and $\beta^{*} \geq y^{\top} b>\alpha^{*}-\varepsilon$.
$\left\{\begin{array}{l}\text { y possible sedition }\end{array}\right.$

$$
\Rightarrow \quad\left(\beta^{x}=\alpha^{x}\right)
$$

Affine form of Farkas' Lemma

A consequence of LP duality is the following lemma:

Lemma (Affine Farkas' Lemma)

Let the system

$$
A x \leq b
$$

have at least one solution, and suppose that inequality

$$
c^{\top} x \leq \delta
$$

holds whenever x satisfies $A x \leq b$. Then, for some $\delta^{\prime} \leq \delta$ the linear inequality

$$
c^{\top} x \leq \delta^{\prime}
$$

is a non-negative linear combination of the inequalities of $A x \leq b$.

Affine form of Farkas' Lemma

A consequence of LP duality is the following lemma:

Lemma (Affine Farkas' Lemma)

Let the system

$$
A x \leq b
$$

have at least one solution, and suppose that inequality

$$
c^{\top} x \leq \delta
$$

holds whenever x satisfies $A x \leq b$. Then, for some $\delta^{\prime} \leq \delta$ the linear inequality

$$
c^{\top} x \leq \delta^{\prime}
$$

is a non-negative linear combination of the inequalities of $A x \leq b$.
Practice problem: use LP duality and Farkas' lemma to prove this lemma!

- Part I
- Why Linear Programming?
- Structural Results on Linear Programming
- Duality Theory
- Part II
- Game Theory
- Learning Theory - Boosting
- Conclusion
- Acknowledgements

Two-player games

Setup:

- Two players (Alice and Bob)
- Each player has a (finite) set of strategies $S_{A}=\{1, \ldots, m\}$ and $S_{B}=\{1, \ldots, n\}$

Two-player games

Setup:

- Two players (Alice and Bob)
- Each player has a (finite) set of strategies $S_{A}=\{1, \ldots, m\}$ and $S_{B}=\{1, \ldots, n\}$
- Payoff matrices $A, B \in \mathbb{R}^{m \times n}$ for Alice and Bob, respectively

Two-player games

Setup:

- Two players (Alice and Bob)
- Each player has a (finite) set of strategies $S_{A}=\{1, \ldots, m\}$ and $S_{B}=\{1, \ldots, n\}$
- Payoff matrices $A, B \in \mathbb{R}^{m \times n}$ for Alice and Bob, respectively
- If Alice plays i and Bob plays j, then
- Alice gets $A_{i j}$
- Bob gets $B_{i j}$

Two-player games

Setup:

- Two players (Alice and Bob)
- Each player has a (finite) set of strategies $S_{A}=\{1, \ldots, m\}$ and $S_{B}=\{1, \ldots, n\}$
- Payoff matrices $A, B \in \mathbb{R}^{m \times n}$ for Alice and Bob, respectively
- If Alice plays i and Bob plays j, then
- Alice gets $A_{i j}$
- Bob gets $B_{i j}$
- Example: battle of the sexes game

Two-player games

Setup:

- Two players (Alice and Bob)
- Each player has a (finite) set of strategies $S_{A}=\{1, \ldots, m\}$ and $S_{B}=\{1, \ldots, n\}$
- Payoff matrices $A, B \in \mathbb{R}^{m \times n}$ for Alice and Bob, respectively
- If Alice plays i and Bob plays j, then
- Alice gets $A_{i j}$
- Bob gets $B_{i j}$
- Example: battle of the sexes game

	Football	Opera
Football	$(2,1)$	$(0,0)$
Opera	$\overline{(0,0)}$	$(1,2)$

Table: Battle of the sexes payoff matrices

Nash Equilibrium

Assuming players are rational, ie. want to maximize their payoffs, we have:

Definition (Nash Equilibrium)

A strategy profile (i, j) is called a Nash equilibrium if the strategy played by each player is optimal, given the strategy of the other player. That is:
(0) $A_{i \underline{j}} \geq A_{k j}$ for all $k \in S_{A}$
(2) $B_{i j} \geq B_{i \ell}$ for all $\ell \in S_{B}$
(1) if Alice knew Bob playing
then Alice has no incentive to not ploy i

