Lecture 10: Algebraic Techniques Fingerprinting, Verifying Polynomial Identities, Parallel Algorithms for Matching Problems

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science rafael.oliveira.teaching@gmail.com

June 10, 2021

Overview

- Introduction
 - Why Algebraic Techniques in computer science?
 - Fingerprinting: String equality verification
- Main Problems
 - Polynomial Identity Testing
 - Randomized Matching Algorithms
 - Isolation Lemma
- Remarks
- Acknowledgements

It is hard to overstate the importance of algebraic techniques in computing.

• Very useful tool for randomized algorithms (hashing, today's lecture)

- Very useful tool for randomized algorithms (hashing, today's lecture)
- Parallel & Distributed Computing (this lecture and lectures 21 and 23)

- Very useful tool for randomized algorithms (hashing, today's lecture)
- Parallel & Distributed Computing (this lecture and lectures 21 and 23)
- Interactive proof systems

- Very useful tool for randomized algorithms (hashing, today's lecture)
- Parallel & Distributed Computing (this lecture and lectures 21 and 23)
- Interactive proof systems
- Efficient proof/program verification (PCP a bit in lecture 16)
 - Applications in hardness of approximation!
 - Applications in blockchain (Zcash for instance)
 - Zero Knowledge proofs (lecture 24)

- Very useful tool for randomized algorithms (hashing, today's lecture)
- Parallel & Distributed Computing (this lecture and lectures 21 and 23)
- Interactive proof systems
- Efficient proof/program verification (PCP a bit in lecture 16)
 - Applications in hardness of approximation!
 - Applications in blockchain (Zcash for instance)
 - Zero Knowledge proofs (lecture 24)
- Cryptography

- Very useful tool for randomized algorithms (hashing, today's lecture)
- Parallel & Distributed Computing (this lecture and lectures 21 and 23)
- Interactive proof systems
- Efficient proof/program verification (PCP a bit in lecture 16)
 - Applications in hardness of approximation!
 - Applications in blockchain (Zcash for instance)
 - Zero Knowledge proofs (lecture 24)
- Cryptography
- Coding theory

- Very useful tool for randomized algorithms (hashing, today's lecture)
- Parallel & Distributed Computing (this lecture and lectures 21 and 23)
- Interactive proof systems
- Efficient proof/program verification (PCP a bit in lecture 16)
 - Applications in hardness of approximation!
 - Applications in blockchain (Zcash for instance)
 - Zero Knowledge proofs (lecture 24)
- Cryptography
- Coding theory
- many more...

Suppose Alice and Bob each maintain the same large database of information.¹ They would like to check if their databases are *consistent*.

¹Think of each of them being a server of a company that deals with massive data. ⊙ ⊲ ເ∾

Suppose Alice and Bob each maintain the same large database of information.¹ They would like to check if their databases are *consistent*.

Transmission of all data is expensive (communication complexity setting)

¹Think of each of them being a server of a company that deals with massive data. ⊙ q ○

Suppose Alice and Bob each maintain the same large database of information.¹ They would like to check if their databases are *consistent*.

- Transmission of all data is expensive (communication complexity setting)
- Sending the entire database not feasible

¹Think of each of them being a server of a company that deals with massive data. ⊙ ҷ ₧

Suppose Alice and Bob each maintain the same large database of information.¹ They would like to check if their databases are *consistent*.

- Transmission of all data is expensive (communication complexity setting)
- Sending the entire database not feasible
- Say Alice's version of database given by bits (a_1, \ldots, a_n) and Bob's version is (b_1, \ldots, b_n)

Think of each of them being a server of a company that deals with massive data. ⊙ < ?

Suppose Alice and Bob each maintain the same large database of information.¹ They would like to check if their databases are *consistent*.

- Transmission of all data is expensive (communication complexity setting)
- Sending the entire database not feasible
- Say Alice's version of database given by bits (a_1, \ldots, a_n) and Bob's version is (b_1, \ldots, b_n)
- Deterministic consistency check requires Alice and Bob to communicate n bits (otherwise adversary would know how to change database to make check fail)

can formalize using information theory

¹Think of each of them being a server of a company that deals with massive data. ○ ९ ○

Suppose Alice and Bob each maintain the same large database of information.¹ They would like to check if their databases are *consistent*.

- Transmission of all data is expensive (communication complexity setting)
- Sending the entire database not feasible
- Say Alice's version of database given by bits (a_1, \ldots, a_n) and Bob's version is (b_1, \ldots, b_n)
- Deterministic consistency check requires Alice and Bob to communicate *n* bits (otherwise adversary would know how to change database to make check fail)
- Fingerprinting for the rescue!

Think of each of them being a server of a company that deals with massive data.

Suppose Alice and Bob each maintain the same large database of information.¹ They would like to check if their databases are *consistent*.

- Transmission of all data is expensive (communication complexity setting)
- Sending the entire database not feasible
- Say Alice's version of database given by bits (a_1, \ldots, a_n) and Bob's version is (b_1, \ldots, b_n)
- Deterministic consistency check requires Alice and Bob to communicate *n* bits (otherwise adversary would know how to change database to make check fail)
- Fingerprinting for the rescue!

Communication complexity setting, randomized algorithms, need to work with high probability.

¹Think of each of them being a server of a company that deals with massive data. ○ ९ ○

Want to check whether strings (a_1, \ldots, a_n) and (b_1, \ldots, b_n) equal.

Want to check whether strings (a_1, \ldots, a_n) and (b_1, \ldots, b_n) equal.

Want to check whether strings (a_1, \ldots, a_n) and (b_1, \ldots, b_n) equal.

Let
$$a = \sum_{i=1}^{n} a_i \cdot 2^{i-1}$$
 and $b = \sum_{i=1}^{n} b_i \cdot 2^{i-1}$

$$(a_{11} a_{21} \dots a_n) \leftarrow a \quad \text{in base } 2$$

$$(b_{11} b_{21} \dots b_n) \leftarrow b \quad \text{in base } 2$$

$$(b_{11} b_{21} \dots b_n) \leftarrow b \quad \text{in base } 2$$

$$(a_{11} a_{21} \dots a_n) \leftarrow b \quad \text{in base } 2$$

$$(a_{11} a_{21} \dots a_n) \leftarrow b \quad \text{in base } 2$$

$$(a_{11} a_{21} \dots a_n) \leftarrow b \quad \text{in base } 2$$

$$(a_{11} a_{21} \dots a_n) \leftarrow b \quad \text{in base } 2$$

$$(a_{11} a_{21} \dots a_n) \leftarrow b \quad \text{in base } 2$$

$$(a_{11} a_{21} \dots a_n) \leftarrow b \quad \text{in base } 2$$

Want to check whether strings (a_1, \ldots, a_n) and (b_1, \ldots, b_n) equal.

- **1** Let $a = \sum_{i=1}^{n} a_i \cdot 2^{i-1}$ and $b = \sum_{i=1}^{n} b_i \cdot 2^{i-1}$
- ② Let $F_p(x) = x \mod p$ be a fingerprinting function, for a prime p

Want to check whether strings (a_1, \ldots, a_n) and (b_1, \ldots, b_n) equal.

