Lecture 7: Sublinear Time Algorithms

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com
June 1, 2021

Overview

- Introduction
- Why Sublinear Time Algorithms?
- Warm-up Problem
- Main Problem
- Number of Connected Components
- Acknowledgements

How do we handle big data? (part II)

Sometimes big data does not come to us (think streaming), but instead we can query small pieces of it.

Sometimes big data can also change over time, so we need a robust answer and/or be able to solve problem quickly multiple times.

How do we handle big data? (part II)

Sometimes big data does not come to us (think streaming), but instead we can query small pieces of it.

Sometimes big data can also change over time, so we need a robust answer and/or be able to solve problem quickly multiple times.

- Social graph: each person is a node, edges if they are friends.

How do we handle big data? (part II)

Sometimes big data does not come to us (think streaming), but instead we can query small pieces of it.

Sometimes big data can also change over time, so we need a robust answer and/or be able to solve problem quickly multiple times.

- Social graph: each person is a node, edges if they are friends.
- Is graph connected?

How do we handle big data? (part II)

Sometimes big data does not come to us (think streaming), but instead we can query small pieces of it.

Sometimes big data can also change over time, so we need a robust answer and/or be able to solve problem quickly multiple times.

- Social graph: each person is a node, edges if they are friends.
- Is graph connected?
- What is the degree of separation? Diameter of graph (6 degrees of separation)

How do we handle big data? (part II)

Sometimes big data does not come to us (think streaming), but instead we can query small pieces of it.

Sometimes big data can also change over time, so we need a robust answer and/or be able to solve problem quickly multiple times.

- Social graph: each person is a node, edges if they are friends.
- Is graph connected?
- What is the degree of separation? Diameter of graph (6 degrees of separation)
- Program checking: checking that a computer program works correctly on all/most inputs

How do we handle big data? (part II)

Sometimes big data does not come to us (think streaming), but instead we can query small pieces of it.

Sometimes big data can also change over time, so we need a robust answer and/or be able to solve problem quickly multiple times.

- Social graph: each person is a node, edges if they are friends.
- Is graph connected?
- What is the degree of separation? Diameter of graph (6 degrees of separation)
- Program checking: checking that a computer program works correctly on all/most inputs
- Too many inputs to check your program on!

How do we handle big data? (part II)

Sometimes big data does not come to us (think streaming), but instead we can query small pieces of it.

Sometimes big data can also change over time, so we need a robust answer and/or be able to solve problem quickly multiple times.

- Social graph: each person is a node, edges if they are friends.
- Is graph connected?
- What is the degree of separation? Diameter of graph (6 degrees of separation)
- Program checking: checking that a computer program works correctly on all/most inputs
- Too many inputs to check your program on!
- Many more...

What problems is this used for?

- Graphs:

What problems is this used for?

- Graphs:

- diameter
- \# connected components
- Minimum Spanning Tree
- Testing bipartiteness
- Testing clusterability

What problems is this used for?

- Graphs:
- diameter
- \# connected components
- Minimum Spanning Tree
- Testing bipartiteness
- Testing clusterability
- Functions:
- is a function monotone?
- is function convex?
- is function linear?

What problems is this used for?

- Graphs:
- diameter
- \# connected components
- Minimum Spanning Tree
- Testing bipartiteness
- Testing clusterability
- Functions:
- is a function monotone?
- is function convex?
- is function linear?
- Distributions:
- is distribution uniform?
- is is independent?

What problems is this used for?

- Graphs:
- diameter
- \# connected components
- Minimum Spanning Tree
- Testing bipartiteness
- Testing clusterability
- Functions:
- is a function monotone?
- is function convex?
- is function linear?
- Distributions:
- is distribution uniform?
- is is independent?

Connects to randomized algorithms, approximation algorithms, parallel algorithms, complexity theory, statistics, learning

What can we hope to do?