Nash Equilibrium

Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition (Nash Equilibrium)

A strategy profile (i, j) is called a Nash equilibrium if the strategy played by each player is optimal, given the strategy of the other player. That is:
(1) $A_{i j} \geq A_{k j}$ for all $k \in S_{A}$
(2) $B_{i j} \geq B_{i \ell}$ for all $\ell \in S_{B}$

	Football	Opera
Football	$(2,1)$	$(0,0)$
Opera	$(0,0)$	$(1,2)$

Table: Battle of the sexes payoff matrices

Nash Equilibrium

Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition (Nash Equilibrium)

A strategy profile (i, j) is called a Nash equilibrium if the strategy played by each player is optimal, given the strategy of the other player. That is:
(1) $A_{i j} \geq A_{k j}$ for all $k \in S_{A}$
(2) $B_{i j} \geq B_{i \ell}$ for all $\ell \in S_{B}$

	Football	Opera
Football	$(2,1)$	$(0,0)$
Opera	$(0,0)$	$(1,2)$

Table: Battle of the sexes payoff matrices
Bub

Alice | | Silent | Snitch |
| :---: | :---: | :---: |
| | Silent | $(-1,-1)$ |
| | Snitch | $(0,-10,0)$ |
| | $(-5,-5)$ | |

Table: Prisoner's dilemma

Mixed Strategies

Definition (Mixed Strategy)

A mixed strategy is a probability distribution over a set of pure strategies
S. If Alice's strategies are $S_{A}=\{1, \ldots, n\}$, her mixed strategies are:

$$
\Delta_{A}:=\left\{x \in \mathbb{R}^{n} \mid x \geq 0 \text { and }\|x\|_{1}=1\right\}
$$

x is a probability
distribution
$x_{i} \leftarrow P_{r}[$ Alice plays $i]$

Mixed Strategies

Definition (Mixed Strategy)

A mixed strategy is a probability distribution over a set of pure strategies
S. If Alice's strategies are $S_{A}=\{1, \ldots, n\}$, her mixed strategies are:

$$
\Delta_{A}:=\left\{x \in \mathbb{R}^{n} \mid x \geq 0 \text { and }\|x\|_{1}=1\right\}
$$

- Models situation where players choose their strategy "at random"

Mixed Strategies

Definition (Mixed Strategy)

A mixed strategy is a probability distribution over a set of pure strategies
S. If Alice's strategies are $S_{A}=\{1, \ldots, n\}$, her mixed strategies are:

$$
\Delta_{A}:=\left\{x \in \mathbb{R}^{n} \mid x \geq 0 \text { and }\|x\|_{1}=1\right\}
$$

- Models situation where players choose their strategy "at random"
- Payoffs for each player defined as expected gain. That is, (x, y) is the profile of mixed strategies used by Alice and Bob, we have:

Mixed Strategies

Definition (Mixed Strategy)

A mixed strategy is a probability distribution over a set of pure strategies
S. If Alice's strategies are $S_{A}=\{1, \ldots, n\}$, her mixed strategies are:

$$
\Delta_{A}:=\left\{x \in \mathbb{R}^{n} \mid x \geq 0 \text { and }\|x\|_{1}=1\right\}
$$

- Models situation where players choose their strategy "at random"
- Payoffs for each player defined as expected gain. That is, (x, y) is the profile of mixed strategies used by Alice and Bob, we have:

$$
\begin{aligned}
& v_{A}(x, y)=\sum_{(i, j) \in S_{A} \times S_{B}} A_{i j} x_{i} y_{j}=x^{T} A y \\
& v_{B}(x, y)=\sum_{(i, j) \in S_{A} \times S_{B}} B_{i j} x_{i} y_{j}=x^{T} B y
\end{aligned}
$$

Nash Equilibrium Mixed Strategies

Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition ((Mixed) Nash Equilibrium)

A strategy profile $x \in \Delta_{A}, y \in \Delta_{B}$ is called a (mixed) Nash equilibrium if the strategy played by each player is optimal, given the strategy of the other player. That is:
(1) $x^{\top} A y \geq z^{\top} A y$ for all $z \in \Delta_{A}$
(2) $x^{T} B y \geq x^{T} B w$ for all $w \in \Delta_{B}$