- **1** Let $a = \sum_{i=1}^{n} a_i \cdot 2^{i-1}$ and $b = \sum_{i=1}^{n} b_i \cdot 2^{i-1}$
- ② Let $F_p(x) = x \mod p$ be a fingerprinting function, for a prime p
- Protocol:

Want to check whether strings (a_1, \ldots, a_n) and (b_1, \ldots, b_n) equal.

- **1** Let $a = \sum_{i=1}^{n} a_i \cdot 2^{i-1}$ and $b = \sum_{i=1}^{n} b_i \cdot 2^{i-1}$
- ② Let $F_p(x) = x \mod p$ be a fingerprinting function, for a prime p
- Protocol:
 - **1** Alice picks a random prime p and sends $(p, F_p(a))$ to Bob

Want to check whether strings (a_1, \ldots, a_n) and (b_1, \ldots, b_n) equal.

Fingerprinting mechanism:

- **1** Let $a = \sum_{i=1}^{n} a_i \cdot 2^{i-1}$ and $b = \sum_{i=1}^{n} b_i \cdot 2^{i-1}$
- 2 Let $F_p(x) = x \mod p$ be a fingerprinting function, for a prime p
- Protocol:
 - Alice picks a random prime p and sends $(p, F_p(a))$ to Bob
 - **2** Bob checks whether $F_p(a) \equiv F_p(b) \mod p$, sends

 $\begin{cases} 1, \text{ if the values are equal} \\ 0, \text{ otherwise} \end{cases}$

Want to check whether strings (a_1, \ldots, a_n) and (b_1, \ldots, b_n) equal.

Fingerprinting mechanism:

- **1** Let $a = \sum_{i=1}^{n} a_i \cdot 2^{i-1}$ and $b = \sum_{i=1}^{n} b_i \cdot 2^{i-1}$
- 2 Let $F_p(x) = x \mod p$ be a fingerprinting function, for a prime p
- Protocol:
 - Alice picks a random prime p and sends $(p, F_p(a))$ to Bob
 - **2** Bob checks whether $F_p(a) \equiv F_p(b) \mod p$, sends

$$\begin{cases} 1, & \text{if the values are equal} \\ 0, & \text{otherwise} \end{cases}$$

Total bits communicated: O(log p) bits (dominated by Alice's message)

Want to check whether strings (a_1, \ldots, a_n) and (b_1, \ldots, b_n) equal.

- **1** Let $a = \sum_{i=1}^{n} a_i \cdot 2^{i-1}$ and $b = \sum_{i=1}^{n} b_i \cdot 2^{i-1}$
- 2 Let $F_p(x) = x \mod p$ be a fingerprinting function, for a prime p
- Protocol:
 - Alice picks a random prime p and sends $(p, F_p(a))$ to Bob
 - **2** Bob checks whether $F_p(a) \equiv F_p(b) \mod p$, sends

$$\begin{cases} 1, \text{ if the values are equal} \\ 0, \text{ otherwise} \end{cases}$$

- **Total bits communicated:** $O(\log p)$ bits (dominated by Alice's message)
- if $(a_1, \ldots, a_n) = (b_1, \ldots, b_n)$ then protocol always right

Want to check whether strings (a_1, \ldots, a_n) and (b_1, \ldots, b_n) equal.

- **1** Let $a = \sum_{i=1}^{n} a_i \cdot 2^{i-1}$ and $b = \sum_{i=1}^{n} b_i \cdot 2^{i-1}$
- 2 Let $F_p(x) = x \mod p$ be a fingerprinting function, for a prime p
- Protocol:
 - **1** Alice picks a random prime p and sends $(p, F_p(a))$ to Bob
 - **2** Bob checks whether $F_p(a) \equiv F_p(b) \mod p$, sends

$$\begin{cases} 1, \text{ if the values are equal} \\ 0, \text{ otherwise} \end{cases}$$

- Total bits communicated: O(log p) bits (dominated by Alice's message)
- if $(a_1, \ldots, a_n) = (b_1, \ldots, b_n)$ then protocol always right
- what happens when they are different?

• If $(a_1,\ldots,a_n)\neq (b_1,\ldots,b_n)$, then $a\neq b$.

- If $(a_1,\ldots,a_n)\neq (b_1,\ldots,b_n)$, then $a\neq b$.
- For how many primes can $F_p(a) \equiv F_p(b)$? (i.e., protocol will fail)

equivalent to
$$M = F_{p}(a) - F_{p}(b) = ?D$$

$$F_{\rho}(e)$$
, $F_{\rho}(b)$ $\in \{0, -, \rho\}$

$$M \in [-2\rho, 2\rho]$$

$$M \text{ not too big}$$

- If $(a_1, ..., a_n) \neq (b_1, ..., b_n)$, then $a \neq b$.
- For how many primes can $F_p(a) \equiv F_p(b)$? (i.e., protocol will fail)
- If a number M is in $\{-2^n, \dots, 2^n\}$, then number of distinct primes $p \mid M$ is < n.

```
M"small' = not too many primes
divide M
```

- If $(a_1, ..., a_n) \neq (b_1, ..., b_n)$, then $a \neq b$.
- For how many primes can $F_p(a) \equiv F_p(b)$? (i.e., protocol will fail)
- If a number M is in $\{-2^n, \dots, 2^n\}$, then number of distinct primes $p \mid M$ is < n.
 - **①** Each prime divisor of M is ≥ 2 , so if M has t distinct prime divisors, then $|M| > 2^t$

then
$$|M| > 2^t$$

$$|M| = |A_M| \cdot P_1 P_2 P_3 \cdot P_t > 1 \cdot 2^t$$

- If $(a_1, ..., a_n) \neq (b_1, ..., b_n)$, then $a \neq b$.
- For how many primes can $F_p(a) \equiv F_p(b)$? (i.e., protocol will fail)
- If a number M is in $\{-2^n, \dots, 2^n\}$, then number of distinct primes $p \mid M$ is < n.
 - **①** Each prime divisor of M is ≥ 2 , so if M has t distinct prime divisors, then $|M| > 2^t$
 - $|M| \le 2^n \Rightarrow t \le n$

- If $(a_1,\ldots,a_n)\neq (b_1,\ldots,b_n)$, then $a\neq b$.
- For how many primes can $F_p(a) \equiv F_p(b)$? (i.e., protocol will fail)
- If a number M is in $\{-2^n, \dots, 2^n\}$, then number of distinct primes $p \mid M$ is < n.
 - **①** Each prime divisor of M is ≥ 2 , so if M has t distinct prime divisors, then $|M| > 2^t$
 - $|M| \leq 2^n \Rightarrow t \leq n$
- $F_p(a) \equiv F_p(b)$ if, and only if, $p \mid a b$.

