Lecture 6: Streaming

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

May 27, 2021

Overview

- Introduction
- Data Streaming
- Basic Examples
- Main Examples
- Heavy hitters
- Distinct Elements
- Weighted Heavy Hitters
- Acknowledgements

Why streaming?

In today's world we have to deal with big data. But not all big data are created equal. Today we will study one way in which massive data can appear in our lives: streaming.

Why streaming?

In today's world we have to deal with big data. But not all big data are created equal. Today we will study one way in which massive data can appear in our lives: streaming.
(1) Data stream: massive sequence of data, too large to store in memory.

Why streaming?

In today's world we have to deal with big data. But not all big data are created equal. Today we will study one way in which massive data can appear in our lives: streaming.
(1) Data stream: massive sequence of data, too large to store in memory.
(1) Network traffic (source/destination)
(2) Internet search logs
(3) Database transactions

- sensor networks
© satellite data feeds

Why streaming?

In today's world we have to deal with big data. But not all big data are created equal. Today we will study one way in which massive data can appear in our lives: streaming.
(1) Data stream: massive sequence of data, too large to store in memory.
(1) Network traffic (source/destination)
(2) Internet search logs
(3) Database transactions

- sensor networks
© satellite data feeds
(2) Does not come to us at once.

Why streaming?

In today's world we have to deal with big data. But not all big data are created equal. Today we will study one way in which massive data can appear in our lives: streaming.
(1) Data stream: massive sequence of data, too large to store in memory.
(1) Network traffic (source/destination)
(2) Internet search logs
(3) Database transactions

- sensor networks
© satellite data feeds
(2) Does not come to us at once.
(3) Essentially can only look at each piece of data once (or constantly many times)

Why streaming?

In today's world we have to deal with big data. But not all big data are created equal. Today we will study one way in which massive data can appear in our lives: streaming.
(1) Data stream: massive sequence of data, too large to store in memory.
(1) Network traffic (source/destination)
(2) Internet search logs
(3) Database transactions

- sensor networks
© satellite data feeds
(2) Does not come to us at once.
(3) Essentially can only look at each piece of data once (or constantly many times)
How can we deal with it/model it? What can we do if we cannot even see the whole input?

What is streaming?

Definition (Basic Data Stream model)
In the data stream model:

What is streaming?

Definition (Basic Data Stream model)

In the data stream model:

- receive a stream of elements $a_{1}, a_{2}, \ldots a_{N}$ each from a known alphabet Σ. Each element of Σ takes b bits to represent.
- usually assume that N is known

What is streaming?

Definition (Basic Data Stream model)

In the data stream model:

- receive a stream of elements $a_{1}, a_{2}, \ldots a_{N}$ each from a known alphabet Σ. Each element of Σ takes b bits to represent.
- usually assume that N is known
- Basic operations (comparison, arithmetic, bitwise) take $\Theta(1)$ time

What is streaming?

Definition (Basic Data Stream model)

In the data stream model:

- receive a stream of elements $a_{1}, a_{2}, \ldots a_{N}$ each from a known alphabet Σ. Each element of Σ takes b bits to represent.
- usually assume that N is known
- Basic operations (comparison, arithmetic, bitwise) take $\Theta(1)$ time
- Single or small number of passes over data

What is streaming?

Definition (Basic Data Stream model)

In the data stream model:

- receive a stream of elements $a_{1}, a_{2}, \ldots a_{N}$ each from a known alphabet Σ. Each element of Σ takes b bits to represent.
- usually assume that N is known
- Basic operations (comparison, arithmetic, bitwise) take $\Theta(1)$ time
- Single or small number of passes over data
- Bounded storage
- Typically $\log ^{c}(N)$ for $c=O(1)$ or N^{α} for some $0<\alpha<1$
$p o l y \log (N)$

What is streaming?

Definition (Basic Data Stream model)

In the data stream model:

- receive a stream of elements $a_{1}, a_{2}, \ldots a_{N}$ each from a known alphabet Σ. Each element of Σ takes b bits to represent.
- usually assume that N is known
- Basic operations (comparison, arithmetic, bitwise) take $\Theta(1)$ time
- Single or small number of passes over data
- Bounded storage
- Typically $\log ^{c}(N)$ for $c=O(1)$ or N^{α} for some $0<\alpha<1$
- We are allowed to use randomness (almost always necessary)
- Probabilistic model: our algorithm must succeed most of the time

What is streaming?