Nash Equilibrium Mixed Strategies

Assuming players are rational, ie. want to maximize their payoffs, we have:

Definition ((Mixed) Nash Equilibrium)

A strategy profile $x \in \Delta_{A}, y \in \Delta_{B}$ is called a (mixed) Nash equilibrium if the strategy played by each player is optimal, given the strategy of the other player. That is:
(1) $x^{\top} A y \geq z^{\top} A y$ for all $z \in \Delta_{A}$
(2) $x^{T} B y \geq x^{T} B w$ for all $w \in \Delta_{B}$ Goalie

Player | | Jump left | Jump right | |
| :---: | :---: | :---: | :---: |
| | kick left | $(-1,1)$ | $(1,-1)$ |
| | kick right | $(1,-1)$ | $(-1,1)$ |
| | | | |

Table: Penalty Kick (player allays hon

Nash Equilibrium Mixed Strategies

Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition ((Mixed) Nash Equilibrium)

A strategy profile $x \in \Delta_{A}, y \in \Delta_{B}$ is called a (mixed) Nash equilibrium if the strategy played by each player is optimal, given the strategy of the other player. That is:
(1) $x^{\top} A y \geq z^{\top} A y$ for all $z \in \Delta_{A}$
(2) $x^{T} B y \geq x^{T} B w$ for all $w \in \Delta_{B}$

	Jump left	Jump right
kick left	$(-1,1)$	$(1,-1)$
kick right	$(1,-1)$	$(-1,1)$

Table: Penalty Kick

- Zero-Sum Game: payoff matrices satisfy $A=-B$

Nash Equilibrium Mixed Strategies

Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition ((Mixed) Nash Equilibrium)

A strategy profile $x \in \Delta_{A}, y \in \Delta_{B}$ is called a (mixed) Nash equilibrium if the strategy played by each player is optimal, given the strategy of the other player. That is:
(1) $x^{\top} A y \geq z^{\top} A y$ for all $z \in \Delta_{A}$
(2) $x^{T} B y \geq x^{T} B w$ for all $w \in \Delta_{B}$

	Jump left	Jump right
kick left	$(-1,1)$	$(1,-1)$
kick right	$(1,-1)$	$(-1,1)$

Table: Penalty Kick

- Zero-Sum Game: payoff matrices satisfy $A=-B$
- No pure Nash Equilibrium! Proctice problem:

Nash Equilibrium Mixed Strategies

Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition ((Mixed) Nash Equilibrium)

A strategy profile $x \in \Delta_{A}, y \in \Delta_{B}$ is called a (mixed) Nash equilibrium if the strategy played by each player is optimal, given the strategy of the other player. That is:
(1) $x^{\top} A y \geq z^{\top} A y$ for all $z \in \Delta_{A}$
(2) $x^{T} B y \geq x^{T} B w$ for all $w \in \Delta_{B}$

	Jump left	Jump right
kick left	$(-1,1)$	$(1,-1)$
kick right	$(1,-1)$	$(-1,1)$

Table: Penalty Kick

- Zero-Sum Game: payoff matrices satisfy $A=-B$
- No pure Nash Equilibrium!
- One mixed Nash equilibrium: $x=y=(1 / 2,1 / 2)$

Von Neumann's Minimax Theorem
Theorem
In a zero-sum game, for any payoff matrix $A \in \mathbb{R}^{m \times n}$:

LHS: Alice picks first hen strategy
RHS: Bob picks first his strategy

Von Neumann's Minimax Theorem

Theorem

In a zero-sum game, for any payoff matrix $A \in \mathbb{R}^{m \times n}$:

$$
\max _{x \in \Delta_{A}} \min _{y \in \Delta_{B}} x^{\top} A y=\min _{y \in \Delta_{B}} \max _{x \in \Delta_{A}} x^{T} A y
$$

For given $x \in \Delta_{A}$:

$$
\min _{y \in \Delta_{B}} x^{\top} A y=\min _{j \in S_{B}}\left(x^{\top} A\right)_{j}
$$