- If $(a_1,\ldots,a_n)\neq (b_1,\ldots,b_n)$, then $a\neq b$.
- For how many primes can $F_p(a) \equiv F_p(b)$? (i.e., protocol will fail)
- If a number M is in $\{-2^n, \dots, 2^n\}$, then number of distinct primes $p \mid M$ is < n.
 - **①** Each prime divisor of M is ≥ 2 , so if M has t distinct prime divisors, then $|M| > 2^t$
 - $|M| \le 2^n \Rightarrow t \le n$
- $F_p(a) \equiv F_p(b)$ if, and only if, $p \mid a b$.
- Thus, protocol fails for at most n choices of p

- If $(a_1,\ldots,a_n)\neq (b_1,\ldots,b_n)$, then $a\neq b$.
- For how many primes can $F_p(a) \equiv F_p(b)$? (i.e., protocol will fail)
- If a number M is in $\{-2^n, \dots, 2^n\}$, then number of distinct primes $p \mid M$ is < n.
 - **①** Each prime divisor of M is ≥ 2 , so if M has t distinct prime divisors, then $|M| > 2^t$
 - $|M| \le 2^n \Rightarrow t \le n$
- $F_p(a) \equiv F_p(b)$ if, and only if, $p \mid a b$.
- Thus, protocol fails for at most n choices of p
- Prime number theorem: there are $m/\log m$ primes among first m positive integers

- If $(a_1,\ldots,a_n)\neq (b_1,\ldots,b_n)$, then $a\neq b$.
- For how many primes can $F_p(a) \equiv F_p(b)$? (i.e., protocol will fail)
- If a number M is in $\{-2^n, \dots, 2^n\}$, then number of distinct primes $p \mid M$ is < n.
 - **①** Each prime divisor of M is ≥ 2 , so if M has t distinct prime divisors, then $|M| > 2^t$
 - $|M| \le 2^n \Rightarrow t \le n$
- $F_p(a) \equiv F_p(b)$ if, and only if, $p \mid a b$.
- Thus, protocol fails for at most n choices of p
- Prime number theorem: there are m/log m primes among first m positive integers
- Choosing p among the first $tn \log(tn)$ within we have that

$$\Pr[F_p(a) \equiv F_p(b)] \leq \frac{n}{t n \log t n / \log(t n \log t n)} = \tilde{O}(1/t)$$

Verifying string equality

- If $(a_1,\ldots,a_n)\neq (b_1,\ldots,b_n)$, then $a\neq b$.
- For how many primes can $F_p(a) \equiv F_p(b)$? (i.e., protocol will fail)
- If a number M is in $\{-2^n, \dots, 2^n\}$, then number of distinct primes $p \mid M$ is < n.
 - **①** Each prime divisor of M is ≥ 2 , so if M has t distinct prime divisors, then $|M| > 2^t$
 - $|M| < 2^n \Rightarrow t < n$
- $F_p(a) \equiv F_p(b)$ if, and only if, $p \mid a b$.
- Thus, protocol fails for at most n choices of p
- **Prime number theorem**: there are $m/\log m$ primes among first m positive integers
- Choosing p among the first $tn \log(tn)$ primes we have that

$$\Pr[F_p(a) \equiv F_p(b)] \le \frac{n}{t n \log t n / \log(t n \log t n)} = \tilde{O}(1/t)$$

• Number of bits sent is $\tilde{O}(\log t + \log n)$. Choosing t = n solves it.

- Introduction
 - Why Algebraic Techniques in computer science?
 - Fingerprinting: String equality verification
- Main Problems
 - Polynomial Identity Testing
 - Randomized Matching Algorithms
 - Isolation Lemma
- Remarks
- Acknowledgements

Technique for string equality testing can be generalized to following setting:

- Input: "Given" two polynomials P(x), Q(x), are they equal?
- \bullet Two polynomials are equal \Leftrightarrow all their coefficients are equal

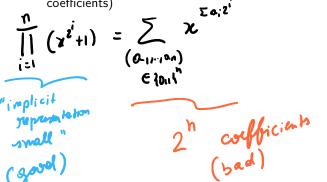
$$(a_{i,j} \cdots_{i} a_{m}) = (b_{i,j} \cdots_{j} b_{m})$$

$$(b_{i,j} \cdots_{j} b_{m})$$

Practice problem: give a different algorithm for the storing equality problem using PIT

- **Input:** "Given" two polynomials P(x), Q(x), are they equal?
- Two polynomials are equal ⇔ all their coefficients are equal
- So why not just compare their coefficients?

- **Input:** "Given" two polynomials P(x), Q(x), are they equal?
- \bullet Two polynomials are equal \Leftrightarrow all their coefficients are equal
- So why not just compare their coefficients?
 - Sometimes polynomials are given implicitly (i.e., not by their list of coefficients)



- **Input:** "Given" two polynomials P(x), Q(x), are they equal?
- \bullet Two polynomials are equal \Leftrightarrow all their coefficients are equal
- So why not just compare their coefficients?
 - Sometimes polynomials are given implicitly (i.e., not by their list of coefficients)
 - ② $P_1(x), P_2(x), P_3(x)$, test whether: $P_1(x) \cdot P_2(x) = P_3(x)$?

- **Input:** "Given" two polynomials P(x), Q(x), are they equal?
- Two polynomials are equal
 ⇔ all their coefficients are equal
- So why not just compare their coefficients?
 - 1 Sometimes polynomials are given *implicitly* (i.e., not by their list of coefficients)
 - $P_1(x), P_2(x), P_3(x), \text{ test whether: } P_1(x) \cdot P_2(x) = P_3(x)?$
 - **3** If P_1, P_2 have degree $\leq n$, then $\deg(P_3) \leq 2n$ (otherwise problem is
 - even in this setting let's see how to been the "norve" algorithm

- **Input:** "Given" two polynomials P(x), Q(x), are they equal?
- Two polynomials are equal ⇔ all their coefficients are equal
- So why not just compare their coefficients?
 - Sometimes polynomials are given implicitly (i.e., not by their list of coefficients)
 - ② $P_1(x), P_2(x), P_3(x)$, test whether: $P_1(x) \cdot P_2(x) = P_3(x)$?
 - ③ If P_1 , P_2 have degree $\leq n$, then deg(P_3) $\leq 2n$ (otherwise problem is trivial)
- Multiplication of two polynomials of degree n: $O(n \log n)$ by FFT

- **Input:** "Given" two polynomials P(x), Q(x), are they equal?
- Two polynomials are equal ⇔ all their coefficients are equal
- So why not just compare their coefficients?
 - Sometimes polynomials are given implicitly (i.e., not by their list of coefficients)
 - ② $P_1(x), P_2(x), P_3(x)$, test whether: $P_1(x) \cdot P_2(x) = P_3(x)$?
 - **3** If P_1, P_2 have degree $\leq n$, then $\deg(P_3) \leq 2n$ (otherwise problem is trivial)
- Multiplication of two polynomials of degree n: $O(n \log n)$ by FFT
- Polynomial evaluation: O(n)

- **Input:** "Given" two polynomials P(x), Q(x), are they equal?
- Two polynomials are equal ⇔ all their coefficients are equal
- So why not just compare their coefficients?
 - Sometimes polynomials are given implicitly (i.e., not by their list of coefficients)
 - ② $P_1(x), P_2(x), P_3(x)$, test whether: $P_1(x) \cdot P_2(x) = P_3(x)$?
 - ③ If P_1 , P_2 have degree $\leq n$, then deg $(P_3) \leq 2n$ (otherwise problem is trivial)
- Multiplication of two polynomials of degree n: $O(n \log n)$ by FFT
- Polynomial evaluation: O(n)
- Can we check whether $P_1(x) \cdot P_2(x) = P_3(x)$ in O(n) time?