What we can't do:

- Can't answer for all or there exists or exactly type statements

What can we hope to do?

What we can't do:

- Can't answer for all or there exists or exactly type statements
- are all individuals connected via friendships?
- are all individuals connected by at most 6 degrees of separation?
- is my program correct on all inputs

What can we hope to do?

What we can't do:

- Can't answer for all or there exists or exactly type statements
- are all individuals connected via friendships?
- are all individuals connected by at most 6 degrees of separation?
- is my program correct on all inputs

What we can do:

- Can answer for most or averages or approximate type statements with high probability

What can we hope to do?

What we can't do:

- Can't answer for all or there exists or exactly type statements
- are all individuals connected via friendships?
- are all individuals connected by at most 6 degrees of separation?
- is my program correct on all inputs

What we can do:

- Can answer for most or averages or approximate type statements with high probability
- are most individuals connected via friendships?
- are most individuals connected by at most 6 degrees of separation?
- approximately how many people are left handed?
- is my program correct on most inputs

What can we hope to do?

What we can't do:

- Can't answer for all or there exists or exactly type statements
- are all individuals connected via friendships?
- are all individuals connected by at most 6 degrees of separation?
- is my program correct on all inputs

What we can do:

- Can answer for most or averages or approximate type statements with high probability
- are most individuals connected via friendships?
- are most individuals connected by at most 6 degrees of separation?
- approximately how many people are left handed?
- is my program correct on most inputs

Randomized \& Approximate algorithms.

Sublinear Time Models of Computation

- Random Access Queries

Sublinear Time Models of Computation

- Random Access Queries
- Can access any word of input in one step
- How is input represented?

Sublinear Time Models of Computation

Subliuae fine in
Adjacency matrix model $\circ\left(N^{2}\right)$ time

- Random Access Queries

Sublimer time in Adjacency list model $0(\mu+\mu)$ time

- Can access any word of input in one step
- How is input represented?
- Adjacency matrix
- Adjacency list

Adjacency matrix

$$
A \in \Sigma^{M \times N} \quad(M \in N)
$$

query entry (i, j) of A
size input: $O(\mu N) O\left(N^{2}\right)$

M entice
N elements
six of input $=O(M+N)$

Sublinear Time Models of Computation

- Random Access Queries
- Can access any word of input in one step
- How is input represented?
- Adjacency matrix
- Adjacency list
- Location

Sublinear Time Models of Computation

- Random Access Queries
- Can access any word of input in one step
- How is input represented?
- Adjacency matrix
- Adjacency list
- Location
- many others...

Sublinear Time Models of Computation

- Random Access Queries
- Can access any word of input in one step
- How is input represented?
- Adjacency matrix
- Adjacency list
- Location
- many others...
- Samples
- get samples from certain distribution/input at each step

Approximate Diameter of a Point Set

- Input: m points and a distance matrix D such that
- $D_{i j} \leftarrow$ distance from i to j
- D symmetric and satisfies triangle inequality Input given in adjacency matrix representation

Approximate Diameter of a Point Set

- Input: m points and a distance matrix D such that
- $D_{i j} \leftarrow$ distance from i to j
- D symmetric and satisfies triangle inequality

Input given in adjacency matrix representation

- Input size: $N=m^{2}$

Approximate Diameter of a Point Set

- Input: m points and a distance matrix D such that
- $D_{i j} \leftarrow$ distance from i to j
- D symmetric and satisfies triangle inequality
- Input size: $N=m^{2}$
- Let a, b be indices that maximize distance $D_{a b}$. Then $D_{a b}$ is diameter
$D_{24}=3$ is our diameter