Von Neumann's Minimax Theorem

Theorem

In a zero-sum game, for any payoff matrix $A \in \mathbb{R}^{m \times n}$:

$$
\max _{x \in \Delta_{A}} \min _{y \in \Delta_{B}} x^{T} A y=\min _{y \in \Delta_{B}} \max _{x \in \Delta_{A}} x^{T} A y
$$

For given $x \in \Delta_{A}$:

$$
\min _{y \in \Delta_{B}} x^{T} A y=\min _{j \in S_{B}}\left(x^{T} A\right)_{j}
$$

Left hand side can be written as
$\max s$
s.t. $\quad s \leq\left(x^{T} A\right)_{j} \quad$ for $j \in S_{B}$

$$
\begin{aligned}
& \sum_{i \in S_{A}} x_{i}=1 \\
& x \geq 0
\end{aligned}
$$

Von Neumann's Minimax Theorem

Theorem

In a zero-sum game, for any payoff matrix $A \in \mathbb{R}^{m \times n}$:

$$
\max _{x \in \Delta_{A}} \min _{y \in \Delta_{B}} x^{T} A y=\min _{y \in \Delta_{B}} \max _{x \in \Delta_{A}} x^{T} A y
$$

For given $x \in \Delta_{A}$:

$$
\min _{y \in \Delta_{B}} x^{T} A y=\min _{j \in S_{B}}\left(x^{T} A\right)_{j}
$$

For given $y \in \Delta_{B}$:

$$
\max _{x \in \Delta_{A}} x^{T} A y=\max _{i \in S_{A}}(A y)_{i}
$$

Left hand side can be written as

$$
\max \quad s
$$

$$
\begin{array}{ll}
\text { s.t. } & s \leq\left(x^{T} A\right)_{j} \quad \text { for } j \in S_{B}
\end{array}
$$

$$
\sum_{i \in S_{A}} x_{i}=1
$$

$$
x \geq 0
$$

Von Neumann's Minimax Theorem

Theorem

In a zero-sum game, for any payoff matrix $A \in \mathbb{R}^{m \times n}$:

$$
\max _{x \in \Delta_{A}} \min _{y \in \Delta_{B}} x^{\top} A y=\min _{y \in \Delta_{B}} \max _{x \in \Delta_{A}} x^{\top} A y
$$

For given $x \in \Delta_{A}$:
For given $y \in \Delta_{B}$:

$$
\min _{y \in \Delta_{B}} x^{T} A y=\min _{j \in S_{B}}\left(x^{T} A\right)_{j}
$$

$$
\max _{x \in \Delta_{A}} x^{T} A y=\max _{i \in S_{A}}(A y)_{i}
$$

Left hand side can be written as
Right hand side can be written as

$$
\begin{aligned}
& \max s \text { any pure itrotegy } \mathrm{fan}_{\mathrm{Boj}} \mathrm{~min} t \\
& \text { s.t. } \quad s \leq\left(x^{T} A\right)_{j} \quad \text { for } j \in S_{B} \\
& \left.\begin{array}{l}
\sum_{i \in S_{A}} x_{i}=1 \\
x \geq 0
\end{array}\right\} \begin{array}{l}
\text { over all } \\
\text { Alicei stan tagy }
\end{array} \\
& \text { s.t. } \quad t \geq(A y)_{i} \quad \text { for } i \in S_{A} \\
& \sum_{j \in S_{B}} y_{j}=1 \\
& y \geq 0
\end{aligned}
$$

Yon Neumann's Minimax Theorem

Theorem

In a zero-sum game, for any payoff matrix $A \in \mathbb{R}^{m \times n}$:

$$
\max _{x \in \Delta_{A}} \min _{y \in \Delta_{B}} x^{T} A y=\min _{y \in \Delta_{B}} \max _{x \in \Delta_{A}} x^{T} A y
$$

These two Lis are a

$$
\begin{aligned}
& \text { nal - dual pair. } \\
& (\Rightarrow \text { strong duality) }
\end{aligned}
$$