Technique for string equality testing can be generalized to following setting:

- **Input:** "Given" two polynomials P(x), Q(x), are they equal?
- Two polynomials are equal ⇔ all their coefficients are equal
- So why not just compare their coefficients?
 - Sometimes polynomials are given implicitly (i.e., not by their list of coefficients)
 - ② $P_1(x), P_2(x), P_3(x)$, test whether: $P_1(x) \cdot P_2(x) = P_3(x)$?
 - ③ If P_1 , P_2 have degree $\leq n$, then deg(P_3) $\leq 2n$ (otherwise problem is trivial)
- Multiplication of two polynomials of degree n: $O(n \log n)$ by FFT
- Polynomial evaluation: O(n)
- Can we check whether $P_1(x) \cdot P_2(x) = P_3(x)$ in O(n) time?

Lemma (Roots of Univariate Polynomials)

Lemma (Roots of Univariate Polynomials)

Proof: IF [X] is orn Enclideon domain (have division with remainds)

$$Q(x) = (x-d) Q(x)$$
 $\overline{deg(8)} = d\cdot 1$

induction.

Lemma (Roots of Univariate Polynomials)

Let \mathbb{F} be a field and $P(x) \in \mathbb{F}[x]$ be a nonzero univariate polynomial of degree d. Then P(x) has at most d roots in $\overline{\mathbb{F}}$.

• Let $Q(x) = P_3(x) - P_1(x) \cdot P_2(x)$. It has degree $\leq 2n$

Lemma (Roots of Univariate Polynomials)

- Let $Q(x) = P_3(x) P_1(x) \cdot P_2(x)$. It has degree $\leq 2n$
- By lemma, if $Q \neq 0$ then Q(a) = 0 for at most 2n values in \mathbb{F} .

Lemma (Roots of Univariate Polynomials)

- Let $Q(x) = P_3(x) P_1(x) \cdot P_2(x)$. It has degree $\leq 2n$
- By lemma, if $Q \neq 0$ then Q(a) = 0 for at most 2n values in \mathbb{F} .
- Take a set $S \subseteq \mathbb{F}$ of size 4n. Let $a \in S$ chosen randomly.

Lemma (Roots of Univariate Polynomials)

- Let $Q(x) = P_3(x) P_1(x) \cdot P_2(x)$. It has degree $\leq 2n$
- By lemma, if $Q \neq 0$ then Q(a) = 0 for at most 2n values in \mathbb{F} .
- Take a set $S \subseteq \mathbb{F}$ of size 4n. Let $a \in S$ chosen randomly.
- Compute Q(a) by computing $P_1(a)$, $P_2(a)$, $P_3(a)$ and then $P_3(a) P_1(a) \cdot P_2(a)$

Lemma (Roots of Univariate Polynomials)

- Let $Q(x) = P_3(x) P_1(x) \cdot P_2(x)$. It has degree $\leq 2n$
- By lemma, if $Q \neq 0$ then Q(a) = 0 for at most 2n values in \mathbb{F} .
- Take a set $S \subseteq \mathbb{F}$ of size 4n. Let $a \in S$ chosen randomly.
- Compute Q(a) by computing $P_1(a)$, $P_2(a)$, $P_3(a)$ and then $P_3(a) P_1(a) \cdot P_2(a)$
- Probability Q(a) = 0 (i.e., we failed to identify non-zero)

$$\leq \frac{\deg(Q)}{|S|} \leq \frac{2n}{4n} = 1/2.$$

Lemma (Roots of Univariate Polynomials)

Let \mathbb{F} be a field and $P(x) \in \mathbb{F}[x]$ be a nonzero univariate polynomial of degree d. Then P(x) has at most d roots in $\overline{\mathbb{F}}$.

- Let $Q(x) = P_3(x) P_1(x) \cdot P_2(x)$. It has degree $\leq 2n$
- By lemma, if $Q \neq 0$ then Q(a) = 0 for at most 2n values in \mathbb{F} .
- Take a set $S \subseteq \mathbb{F}$ of size 4n. Let $a \in S$ chosen randomly.
- Compute Q(a) by computing $P_1(a), P_2(a), P_3(a)$ and then $P_3(a) P_1(a) \cdot P_2(a)$
- Probability Q(a) = 0 (i.e., we failed to identify non-zero)

$$\leq \frac{\deg(Q)}{|S|} \leq \frac{2n}{4n} = 1/2.$$

• Can amplify probability by running multiple times or by choosing larger set *S*.

Lemma (Ore-Schwartz-Zippel-de Millo-Lipton lemma)

Let \mathbb{F} be a field and $P(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n]$ be a nonzero polynomial of degree $\leq d$. Then for any set $S \subseteq \overline{\mathbb{F}}$, we have:

$$\Pr[P(a_1,\ldots,a_n)=0\mid a_i\in S]\leq \frac{d}{|S|}$$

algorithm for the polynomial identity toxing problem!

Lemma (Ore-Schwartz-Zippel-de Millo-Lipton lemma)

Let \mathbb{F} be a field and $P(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n]$ be a nonzero polynomial of degree $\leq d$. Then for any set $S \subseteq \overline{\mathbb{F}}$, we have:

$$\Pr[P(a_1,\ldots,a_n)=0\mid a_i\in S]\leq \frac{d}{|S|}$$

Proof by induction in number of variables.

Suppose lemma true for n-1 variables any degree .

$$P(x_1,...,x_n) = \sum_{i=0}^{\infty} P_i(x_1,...,x_{n+1}) \times_n \quad \text{nonzero as one of } P_i$$

in Nonzero deg(P_i) $\leq d-1$ become deg(P_i) $\leq d$

By induction $P_X \left[P_i(0_1,...,0_{n+1}) = 0\right] \leq \frac{d-1}{|S|}$

By induction
$$P_{X}\left[P_{1}(0,1),0,1]=0\right]=\overline{151}$$

$$P_{1}\left(0,1,1,0,1\right)\neq0$$
 then $P\left(0,1,1,0,1,1,1\right)\neq0$ in $F\left(X_{1}\right)$

let i be clargest noux
$$1.1.$$
 $p:(\tilde{x}) \neq 0$

$$P_{A} \left[P(\bar{a}_{1}, \dots, \bar{a}_{n}) = 0 \right] =$$

$$= P_{A} \left[P(\bar{a}_{1}) = 0 \mid P_{i}(\bar{a}_{1}) = 0 \right] \cdot P_{A} \left[P_{i}(\bar{a}_{1}) = 0 \right]$$

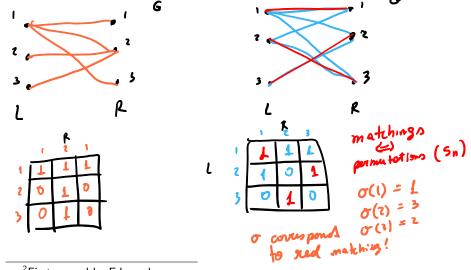
$$= P_{A} \left[P(\bar{a}_{1}) = 0 \mid P_{i}(\bar{a}_{1}) \neq 0 \right] \cdot P_{A} \left[P_{i}(\bar{a}_{1}) \neq 0 \right]$$

$$= P_{A} \left[P(\bar{a}_{1}) = 0 \mid P_{i}(\bar{a}_{1}) \neq 0 \right] \cdot P_{A} \left[P_{i}(\bar{a}_{1}) \neq 0 \right]$$

$$= \frac{1}{|S|}$$

- Introduction
 - Why Algebraic Techniques in computer science?
 - Fingerprinting: String equality verification
- Main Problems
 - Polynomial Identity Testing
 - Randomized Matching Algorithms
 - Isolation I emma
- Remarks
- Acknowledgements

- **Input:** bipartite graph G(L, R, E) with |L| = |R| = n
- Output: does G have a perfect matching?