Approximate Diameter of a Point Set

- Input: m points and a distance matrix D such that
- $D_{i j} \leftarrow$ distance from i to j
- D symmetric and satisfies triangle inequality
- Input size: $N=m^{2}$
- Let a, b be indices that maximize distance $D_{a b}$. Then $D_{a b}$ is diameter
- Output: Indices k, ℓ such that

$$
D_{k \ell} \geq D_{a b} / 2
$$

$D_{a b}=\max _{i, j} D_{i j}$

diameter
2-multiplicative algorithm

Algorithm \& Analysis

- Pick k arbitrarily

Algorithm \& Analysis

- Pick k arbitrarily
- Pick ℓ to maximize $D_{k \ell}$

Algorithm \& Analysis

- Pick k arbitrarily
- Pick ℓ to maximize $D_{k \ell}$
- Output indices k, ℓ

Algorithm \& Analysis

- Pick k arbitrarily
- Pick ℓ to maximize $D_{k l}$
- Output indices k, ℓ

Why does this work?

Algorithm \& Analysis

- Pick k arbitrarily

$$
D_{k \ell} \geqslant D_{k j}
$$

- Pick ℓ to maximize $D_{k l}$
- Output indices k, ℓ

$$
\text { for any } j \in[m]
$$

Why does this work?
triangle inequality

- Correctness

$$
\begin{aligned}
D_{a b} & \leq D_{a k}+D_{k b}=D_{k \lambda}+D_{k b} \\
& \leq D_{k \ell}+D_{k \ell}=2 \cdot D_{k \ell}
\end{aligned}
$$

$$
\text { by property of chase of } l
$$

Algorithm \& Analysis

- Pick k arbitrarily
- Pick ℓ to maximize $D_{k l}$
- Output indices k, ℓ

Why does this work?

- Correctness

$$
\begin{aligned}
D_{a b} & \leq D_{a k}+D_{k b} \\
& \leq D_{k \ell}+D_{k \ell}=2 \cdot D_{k \ell}
\end{aligned}
$$

-Running time: $O(m)=O\left(N^{1 / 2}\right)=\circ(N)$

Algorithm \& Analysis

- Pick k arbitrarily
- Pick ℓ to maximize $D_{k l}$
- Output indices k, ℓ

Why does this work?

- Correctness

$$
\begin{aligned}
D_{a b} & \leq D_{a k}+D_{k b} \\
& \leq D_{k \ell}+D_{k \ell}=2 \cdot D_{k \ell}
\end{aligned}
$$

- Running time: $O(m)=O\left(N^{1 / 2}\right)$

Is this the best we can do?

Lower Bound for Approximate Diameter

- Let D be following: distance matrix $D_{i, i}=0, \forall i \in[m]$ and $D_{i, j}=1$ otherwise

Lower Bound for Approximate Diameter

- Let D be following: distance matrix $D_{i, i}=0, \forall i \in[m]$ and $D_{i, j}=1$ otherwise
- Let D^{\prime} be same matrix as D except that for one pair (a, b) we make

$$
D_{a b}^{\prime}=D_{b a}^{\prime}=2-\delta
$$

Lower Bound for Approximate Diameter

- Let D be following: distance matrix $D_{i, i}=0, \forall i \in[m]$ and $D_{i, j}=1$ otherwise
- Let D^{\prime} be same matrix as D except that for one pair (a, b) we make

$$
D_{a b}^{\prime}=D_{b a}^{\prime}=2-\delta
$$

- Check that D^{\prime} satisfies properties of a distance matrix (thus valid)

Lower Bound for Approximate Diameter

- Let D be following: distance matrix $D_{i, i}=0, \forall i \in[m]$ and $D_{i, j}=1$ otherwise
- Let D^{\prime} be same matrix as D except that for one pair (a, b) we make

$$
D_{a b}^{\prime}=D_{b a}^{\prime}=2-\delta
$$

- Check that D^{\prime} satisfies properties of a distance matrix (thus valid)
- Practice problem: prove that it would take $\Omega(N)$ time (i.e. number of queries) to decide if diameter is 1 or $2-\delta$
- Introduction
- Why Sublinear Time Algorithms?
- Warm-up Problem
- Main Problem
- Number of Connected Components
- Acknowledgements