Left hand side can be written as
Right hand side can be written as
$\max s$

$$
\min \quad t
$$

$$
\begin{array}{ll}
\text { s.t. } & s \leq\left(x^{T} A\right)_{j} \quad \text { for } j \in S_{B} \\
& \sum_{i \in S_{A}} x_{i}=1 \\
& x \geq 0
\end{array}
$$

$$
\text { s.t. } \quad t \geq(A y)_{i} \quad \text { for } i \in S_{A}
$$

$$
\sum_{j \in S_{B}} y_{j}=1
$$

$$
y \geq 0
$$

- Part I
- Why Linear Programming?
- Structural Results on Linear Programming
- Duality Theory
- Part II
- Game Theory
- Learning Theory - Boosting
- Conclusion
- Acknowledgements

Learning Theory

Consider classification problem over \mathcal{X} :

Learning Theory

Consider classification problem over \mathcal{X} :

- Set of hypothesis $\mathcal{H}:=\{h: \mathcal{X} \rightarrow\{0,1\}\}$

Learning Theory

Consider classification problem over \mathcal{X} :

- Set of hypothesis $\mathcal{H}:=\{h: \mathcal{X} \rightarrow\{0,1\}\}$
- Each $x \in \mathcal{X}$ has a correct value $c(x) \in\{0,1\}$

Learning Theory

Consider classification problem over \mathcal{X} :

- Set of hypothesis $\mathcal{H}:=\{h: \mathcal{X} \rightarrow\{0,1\}\}$
- Each $x \in \mathcal{X}$ has a correct value $c(x) \in\{0,1\}$
- Data is sampled from unknown distribution $q \in \Delta_{\mathcal{X}}$
cenknown distribution over elemunto

Learning Theory

Consider classification problem over \mathcal{X} :

- Set of hypothesis $\mathcal{H}:=\{h: \mathcal{X} \rightarrow\{0,1\}\}$
- Each $x \in \mathcal{X}$ has a correct value $c(x) \in\{0,1\}$
- Data is sampled from unknown distribution $q \in \Delta_{\mathcal{X}}$
- Weak learning assumption:

For any distribution $q \in \Delta_{\mathcal{X}}$, there is a hypothesis $h \in \mathcal{H}$ which is wrong less than half the time.

Learning Theory

Consider classification problem over \mathcal{X} :

- Set of hypothesis $\mathcal{H}:=\{h: \mathcal{X} \rightarrow\{0,1\}\}$
- Each $x \in \mathcal{X}$ has a correct value $c(x) \in\{0,1\}$
- Data is sampled from unknown distribution $q \in \Delta_{\mathcal{X}}$
- Weak learning assumption:

For any distribution $q \in \Delta_{\mathcal{X}}$, there is a hypothesis $h \in \mathcal{H}$ which is wrong less than half the time.

$$
\exists \gamma>0, \forall q \in \Delta_{\mathcal{X}}, \exists h \in \mathcal{H}, \quad \underset{x \sim q}{\operatorname{Pr}}[h(x) \neq c(x)] \leq \frac{1-\gamma}{2}
$$

- Surprisingly, weak learning assumption implies something much stronger: it is possible to combine classifiers in \mathcal{H} to construct a classifier that is always right (known as strong learning).

Boosting

a on set of bypotheses

Theorem

Let \mathcal{H} be a set of hypptheses satisfying weak learning assumption. Then there is distributior $p \in \Delta_{\mathcal{H}}$ such that the weighed majority classifier

$$
c_{p}(x):=\left\{\begin{array}{l}
1, \quad \text { if } \sum_{h \in \mathcal{H}} p_{h} \cdot h(x) \geq 1 / 2 \\
0, \text { otherwise }
\end{array}\right.
$$

is always correct. That is, $c_{p}(x)=c(x)$ for all $x \in \mathcal{X}$

Boosting

Theorem

Let \mathcal{H} be a set of hypotheses satisfying weak learning assumption. Then there is distribution $p \in \Delta_{\mathcal{H}}$ such that the weighed majority classifier

$$
c_{p}(x):=\left\{\begin{array}{l}
1, \quad \text { if } \sum_{h \in \mathcal{H}} p_{h} \cdot h(x) \geq 1 / 2 \\
0, \text { otherwise }
\end{array}\right.
$$

is always correct. That is, $c_{p}(x)=c(x)$ for all $x \in \mathcal{X}$

- Let $M \in\{-1,1\}^{m \times n}$, where $m=|\mathcal{X}|$ and $n=|\mathcal{H}|$.