- **Input:** bipartite graph G(L, R, E) with |L| = |R| = n
- Output: does G have a perfect matching?

²First proved by Edmonds.

- **Input:** bipartite graph G(L, R, E) with |L| = |R| = n
- Output: does G have a perfect matching?
- Let $X \in \mathbb{F}^{n \times n}$ be such that

$$X_{i,j} =$$

$$\begin{cases} y_{i,j}, & \text{if there is edge between } (i,j) \in L \times R \\ 0, & \text{otherwise} \end{cases}$$

Symbolic adjacency matrix of G

- **Input:** bipartite graph G(L, R, E) with |L| = |R| = n
- Output: does G have a perfect matching?
- Let $X \in \mathbb{F}^{n \times n}$ be such that

$$X_{i,j} = \begin{cases} y_{i,j}, & \text{if there is edge between } (i,j) \in L \times R \\ 0, & \text{otherwise} \end{cases}$$

$$\det(X) = \sum_{\sigma \in S_n} (-1)^{\sigma} \prod_{i=1}^n X_{i\sigma(i)}$$
 where the problem is the problem of the prob

²First proved by Edmonds.

- **Input:** bipartite graph G(L, R, E) with |L| = |R| = n
- Output: does G have a perfect matching?
- Let $X \in \mathbb{F}^{n \times n}$ be such that

$$X_{i,j} =$$

$$\begin{cases} y_{i,j}, & \text{if there is edge between } (i,j) \in L \times R \\ 0, & \text{otherwise} \end{cases}$$

•

$$\det(X) = \sum_{\sigma \in S_n} (-1)^{\sigma} \prod_{i=1}^n X_{i\sigma(i)}$$

• G has perfect matching $\Leftrightarrow \det(X)$ is a non-zero polynomial!²

²First proved by Edmonds.

- **Input:** bipartite graph G(L, R, E) with |L| = |R| = n
- Output: does G have a perfect matching?
- Let $X \in \mathbb{F}^{n \times n}$ be such that

$$X_{i,j} =$$

$$\begin{cases} y_{i,j}, & \text{if there is edge between } (i,j) \in L \times R \\ 0, & \text{otherwise} \end{cases}$$

•

$$\det(X) = \sum_{\sigma \in S_n} (-1)^{\sigma} \prod_{i=1}^n X_{i\sigma(i)}$$

- G has perfect matching $\Leftrightarrow \det(X)$ is a non-zero polynomial!²
- Testing if G has a perfect matching is a *special case* of *Polynomial Identity Testing*!

²First proved by Edmonds.

•

- **Input:** bipartite graph G(L, R, E) with |L| = |R| = n
- Output: does G have a perfect matching?
- Let $X \in \mathbb{F}^{n \times n}$ be such that

$$X_{i,j} =$$

$$\begin{cases} y_{i,j}, & \text{if there is edge between } (i,j) \in L \times R \\ 0, & \text{otherwise} \end{cases}$$

$$\det(X) = \sum_{\sigma \in S_n} (-1)^{\sigma} \prod_{i=1}^n X_{i\sigma(i)}$$

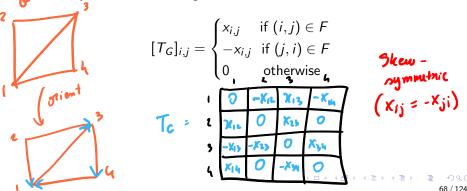
- G has perfect matching $\Leftrightarrow \det(X)$ is a non-zero polynomial!²
- Testing if G has a perfect matching is a *special case* of *Polynomial Identity Testing*!
- Algorithm: evaluate det(X) at a random value for the variables $y_{i,j}$. $y_{i,j} \leftarrow 0$ $i,j \in [2n] \Rightarrow det(A) \neq 0$ $p \rightarrow \frac{1}{2}$

²First proved by Edmonds.

Ok, bipartite matching is easy (we know many algorithms for it...)
 what about the general case?

- Ok, bipartite matching is easy (we know many algorithms for it...)
 what about the general case?
- **Input:** (undirected) graph G(V, E) where |V| = 2n.
- Output: does G have a perfect matching?

- Ok, bipartite matching is easy (we know many algorithms for it...) what about the general case?
- **Input:** (undirected) graph G(V, E) where |V| = 2n.
- Output: does G have a perfect matching?
- **Tutte Matrix:** T_G is the following $2n \times 2n$ matrix: let F be an arbitrary orientation of edges in E. Then,



- Ok, bipartite matching is easy (we know many algorithms for it...)
 what about the general case?
- **Input:** (undirected) graph G(V, E) where |V| = 2n.
- Output: does G have a perfect matching?
- Tutte Matrix: T_G is the following $2n \times 2n$ matrix: let F be an arbitrary orientation of edges in E. Then,

$$[T_G]_{i,j} = \begin{cases} x_{i,j} & \text{if } (i,j) \in F \\ -x_{i,j} & \text{if } (j,i) \in F \\ 0 & \text{otherwise} \end{cases}$$

Theorem (Tutte 1947)

G has a perfect matching $\Leftrightarrow \det(T_G) \neq 0$.

Proof of Tutte's Theorem

Theorem (Tutte 1947)

G has a perfect matching $\Leftrightarrow \det(T_G) \neq 0$.

Proof of Tutte's Theorem

Theorem (Tutte 1947)

G has a perfect matching $\Leftrightarrow \det(T_G) \neq 0$.

$$\det(T_G) = \sum_{\sigma \in S_{2n}} (-1)^{\sigma} \prod_{i=1}^{2n} [T_G]_{i,\sigma(i)}$$

Theorem (Tutte 1947)

G has a perfect matching $\Leftrightarrow \det(T_G) \neq 0$.

d

$$\det(\mathcal{T}_G) = \sum_{\sigma \in S_{2n}} (-1)^{\sigma} \prod_{i=1}^{2n} [\mathcal{T}_G]_{i,\sigma(i)}$$

• Each permutation $\sigma \in S_{2n}$ that yields non-zero term corresponds to a (directed) subgraph of G $H_{\sigma}(V, F_{\sigma})$, where $F_{\sigma} = \{(i, \sigma(i))\}_{i=1}^{2n}$.

Theorem (Tutte 1947)

G has a perfect matching $\Leftrightarrow \det(T_G) \neq 0$.

d

$$\det(T_G) = \sum_{\sigma \in S_{2n}} (-1)^{\sigma} \prod_{i=1}^{2n} [T_G]_{i,\sigma(i)}$$

- Each permutation $\sigma \in S_{2n}$ that yields non-zero term corresponds to a (directed) subgraph of G $H_{\sigma}(V, F_{\sigma})$, where $F_{\sigma} = \{(i, \sigma(i))\}_{i=1}^{2n}$.
- Each vertex in H_{σ} has $|\delta^{out}(i)| = |\delta^{in}(i)| = 1$.