Connected Components

How to approximate number of connected components of a graph:

Connected Components

How to approximate number of connected components of a graph:

- Input: graph $G(V, E)$ in adjacency list representation. $\epsilon>0$.

$$
n=|V|, m=|E|, N=m+n \text { input sixe }
$$

- Output: if $C \leftarrow \#$ connected components of G, output with probability $\geq 3 / 4, C^{\prime}$ such that

$$
\left|C^{\prime}-C\right| \leq \epsilon n
$$

Connected Components

How to approximate number of connected components of a graph:

- Input: graph $G(V, E)$ in adjacency list representation. $\epsilon>0$.

$$
n=|V|, \quad m=|E|, \quad N=m+n
$$

- Output: if $C \leftarrow \#$ connected components of G, output with probability $\geq 3 / 4 C^{\prime}$ such that

$$
\left|C^{\prime}-C\right| \leq \epsilon n
$$

- How can we even do this?

Connected Components

How to approximate number of connected components of a graph:

- Input: graph $G(V, E)$ in adjacency list representation. $\epsilon>0$.

$$
n=|V|, \quad m=|E|, \quad N=m+n
$$

- Output: if $C \leftarrow \#$ connected components of G, output with probability $\geq 3 / 4 C^{\prime}$ such that

$$
\left|C^{\prime}-C\right| \leq \epsilon n
$$

- How can we even do this?
- Different characterization of \# connected components of graph

Connected Components

How to approximate number of connected components of a graph:

- Input: graph $G(V, E)$ in adjacency list representation. $\epsilon>0$.

$$
n=|V|, \quad m=|E|, \quad N=m+n
$$

- Output: if $C \leftarrow \#$ connected components of G, output with probability $\geq 3 / 4 C^{\prime}$ such that

$$
\left|C^{\prime}-C\right| \leq \epsilon n
$$

- How can we even do this?
- Different characterization of \# connected components of graph

Lemma (\# Connected Components)

Let $G(V, E)$ be a graph. For vertex $v \in V$, let $n_{v} \leftarrow \#$ vertices in connected component of v. Let C be number of connected components of G. Then:

$$
C=\sum_{v \in V} \frac{1}{n_{v}}
$$

$v \mapsto n_{\bullet} \triangleq \#$ vertices in connectral conponent

$$
\begin{aligned}
& \sum_{v \in \Gamma} \frac{l}{n_{v}}=\frac{|\Gamma|}{n_{v}}=\frac{n_{v}}{n_{v}}=1 \\
& C=\sum_{\Gamma} \frac{1}{\substack{\text { commuad } \\
\text { and }}}=\sum_{r} \sum_{v \in r} \frac{1}{n_{v}}=\sum_{v \in v} \frac{1}{n_{v}}
\end{aligned}
$$

Connected Components
Naive attempt: sample small number of vertices from G, compute n_{v} and output average.

$$
\begin{aligned}
& v_{1}, \ldots, v_{a} \\
& n_{v_{1}}, \ldots, n_{v_{a}}
\end{aligned}
$$

output: $\quad \frac{n}{a} \sum_{i=1}^{a} \frac{l}{n_{v_{i}}}$

Connected Components
Naive attempt: sample small number of vertices from G, compute n_{v} and output average.

- Problem: just computing n_{v} may take linear time if graph is connected!

$$
n_{v}=|v|
$$

thin is already linear tim!

Connected Components
Naive attempt: sample small number of vertices from G, compute n_{v} and output average.

- Problem: just computing n_{v} may take linear time if graph is connected!
- Idea: if n_{v} large, then $1 / n_{v}$ small and we can drop it! don't compute n_{v} exactly! (just see if it in too large)

Connected Components

Naive attempt: sample small number of vertices from G, compute n_{v} and output average.