Boosting

Theorem

Let \mathcal{H} be a set of hypotheses satisfying weak learning assumption. Then there is distribution $p \in \Delta_{\mathcal{H}}$ such that the weighed majority classifier

$$
c_{p}(x):=\left\{\begin{array}{l}
1, \quad \text { if } \sum_{h \in \mathcal{H}} p_{h} \cdot h(x) \geq 1 / 2 \\
0, \text { otherwise }
\end{array}\right.
$$

is always correct. That is, $c_{p}(x)=c(x)$ for all $x \in \mathcal{X}$

- Let $M \in\{-1,1\}^{m \times n}$, where $m=|\mathcal{X}|$ and $n=|\mathcal{H}|$.

$$
M_{i j}= \begin{cases}+1, & \text { if classifier } h_{j} \text { wrong on } x_{i} \\ -1, & \text { otherwise }\end{cases}
$$

- Weak learning:

Boosting - Proof

Let $M \in\{-1,1\}^{m \times n}$, where $m=|\mathcal{X}|$ and $n=|\mathcal{H}|$.

$$
M_{i j}= \begin{cases}+1, & \text { if } h_{j} \text { wrong on } x_{i} \\ -1, & \text { otherwise }\end{cases}
$$

Weak learning:

$$
\sum_{1 \leq i \leq n} q_{j} \cdot \delta_{h_{j}\left(x_{i}\right) \neq c\left(x_{i}\right)} \leq \frac{1-\gamma}{2}
$$

Boosting - Proof

Let $M \in\{-1,1\}^{m \times n}$, where $m=|\mathcal{X}|$ and $n=|\mathcal{H}|$.

$$
M_{i j}= \begin{cases}+1, & \text { if } h_{j} \text { wrong on } x_{i} \\ -1, & \text { otherwise }\end{cases}
$$

Weak learning:

$$
\sum_{1 \leq i \leq m} q_{j} \cdot \delta_{h_{j}\left(x_{i}\right) \neq c\left(x_{i}\right)} \leq \frac{1-\gamma}{2}
$$

- Note that $M_{i j}=2 \cdot \delta_{h_{j}\left(x_{i}\right) \neq c\left(x_{i}\right)}-1$

$$
\left.q^{T} M e_{j} \leq-\gamma\right) \Rightarrow q^{T} M p \leq-\gamma
$$

for any $p \in \Delta_{\mathcal{H}}$.
$\sum q_{i} 2 \cdot \delta_{i, j}-\underbrace{\sum q_{i}} \leq-\gamma$
$M_{j}=\sum q_{i}\left(2 \delta_{i j}-1\right) \leq-\gamma$

Boosting - Proof

Let $M \in\{-1,1\}^{m \times n}$, where $m=|\mathcal{X}|$ and $n=|\mathcal{H}|$.

$$
M_{i j}= \begin{cases}+1, & \text { if } h_{j} \text { wrong on } x_{i} \\ -1, & \text { otherwise }\end{cases}
$$

Weak learning:

$$
\sum_{1 \leq i \leq n} q_{j} \cdot \delta_{h_{j}\left(x_{i}\right) \neq c\left(x_{i}\right)} \leq \frac{1-\gamma}{2}
$$

- Note that $M_{i j}=2 \cdot \delta_{h_{j}\left(x_{j}\right) \neq c\left(x_{i}\right)}-1$

$$
q^{T} M e_{j} \leq-\gamma \Rightarrow \underbrace{q^{T} M p \leq-\gamma}_{\text {value of our game }}
$$

for any $p \in \Delta_{\mathcal{H}}$.