Theorem (Tutte 1947)

- Each permutation $\sigma \in S_{2n}$ that yields non-zero term corresponds to a (directed) subgraph of G $H_{\sigma}(V, F_{\sigma})$, where $F_{\sigma} = \{(i, \sigma(i))\}_{i=1}^{2n}$.
- If σ only has even cycles, then H_{σ} gives us a perfect matching (by taking every other edge of the graph H_{σ} , ignoring orientation)

Theorem (Tutte 1947)

G has a perfect matching $\Leftrightarrow \det(T_G) \neq 0$.

• Each permutation $\sigma \in S_{2n}$ that yields non-zero term corresponds to a (directed) subgraph of G $H_{\sigma}(V, F_{\sigma})$, where $F_{\sigma} = \{(i, \sigma(i))\}_{i=1}^{2n}$.

• Otherwise, for each $\sigma \in S_{2n}$ (that has <u>odd cycle</u>), there is another permutation $r(\sigma) \in S_{2n}$ that is obtained by reversing odd cycle of H_{σ} containing vertex with *minimum index*.

Theorem (Tutte 1947)

Theorem (Tutte 1947)

G has a perfect matching $\Leftrightarrow \det(T_G) \neq 0$.

• Comparing $(-1)^{\sigma} \prod_{i=1}^{2n} [T_G]_{i,\sigma(i)}$ and $(-1)^{r(\sigma)} \prod_{i=1}^{2n} [T_G]_{i,r(\sigma)(i)}$

Theorem (Tutte 1947)

- Comparing $(-1)^{\sigma} \prod_{i=1}^{2n} [T_G]_{i,\sigma(i)}$ and $(-1)^{r(\sigma)} \prod_{i=1}^{2n} [T_G]_{i,r(\sigma)(i)}$
 - $(-1)^{\sigma} = (-1)^{r(\sigma)} \Leftarrow \text{ cycles of same size}$

Theorem (Tutte 1947)

- Comparing $(-1)^{\sigma} \prod_{i=1}^{2n} [T_G]_{i,\sigma(i)}$ and $(-1)^{r(\sigma)} \prod_{i=1}^{2n} [T_G]_{i,r(\sigma)(i)}$
 - $(-1)^{\sigma} = (-1)^{r(\sigma)} \Leftarrow \text{ cycles of same size}$

$$\prod_{i=1}^{2n} [T_G]_{i,\sigma(i)} = \prod_{i=1}^{2n} x_{i,\sigma(i)} = -\prod_{i=1}^{2n} [T_G]_{i,r(\sigma)(i)}$$

Theorem (Tutte 1947)

G has a perfect matching $\Leftrightarrow \det(T_G) \neq 0$.

- Comparing $(-1)^{\sigma} \prod_{i=1}^{2n} [T_G]_{i,\sigma(i)}$ and $(-1)^{r(\sigma)} \prod_{i=1}^{2n} [T_G]_{i,r(\sigma)(i)}$
 - $(-1)^{\sigma} = (-1)^{r(\sigma)} \Leftarrow \text{ cycles of same size}$

0

$$\prod_{i=1}^{2n} [T_G]_{i,\sigma(i)} = \prod_{i=1}^{2n} x_{i,\sigma(i)} = -\prod_{i=1}^{2n} [T_G]_{i,r(\sigma)(i)}$$

These two terms cancel!

Theorem (Tutte 1947)

- Comparing $(-1)^{\sigma} \prod_{i=1}^{2n} [T_G]_{i,\sigma(i)}$ and $(-1)^{r(\sigma)} \prod_{i=1}^{2n} [T_G]_{i,r(\sigma)(i)}$
 - $(-1)^{\sigma} = (-1)^{r(\sigma)} \Leftarrow$ cycles of same size

$$\prod_{i=1}^{2n} [T_G]_{i,\sigma(i)} = \prod_{i=1}^{2n} x_{i,\sigma(i)} = -\prod_{i=1}^{2n} [T_G]_{i,r(\sigma)(i)}$$

- These two terms cancel!
- Since $r(r(\sigma)) = \sigma$, all such terms cancel!

Theorem (Tutte 1947)

- Comparing $(-1)^{\sigma} \prod_{i=1}^{2n} [T_G]_{i,\sigma(i)}$ and $(-1)^{r(\sigma)} \prod_{i=1}^{2n} [T_G]_{i,r(\sigma)(i)}$
 - $(-1)^{\sigma} = (-1)^{r(\sigma)} \Leftarrow$ cycles of same size

$$\prod_{i=1}^{2n} [T_G]_{i,\sigma(i)} = \prod_{i=1}^{2n} x_{i,\sigma(i)} = -\prod_{i=1}^{2n} [T_G]_{i,r(\sigma)(i)}$$

- These two terms cancel!
- Since $r(r(\sigma)) = \sigma$, all such terms cancel!
- Is there a term that does not cancel? (have to show that $\det(T_G) \not\equiv 0$)

Theorem (Tutte 1947)

- Is there a term that does not cancel? (have to show that $\det(T_G) \not\equiv 0$)
- If T_G has a matching, say, $\{1,2\}, \{3,4\}, \ldots, \{2n-1,2n\}$, then take permutation $\sigma = (1\ 2)(3\ 4)\cdots(2n-1\ 2n)$

$$(-1)^{\sigma} \prod_{i=1}^{2n} [T_G]_{i,\sigma(i)} = (-1)^n \prod_{i=1}^n -x_{(2i-1)\sigma(2i-1)}^2 = \prod_{i=1}^n x_{(2i-1)\sigma(2i-1)}^2.$$

We have seen randomized algorithms for bipartite and non-bipartite matching.

Why did you say parallel algorithms?

We have seen randomized algorithms for bipartite and non-bipartite matching.

Why did you say parallel algorithms?

- The algorithms for matching consisted of:
 - testing whether a certain determinant is non-zero
 - by evaluating it at a random point

We have seen randomized algorithms for bipartite and non-bipartite matching.

Why did you say parallel algorithms?

- The algorithms for matching consisted of:
 - testing whether a certain determinant is non-zero
 - by evaluating it at a random point
- Ore-Schwartz-Zippel-deMillo-Lipton lemma tells us that this algorithm succeeds with high probability

We have seen randomized algorithms for bipartite and non-bipartite matching.

Why did you say parallel algorithms?

- The algorithms for matching consisted of:
 - testing whether a certain determinant is non-zero
 - by evaluating it at a random point
- Ore-Schwartz-Zippel-deMillo-Lipton lemma tells us that this algorithm succeeds with high probability
- We will see later in the course that we can

compute the determinant efficiently in parallel

(: evaluate it efficiently in parallel)

- Introduction
 - Why Algebraic Techniques in computer science?
 - Fingerprinting: String equality verification
- Main Problems
 - Polynomial Identity Testing
 - Randomized Matching Algorithms
 - Isolation I emma
- Remarks
- Acknowledgements

Often times in parallel computation, when solving a problem with *many possible solutions*, it is important to make sure that *different processors* are working towards *same solution*.

Often times in parallel computation, when solving a problem with *many possible solutions*, it is important to make sure that *different processors* are working towards *same solution*.

Need to *single out* (i.e. isolate) a specific solution *without knowing* any element of the solution space. How to do this?

need to in slate a matching without Knowing it!

Often times in parallel computation, when solving a problem with *many possible solutions*, it is important to make sure that *different processors* are working towards *same solution*.