- Problem: just computing n_{v} may take linear time if graph is connected!
- Idea: if n_{v} large, then $1 / n_{v}$ small and we can drop it!
Lemma (Estimating \# components)
Let

$$
n_{v}^{\prime}=\min \left(n_{v}, 2 / \epsilon\right) \text { p.ioky for six of }
$$

Then

$$
\left|\sum_{v \in V} \frac{1}{n_{v}}-\sum_{v \in V} \frac{1}{n_{v}^{\prime}}\right| \leq \frac{\epsilon n}{2}
$$

$$
\left|\sum_{v \in V}\left(\frac{1}{n_{v}}-\frac{1}{n_{v}^{\prime}}\right)\right| \leqslant_{\substack{v \\ \text { thiengk } \\ \text { incquity }}} \sum_{v \in V}\left|\frac{1}{n_{v}}-\frac{1}{n_{r}^{\prime}}\right|
$$

if $n_{v} \leqslant \frac{2}{\epsilon}$ then $n_{v}=n_{v}^{\prime} \Rightarrow \frac{1}{n_{v}}-\frac{1}{n_{v}^{\prime}}=0$ else $n_{0}>\frac{2}{\epsilon} \Rightarrow 0<\frac{1}{n_{0}}<\frac{\epsilon}{2} \Rightarrow\left|\frac{1}{n_{b}}-\frac{1}{\frac{n_{i}^{\prime}}{\frac{\epsilon}{2}}}\right| \leq \frac{\delta}{2}$ $\leq \sum_{v \in V} \frac{\epsilon}{2}=\frac{\epsilon n}{2}$

Connected Components

Naive attempt: sample small number of vertices from G, compute n_{v} and output average.

- Problem: just computing n_{v} may take linear time if graph is connected!
- Idea: if n_{v} large, then $1 / n_{v}$ small and we can drop it!

Lemma (Estimating \# components)

Let

$$
n_{v}^{\prime}=\min \left(n_{v}, 2 / \epsilon\right)
$$

Then

$$
\left|\sum_{v \in V} \frac{1}{n_{v}}-\sum_{v \in V} \frac{1}{n_{v}^{\prime}}\right| \leq \frac{\epsilon n}{2}
$$

How do we do this estimation?
Sample vertex v and run BFS starting at v, short-cutting if see $2 / \epsilon$ vertices.

Connected Components - proof of lemma
Lemma (Estimating \# components)
Let

$$
n_{v}^{\prime}=\min \left(n_{v}, 2 / \epsilon\right)
$$

Then

$$
\left|\sum_{v \in V} \frac{1}{n_{v}}-\sum_{v \in V} \frac{1}{n_{v}^{\prime}}\right| \leq \frac{\epsilon n}{2} .
$$

Problem: canst compute $\sum_{v \in V} \frac{l}{\eta_{v}^{\prime}}$ in sublimer $\begin{gathered}\text { time }\end{gathered}$
Solution: let's sample a few ventics s and scale our estimate

Algorithm

- Choose $s=\Theta\left(1 / \epsilon^{2}\right)$ vertices v_{1}, \ldots, v_{s} uniformly at random.

Algorithm

- Choose $s=\Theta\left(1 / \epsilon^{2}\right)$ vertices v_{1}, \ldots, v_{s} uniformly at random.
- Compute $n_{v_{i}}^{\prime}$ using BFS
- Return

$$
\begin{gathered}
C^{\prime}=\frac{n}{s} \cdot \sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}} \\
\text { normalized estimate }
\end{gathered}
$$

Algorithm

- Choose $s=\Theta\left(1 / \epsilon^{2}\right)$ vertices v_{1}, \ldots, v_{s} uniformly at random.
- Compute $n_{v_{i}}^{\prime}$ using BFS
- Return

$$
C^{\prime}=\frac{n}{s} \cdot \sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}}
$$

- Running Time:

Algorithm

- Choose $s=\Theta\left(1 / \epsilon^{2}\right)$ vertices v_{1}, \ldots, v_{s} uniformly at random.
- Compute $n_{v_{i}}^{\prime}$ using BFS
- Return

$$
C^{\prime}=\frac{n}{s} \cdot \sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}}
$$

- Running Time:
- $\Theta\left(1 / \epsilon^{2}\right)$ vertices sampled,

Algorithm

- Choose $s=\Theta\left(1 / \epsilon^{2}\right)$ vertices v_{1}, \ldots, v_{s} uniformly at random.
- Compute $n_{v_{i}}^{\prime}$ using BFS
- Return

$$
C^{\prime}=\frac{n}{s} \cdot \sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}}
$$

- Running Time:
- $\Theta\left(1 / \epsilon^{2}\right)$ vertices sampled,
- each run takes $O\left(1 / \epsilon^{2}\right)$ time to compute.

Algorithm

- Choose $s=\Theta\left(1 / \epsilon^{2}\right)$ vertices v_{1}, \ldots, v_{s} uniformly at random.
- Compute $n_{v_{i}}^{\prime}$ using BFS
- Return

$$
C^{\prime}=\frac{n}{s} \cdot \sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}}
$$

- Running Time:
- $\Theta\left(1 / \epsilon^{2}\right)$ vertices sampled,
- each run takes $O\left(1 / \epsilon^{2}\right)$ time to compute.
- Adding results takes $O(s)=O\left(1 / \epsilon^{2}\right)$ time.

Algorithm

- Choose $s=\Theta\left(1 / \epsilon^{2}\right)$ vertices v_{1}, \ldots, v_{s} uniformly at random.
- Compute $n_{v_{i}}^{\prime}$ using BFS
- Return

$$
C^{\prime}=\frac{n}{s} \cdot \sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}}
$$

- Running Time:
- $\Theta\left(1 / \epsilon^{2}\right)$ vertices sampled,
- each run takes $O\left(1 / \epsilon^{2}\right)$ time to compute.
- Adding results takes $O(s)=O\left(1 / \epsilon^{2}\right)$ time.
- Total running time $O\left(1 / \epsilon^{4}\right)$. Sublihear
even depend on n

Algorithm - Correctness
To prove correctness we need to show that with probability $\geq 3 / 4$ we have

$$
\begin{aligned}
& \left|\frac{n}{s} \cdot \sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}}-\sum_{v \in V} \frac{1}{n_{v}}\right| \leq \epsilon n \\
& \text { estimate \# corimected }
\end{aligned}
$$

component b

Algorithm - Correctness

To prove correctness we need to show that with probability $\geq 3 / 4$ we have

$$
\left|\frac{n}{s} \cdot \sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}}-\sum_{v \in V} \frac{1}{n_{v}}\right| \leq \epsilon n
$$

Dividing by n / s on both sides:

$$
\left|\sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}}-\frac{s}{n} \cdot \sum_{v \in V} \frac{1}{n_{v}}\right| \leq \epsilon S
$$

Algorithm - Correctness

To prove correctness we need to show that with probability $\geq 3 / 4$ we have

$$
\left|\frac{n}{s} \cdot \sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}}-\sum_{v \in V} \frac{1}{n_{v}}\right| \leq \epsilon n
$$

Dividing by n / s on both sides:

$$
\left|\sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}}-\frac{s}{n} \cdot \sum_{v \in V} \frac{1}{n_{v}}\right| \leq \epsilon s
$$

By our previous lemma, and triangle inequality, enough to prove that w.h.p.

$$
\left|\sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}}-\frac{s}{n} \cdot \sum_{v \in V} \frac{1}{n_{v}^{\prime}}\right| \leq \frac{\epsilon s}{2}
$$