- By minimax, we have:

$$
\max _{q \in \Delta_{\mathcal{X}}} \min _{p \in \Delta_{\mathcal{H}}} q^{T} M p=\min _{p \in \Delta_{\mathcal{H}}} \max _{q \in \Delta_{\mathcal{X}}} q^{T} M p \mid \leq-\gamma
$$

Boosting - Proof $\quad \sum p_{j} \cdot h_{j}(x) \geqslant \frac{1 \text { tr }}{2} \Rightarrow c_{p}(x)=1$

Let $M \in\{-1,1\}^{m \times n}$, where $m=|\mathcal{X}|$ and $n=|\mathcal{H}|$.

$$
M_{i j}= \begin{cases}+1, & \text { if } h_{j} \text { wrong on } x_{i} \\ -1, & \text { otherwise }\end{cases}
$$

Weak learning:

$$
q^{T} M e_{j} \leq-\gamma \Rightarrow q^{T} M p \leq-\gamma
$$

$$
\text { for any } p \in \Delta_{\mathcal{H}} \text {. }
$$

$$
\begin{aligned}
& \sum_{1 \leq i \leq n} q_{j} \cdot \delta_{h_{j}\left(x_{i}\right) \neq c\left(x_{i}\right)} \leq \frac{1-\gamma}{2} \\
& c(x)=1 \\
& \sum p_{j} \delta_{h_{j}(x)=0} \leq \frac{1-\gamma}{2} \\
& \Rightarrow q^{T} M p \leq-\gamma \\
& \sum p_{j} \delta_{h_{j} w n-g} \leq \frac{1-\gamma}{2}
\end{aligned}
$$

- By minimax, we have:

$$
\max _{q \in \Delta_{\mathcal{X}}} \min _{p \in \Delta_{\mathcal{H}}} q^{T} M p=\min _{p \in \Delta_{\mathcal{H}}} \max _{q \in \Delta_{\mathcal{X}}} q^{T} M p \leq-\gamma
$$

- In particular, right hand side implies weighted classifier always correct.

Boosting - Proof

Let $M \in\{-1,1\}^{m \times n}$, where $m=|\mathcal{X}|$ and $n=|\mathcal{H}|$.

$$
M_{i j}= \begin{cases}+1, & \text { if } h_{j} \text { wrong on } x_{i} \\ -1, & \text { otherwise }\end{cases}
$$

Weak learning:

$$
\sum_{1 \leq i \leq n} q_{j} \cdot \delta_{h_{j}\left(x_{i}\right) \neq c\left(x_{i}\right)} \leq \frac{1-\gamma}{2}
$$

- By minimax, we have:

$$
\max _{q \in \Delta_{\mathcal{X}}} \min _{p \in \Delta_{\mathcal{H}}} q^{T} M p=\min _{p \in \Delta_{\mathcal{H}}} \max _{q \in \Delta_{\mathcal{X}}} q^{T} M p \leq-\gamma
$$

- In particular, right hand side implies weighted classifier always correct.

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life
- General mathematical programming very hard (how hard do you think it is?)

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life
- General mathematical programming very hard (how hard do you think it is?)
- Special cases have very striking applications!

Today: Linear Programming

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life
- General mathematical programming very hard (how hard do you think it is?)
- Special cases have very striking applications!

Today: Linear Programming

- Linear Programming and Duality - fundamental concepts, lots of applications!

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life
- General mathematical programming very hard (how hard do you think it is?)
- Special cases have very striking applications!

Today: Linear Programming

- Linear Programming and Duality - fundamental concepts, lots of applications!
- Applications in Combinatorial Optimization (a lot of it happened here at UW!)
- Applications in Game Theory (minimax theorem)
- Applications in Learning Theory (boosting)
- many more

Acknowledgement

- Lecture based largely on:
- Lectures 3-6 of Yarom Singer's Advanced Optimization class
- [Schrijver 1986, Chapter 7]
- See Yarom's notes at https://people.seas.harvard.edu/ ~yaron/AM221-S16/schedule.html

References I

Schirjver, Alexander (1986)
Theory of Linear and Integer Programming
Fourier, J. B. 1826
Analyse des travaux de l'Académie Royale des Sciences pendant l'année 1823.
Partie mathématique (1826)
Fourier, J. B. 1827
Analyse des travaux de l'Académie Royale des Sciences pendant I'année 1824. Partie mathématique (1827)