Need to *single out* (i.e. isolate) a specific solution *without knowing* any element of the solution space. How to do this?

• **Solution:** Implicitly choose a *random order* on the feasible solutions and require processors to find solution of *lowest rank* in this order

```
in matchings

net random edge weights

and nort matching by total weight
```

Often times in parallel computation, when solving a problem with *many possible solutions*, it is important to make sure that *different processors* are working towards *same solution*.

Need to *single out* (i.e. isolate) a specific solution *without knowing* any element of the solution space. How to do this?

- **Solution:** Implicitly choose a *random order* on the feasible solutions and require processors to find solution of *lowest rank* in this order
- Applications also in distributed computing (breaking deadlocks)!

Often times in parallel computation, when solving a problem with *many possible solutions*, it is important to make sure that *different processors* are working towards *same solution*.

Need to *single out* (i.e. isolate) a specific solution *without knowing* any element of the solution space. How to do this?

- **Solution:** Implicitly choose a *random order* on the feasible solutions and require processors to find solution of *lowest rank* in this order
- Applications also in distributed computing (breaking deadlocks)!
- Can use it to compute minimum weight perfect matching (see Lap Chi's notes)

Often times in parallel computation, when solving a problem with *many possible solutions*, it is important to make sure that *different processors* are working towards *same solution*.

Need to *single out* (i.e. isolate) a specific solution *without knowing* any element of the solution space. How to do this?

- **Solution:** Implicitly choose a *random order* on the feasible solutions and require processors to find solution of *lowest rank* in this order
- Applications also in distributed computing (breaking deadlocks)!
- Can use it to compute minimum weight perfect matching (see Lap Chi's notes)

Lemma (Isolation Lemma)

Given a set system over $[n] := \{1, 2, ..., n\}$, if we assign a random weight function $w : [n] \to [2n]$ then the probability that there is a unique minimum weight set is at least 1/2.

Lemma (Isolation Lemma)

Given a set system over $[n] := \{1, 2, ..., n\}$, if we assign a random weight function $w : [n] \to [2n]$ then the probability that there is a unique minimum weight set is at least 1/2.

Lemma (Isolation Lemma)

Given a set system over $[n] := \{1, 2, ..., n\}$, if we assign a random weight function $w : [n] \to [2n]$ then the probability that there is a unique minimum weight set is at least 1/2.

Example for n = 4:

• Set system: $S_1 = \{1,4\}, S_2 = \{2,3\}, S_3 = \{1,2,3\}$

Lemma (Isolation Lemma)

Given a set system over $[n] := \{1, 2, \dots, n\}$, if we assign a random weight function $w:[n] \to [2n]$ then the probability that there is a unique minimum weight set is at least 1/2.

- Set system: $S_1 = \{1, 4\}, S_2 = \{2, 3\}, S_3 = \{1, 2, 3\}$
- Random weight function $w: [4] \rightarrow [8]$ given by w(1) = 3, w(2) = 5, w(3) = 8, w(4) = 4

Lemma (Isolation Lemma)

Given a set system over $[n] := \{1, 2, ..., n\}$, if we assign a random weight function $w : [n] \to [2n]$ then the probability that there is a unique minimum weight set is at least 1/2.

- Set system: $S_1 = \{1, 4\}, S_2 = \{2, 3\}, S_3 = \{1, 2, 3\}$
- Random weight function $w : [4] \rightarrow [8]$ given by w(1) = 3, w(2) = 5, w(3) = 8, w(4) = 4
- Random weight function $w' : [4] \to [8]$ given by w'(1) = 5, w'(2) = 1, w'(3) = 7, w'(4) = 3

Lemma (Isolation Lemma)

Given a set system over $[n] := \{1, 2, ..., n\}$, if we assign a random weight function $w : [n] \to [2n]$ then the probability that there is a unique minimum weight set is at least 1/2.

- Set system: $S_1 = \{1, 4\}, S_2 = \{2, 3\}, S_3 = \{1, 2, 3\}$
- Random weight function $w : [4] \rightarrow [8]$ given by w(1) = 3, w(2) = 5, w(3) = 8, w(4) = 4
- Random weight function $w' : [4] \to [8]$ given by w'(1) = 5, w'(2) = 1, w'(3) = 7, w'(4) = 3

Lemma (Isolation Lemma)

Given a set system over $[n] := \{1, 2, ..., n\}$, if we assign a random weight function $w : [n] \to [2n]$ then the probability that there is a unique minimum weight set is at least 1/2.

Example for n = 4:

- Set system: $S_1 = \{1, 4\}, S_2 = \{2, 3\}, S_3 = \{1, 2, 3\}$
- Random weight function $w : [4] \rightarrow [8]$ given by w(1) = 3, w(2) = 5, w(3) = 8, w(4) = 4
- Random weight function $w' : [4] \to [8]$ given by w'(1) = 5, w'(2) = 1, w'(3) = 7, w'(4) = 3

Remark

The isolation lemma could be quite counter-intuitive. A set system can have $\Omega(2^n)$ sets. On average, there are $\Omega(2^n/(2n^2))$ sets of a given weight, as max weight is $\leq 2n^2$. Isolation lemma tells us that with high probability there is *only one* set of minimum weight.

1 Let S be our set system and $v \in [n]$.

- **1** Let S be our set system and $v \in [n]$.
- 2 Let S_v family of sets from S which contain v, and N_v the family of sets from S which do not contain v

- **1** Let S be our set system and $v \in [n]$.
- ② Let S_v family of sets from S which contain v, and N_v the family of sets from S which do not contain v
- Let

$$\alpha_{v} := \min_{A \in \mathcal{N}_{v}} w(A) - \min_{B \in \mathcal{S}_{v}} w(B \setminus \{v\})$$

- **1** Let S be our set system and $v \in [n]$.
- ② Let S_v family of sets from S which contain v, and N_v the family of sets from S which do not contain v
- Let

$$\alpha_{v} := \min_{A \in \mathcal{N}_{v}} w(A) - \min_{B \in \mathcal{S}_{v}} w(B \setminus \{v\})$$

1 $\alpha_{\nu} < w(\nu) \Rightarrow \nu$ does not belong to any minimum weight set

- **1** Let S be our set system and $v \in [n]$.
- 2 Let S_v family of sets from S which contain v, and N_v the family of sets from S which do not contain v
- Let

$$\alpha_{v} := \min_{A \in \mathcal{N}_{v}} w(A) - \min_{B \in \mathcal{S}_{v}} w(B \setminus \{v\})$$

- \bullet $\alpha_{\nu} < w(\nu) \Rightarrow \nu$ does not belong to any minimum weight set
- **5** $\alpha_{v} > w(v) \Rightarrow v$ belongs to every minimum weight set

- **①** Let S be our set system and $v \in [n]$.
- 2 Let S_v family of sets from S which contain v, and N_v the family of sets from S which do not contain v
- Let

$$\alpha_{v} := \min_{A \in \mathcal{N}_{v}} w(A) - \min_{B \in \mathcal{S}_{v}} w(B \setminus \{v\})$$

- \bullet $\alpha_{\nu} < w(\nu) \Rightarrow \nu$ does not belong to any minimum weight set
- **5** $\alpha_{\nu} > w(\nu) \Rightarrow \nu$ belongs to every minimum weight set

- **1** Let S be our set system and $v \in [n]$.
- ② Let S_v family of sets from S which contain v, and N_v the family of sets from S which do not contain v
- Let

$$\alpha_{v} := \min_{A \in \mathcal{N}_{v}} w(A) - \min_{B \in \mathcal{S}_{v}} w(B \setminus \{v\})$$

- **1** $\alpha_{\nu} < w(\nu) \Rightarrow \nu$ does not belong to any minimum weight set
- **5** $\alpha_{\nu} > w(\nu) \Rightarrow \nu$ belongs to every minimum weight set
- **1** α_v is *independent* of w(v), and w(v) chosen uniformly at random from [2n].
 - A and Blib do not depend on v!