Lemma and Triangle Inequality
Lemma (Estimating \# components)
Let

$$
n_{v}^{\prime}=\min \left(n_{v}, 2 / \epsilon\right)
$$

Then

$$
\left|\sum_{v \in V} \frac{1}{n_{v}}-\sum_{v \in V} \frac{1}{n_{v}^{\prime}}\right| \leq \frac{\epsilon n}{2} .
$$

$$
\begin{aligned}
& \Rightarrow\left|c^{\prime}-c\right| \leq \in n
\end{aligned}
$$

Algorithm - Correctness

Want to show that with probability $\geq 3 / 4$:

$$
\left|\sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}}-\frac{s}{n} \cdot \sum_{v \in V} \frac{1}{n_{v}^{\prime}}\right| \leq \frac{\epsilon \cdot s}{2}
$$

Algorithm - Correctness

Want to show that with probability $\geq 3 / 4$:

$$
\left|\sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}}-\frac{s}{n} \cdot \sum_{v \in V} \frac{1}{n_{v}^{\prime}}\right| \leq \frac{\epsilon \cdot s}{2}
$$

Theorem (Hoeffding's Inequality)

Let X_{i} be independent random variables, taking values in $\left[a_{i}, b_{i}\right]$, $X=\sum_{i=1}^{N} X_{i}$. Then

$$
\operatorname{Pr}[|X-\mathbb{E}[X]| \geq \ell] \leq 2 \cdot \exp \left(-\frac{2 \ell^{2}}{\sum_{i=1}^{N}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

Algorithm - Correctness

Want to show that with probability $\geq 3 / 4$:

$$
\left|\sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}}-\frac{s}{n} \cdot \sum_{v \in V} \frac{1}{n_{v}^{\prime}}\right| \leq \frac{\epsilon \cdot s}{2}
$$

Theorem (Hoeffding's Inequality)

Let X_{i} be independent random variables, taking values in $\left[a_{i}, b_{i}\right]$, $X=\sum_{i=1}^{N} X_{i}$. Then

$$
\operatorname{Pr}[|X-\mathbb{E}[X]| \geq \ell] \leq 2 \cdot \exp \left(-\frac{2 \ell^{2}}{\sum_{i=1}^{N}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

Setting parameters of Hoeffing's theorem to our setting:

- $a_{i}=0, b_{i}=1, N=s$
- $X_{i}=1 / n_{v}^{\prime}$ with probability $1 / n$
(pick vertex uniformly at random)

Algorithm - Correctness

$$
X=\sum_{i=1}^{s} X_{i} \quad\left(=\sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}}\right)
$$

Algorithm - Correctness

$$
\begin{gathered}
X=\sum_{i=1}^{s} X_{i}\left(=\sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}}\right) \\
\mu:=\mathbb{E}[X]=\sum_{i=1}^{s} \mathbb{E}\left[X_{i}\right]=-\underbrace{\sum_{v \in V} \frac{1}{n_{v}^{\prime}} \cdot \frac{1}{n}}_{\substack{s}}=\frac{s}{n} \cdot \sum_{v \in V} \frac{1}{n_{v}^{\prime}} \\
\text { Qineority } \\
\text { of expectation }
\end{gathered}
$$

X_{i} : sample vertex vat random then compere $\frac{1}{n_{u}^{\prime}}$

$$
\mathbb{E}\left[x_{i}\right]=\sum_{v \in V} P_{r}[\text { pick } v] \cdot \frac{1}{n_{v}^{\prime}}=\sum_{V \in v} \frac{1}{n} \cdot \frac{1}{n_{v}^{\prime}}
$$

Algorithm - Correctness

$$
\begin{gathered}
X=\sum_{i=1}^{s} X_{i}\left(=\sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}}\right) \\
\mu:=\mathbb{E}[X]=\sum_{i=1}^{s} \mathbb{E}\left[X_{i}\right]=s \cdot \sum_{v \in V} \frac{1}{n_{v}^{\prime}} \cdot \frac{1}{n}=\frac{s}{n} \cdot \sum_{v \in V} \frac{1}{n_{v}^{\prime}}
\end{gathered}
$$

Hoeffding with the parameters from previous slide and $\ell=\epsilon \cdot s / 2$:

Theorem (Hoeffding's Inequality)

Let X_{i} be independent random variables, taking values in $[0,1]$, $X=\sum_{i=1}^{s} X_{i}$. Then

$$
\operatorname{Pr}[|X-\mu| \geq \epsilon \cdot s / 2] \leq 2 \cdot \exp \left(-\epsilon^{2} s / 2\right)
$$

Algorithm - Correctness

$$
\begin{gathered}
X=\sum_{i=1}^{s} X_{i}\left(=\sum_{i=1}^{s} \frac{1}{n_{v_{i}}^{\prime}}\right) \\
\mu:=\mathbb{E}[X]=\sum_{i=1}^{s} \mathbb{E}\left[X_{i}\right]=s \cdot \sum_{v \in V} \frac{1}{n_{v}^{\prime}} \cdot \frac{1}{n}=\frac{s}{n} \cdot \sum_{v \in V} \frac{1}{n_{v}^{\prime}}
\end{gathered}
$$

Hoeffding with the parameters from previous slide and $\ell=\epsilon \cdot s / 2$:

Theorem (Hoeffding's Inequality)

Let X_{i} be independent random variables, taking values in $[0,1]$, $X=\sum_{i=1}^{s} X_{i}$. Then

$$
\operatorname{Pr}[|X-\mu| \geq \epsilon \cdot s / 2] \leq 2 \cdot \exp \left(-\epsilon^{2} s / 2\right)
$$

Since $s=\Theta\left(1 / \epsilon^{2}\right)$, the result follows by choosing $s=8 \cdot\left(1 / \epsilon^{2}\right)$

Acknowledgement

- Lecture based largely on Ronitt's notes.
- See Ronitt's notes at http://people.csail.mit.edu/ronitt/ COURSE/F20/Handouts/scribe1.pdf
- See also her notes for approximate MST http://people.csail. mit.edu/ronitt/COURSE/F20/Handouts/scribe2.pdf
- List of open problems in sublinear algorithms https://sublinear.info/index.php?title=Main_Page
$X_{i}=$ Sample v at random, uniformly compute $\frac{1}{n_{v}^{\prime}}$

$$
\begin{aligned}
& X_{i} \in\left\{\frac{1}{n_{i}}\right\}=S=\left\{a_{1}, a_{2}, \cdot 1 a_{n}\right\} \\
& B_{i} \cap B_{j}=\varnothing \\
& \text { and } \bigcup_{i=1}^{u} B_{i}=V \Rightarrow \sum \frac{\left|B_{i}\right|=1}{n} \\
& \text { and } \operatorname{Pr}\left[x_{i}=\frac{1}{n_{i}}\right]=\frac{\left|B_{i}\right|}{|v|}=\frac{\left|B_{d}\right|}{n} \\
& L_{a_{1}} L_{a_{2}} \cdots L_{a_{n}} \\
& B_{1} B_{2} \\
& B_{r}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}\left[x_{i}\right]=\sum_{v \in V} \frac{P_{r}\left[x_{i} \text { piched } v\right] \cdot \frac{1}{n_{v}^{\prime}}}{\text { xperate elements of a buccett }} \\
& =\sum_{i=1}^{x} \frac{\left|B_{i}\right|}{\frac{\mid r}{n}} \cdot \frac{1}{n_{i}\left[x_{i}\right.}=\frac{1}{\left.n_{i}\right]} \\
& \wedge^{2} \quad 4 \quad \frac{1}{3}, \frac{1}{2} \\
& \frac{3}{5} \cdot \frac{1}{3}+\frac{2}{5} \cdot \frac{1}{2}
\end{aligned}
$$