Proof of Isolation lemma

Let

$$\alpha_{\nu} := \min_{A \in \mathcal{N}_{\nu}} w(A) - \min_{B \in \mathcal{S}_{\nu}} w(B \setminus \{v\})$$

- \bullet $\alpha_{v} < w(v) \Rightarrow v$ does not belong to any minimum weight set
- **5** $\alpha_{\nu} > w(\nu) \Rightarrow \nu$ belongs to every minimum weight set
- $\alpha_v = w(v) \Rightarrow v$ is ambiguous
- ② α_v is *independent* of w(v), and w(v) chosen uniformly at random from [2n].
- $\text{ Pr}[v \text{ ambiguous}] \leq 1/2n \Rightarrow_{\mathsf{union \ bound}} \Pr[\exists \text{ ambiguous element}] \leq 1/2$

Proof of Isolation lemma

Let

$$\alpha_{v} := \min_{A \in \mathcal{N}_{v}} w(A) - \min_{B \in \mathcal{S}_{v}} w(B \setminus \{v\})$$

- **1** $\alpha_{\nu} < w(\nu) \Rightarrow \nu$ does not belong to any minimum weight set
- **5** $\alpha_{\nu} > w(\nu) \Rightarrow \nu$ belongs to every minimum weight set

- $\Pr[v \text{ ambiguous}] \le 1/2n \Rightarrow_{\text{union bound}} \Pr[\exists \text{ ambiguous element}] \le 1/2$
- ① If two different sets A,B have minimum weight, then any element in $A\Delta B$ must be ambiguous.

Proof of Isolation lemma

Let

$$\alpha_{\nu} := \min_{A \in \mathcal{N}_{\nu}} w(A) - \min_{B \in \mathcal{S}_{\nu}} w(B \setminus \{v\})$$

- $\alpha_{\nu} < w(\nu) \Rightarrow \nu$ does not belong to any minimum weight set
- **5** $\alpha_{\nu} > w(\nu) \Rightarrow \nu$ belongs to every minimum weight set

- $\bullet \ \mathsf{Pr}[v \ \mathsf{ambiguous}] \leq 1/2n \Rightarrow_{\mathsf{union}} \mathsf{bound} \ \mathsf{Pr}[\exists \ \mathsf{ambiguous} \ \mathsf{element}] \leq 1/2$
- ${\bf 9}$ If two different sets A,B have minimum weight, then any element in $A\Delta B$ must be ambiguous.
 - lacksquare Probability that this happens is $\leq 1/2$. (step 8)

It is hard to overstate the importance of algebraic techniques in computing.

• Very useful tool for randomized algorithms (hashing, today's lecture)

- Very useful tool for randomized algorithms (hashing, today's lecture)
- Parallel & Distributed Computing (this lecture and lectures 21 and 23)

- Very useful tool for randomized algorithms (hashing, today's lecture)
- Parallel & Distributed Computing (this lecture and lectures 21 and 23)
- Interactive proof systems

- Very useful tool for randomized algorithms (hashing, today's lecture)
- Parallel & Distributed Computing (this lecture and lectures 21 and 23)
- Interactive proof systems
- Efficient proof/program verification (PCP a bit in lecture 16)

- Very useful tool for randomized algorithms (hashing, today's lecture)
- Parallel & Distributed Computing (this lecture and lectures 21 and 23)
- Interactive proof systems
- Efficient proof/program verification (PCP a bit in lecture 16)
 - Applications in hardness of approximation!

- Very useful tool for randomized algorithms (hashing, today's lecture)
- Parallel & Distributed Computing (this lecture and lectures 21 and 23)
- Interactive proof systems
- Efficient proof/program verification (PCP a bit in lecture 16)
 - Applications in hardness of approximation!
 - Applications in blockchain (Zcash for instance)

- Very useful tool for randomized algorithms (hashing, today's lecture)
- Parallel & Distributed Computing (this lecture and lectures 21 and 23)
- Interactive proof systems
- Efficient proof/program verification (PCP a bit in lecture 16)
 - Applications in hardness of approximation!
 - Applications in blockchain (Zcash for instance)
 - Zero Knowledge proofs (lecture 24)

- Very useful tool for randomized algorithms (hashing, today's lecture)
- Parallel & Distributed Computing (this lecture and lectures 21 and 23)
- Interactive proof systems
- Efficient proof/program verification (PCP a bit in lecture 16)
 - Applications in hardness of approximation!
 - Applications in blockchain (Zcash for instance)
 - Zero Knowledge proofs (lecture 24)
- Cryptography

- Very useful tool for randomized algorithms (hashing, today's lecture)
- Parallel & Distributed Computing (this lecture and lectures 21 and 23)
- Interactive proof systems
- Efficient proof/program verification (PCP a bit in lecture 16)
 - Applications in hardness of approximation!
 - Applications in blockchain (Zcash for instance)
 - Zero Knowledge proofs (lecture 24)
- Cryptography
- Coding theory

It is hard to overstate the importance of algebraic techniques in computing.

- Very useful tool for randomized algorithms (hashing, today's lecture)
- Parallel & Distributed Computing (this lecture and lectures 21 and 23)
- Interactive proof systems
- Efficient proof/program verification (PCP a bit in lecture 16)
 - Applications in hardness of approximation!
 - Applications in blockchain (Zcash for instance)
 - Zero Knowledge proofs (lecture 24)
- Cryptography
- Coding theory
- many more...

Derandomizing (i.e., obtaining deterministic algorithms) for some of these settings (whenever possible) is *major open problem* in computer science.

Potential Final Projects

- Can we derandomize the perfect matching algorithms from class?
- A lot of progress has been made in the past couple years on this question in the works [Fenner, Gurjar & Thierauf 2019] and subsequently [Svensson & Tarnawski 2017]
- Survey of the above, or understanding these papers is a great final project!

Acknowledgement

- Lecture based largely on:
 - Lap Chi's notes
 - [Motwani & Raghavan 2007, Chapter 7]
 - [Korte & Vygen 2012, Chapter 10].
- See Lap Chi's notes at https://cs.uwaterloo.ca/~lapchi/cs466/notes/L07.pdf

References I

Korte, Bernhard and Vygen, Jens (2012) Combinatorial optimization. Vol. 2. Heidelberg: Springer.

Fenner, Stephen and Gurjar, Rohit and Thierauf, Thomas (2019) Bipartite perfect matching is in quasi-NC.

SIAM Journal on Computing

Svensson, Ola and Jakub Tarnawski (2017)

The matching problem in general graphs is in quasi-NC.

IEEE 58th Annual Symposium on Foundations of Compute

IEEE 58th Annual Symposium on Foundations of Computer Science