Definition (Basic Data Stream model)

In the data stream model:

- receive a stream of elements $a_{1}, a_{2}, \ldots a_{N}$ each from a known alphabet Σ. Each element of Σ takes b bits to represent.
- usually assume that N is known
- Basic operations (comparison, arithmetic, bitwise) take $\Theta(1)$ time
- Single or small number of passes over data
- Bounded storage
- Typically $\log ^{c}(N)$ for $c=O(1)$ or N^{α} for some $0<\alpha<1$
- We are allowed to use randomness (almost always necessary)
- Probabilistic model: our algorithm must succeed most of the time
- (usually) want approximate answers to the true answer

What is streaming?

Definition (Basic Data Stream model)

In the data stream model:

- receive a stream of elements $a_{1}, a_{2}, \ldots a_{N}$ each from a known alphabet Σ. Each element of Σ takes b bits to represent.
- usually assume that N is known
- Basic operations (comparison, arithmetic, bitwise) take $\Theta(1)$ time
- Single or small number of passes over data
- Bounded storage
- Typically $\log ^{c}(N)$ for $c=O(1)$ or N^{α} for some $0<\alpha<1$
- We are allowed to use randomness (almost always necessary)
- Probabilistic model: our algorithm must succeed most of the time
- (usually) want approximate answers to the true answer

Goal: minimize space complexity (in bits) and the processing time.

Examples of Streaming Problems

Example (Sum of elements)

- Input stream: a_{1}, \ldots, a_{N} be integers from the set $\left[-2^{b}+1,2^{b}-1\right]$
- Task: maintain the current sum of the elements we have seen so far

Examples of Streaming Problems

Example (Sum of elements)

- Input stream: a_{1}, \ldots, a_{N} be integers from the set $\left[-2^{b}+1,2^{b}-1\right]$
- Task: maintain the current sum of the elements we have seen so far

Example (Median)

- Input stream: a_{1}, \ldots, a_{N} be integers from the set $\left[-2^{b}+1,2^{b}-1\right]$
- Task: maintain the current median of elements we have seen so far

Examples of Streaming Problems

Example (Distinct elements)

- Input stream: a_{1}, \ldots, a_{N} be integers from the set $\left[-2^{b}+1,2^{b}-1\right]$
- Task: maintain current $\#$ of distinct elements we have seen so far

Examples of Streaming Problems

Example (Distinct elements)

- Input stream: a_{1}, \ldots, a_{N} be integers from the set $\left[-2^{b}+1,2^{b}-1\right]$
- Task: maintain current $\#$ of distinct elements we have seen so far

Example (Heavy hitters)

- Input stream: a_{1}, \ldots, a_{N} integers from $\left[-2^{b}+1,2^{b}-1\right], \epsilon>0$
- Task: maintain set of elements that contains elements that have appeared at least ϵ-fraction of the time (a.k.a. heavy hitters)
- Constraint: allowed to also output false positives (low hitters), but not allowed to miss any heavy hitter!

Majority Element - Algorithm

Setup: heavy hitters with $\epsilon=1 / 2$.

- At time t, we will maintain set S_{t} which contains the element that has appeared at least $M(P)$ times, if any.
t/2

Majority Element - Algorithm

Setup: heavy hitters with $\epsilon=1 / 2$.

- At time t, we will maintain set S_{t} which contains the element that has appeared at least $N / 2$ times, if any.
- $S_{0}=\emptyset, c \leftarrow 0$ (c is a counter)

Majority Element - Algorithm

Setup: heavy hitters with $\epsilon=1 / 2$.

- At time t, we will maintain set S_{t} which contains the element that has appeared at least $N / 2$ times, if any.
- $S_{0}=\emptyset, c \leftarrow 0$ (c is a counter)
- when element a_{t} arrives:

Majority Element - Algorithm

Setup: heavy hitters with $\epsilon=1 / 2$.

- At time t, we will maintain set S_{t} which contains the element that has appeared at least $N / 2$ times, if any.
- $S_{0}=\emptyset, c \leftarrow 0$ (c is a counter)
- when element a_{t} arrives:
- If $c==0$
- $S_{t}=\left\{a_{t}\right\}$ and $c \leftarrow 1$

Majority Element - Algorithm

Setup: heavy hitters with $\epsilon=1 / 2$.

- At time t, we will maintain set S_{t} which contains the element that has appeared at least $N / 2$ times, if any.
- $S_{0}=\emptyset, c \leftarrow 0$ (c is a counter)
- when element a_{t} arrives:
- If $c==0$
- $S_{t}=\left\{a_{t}\right\}$ and $c \leftarrow 1$
- Else
- if $a_{t} \in S_{t-1}$, set $c \leftarrow c+1$
- else $c \leftarrow c-1$ and discard a_{t}

Majority Element - Algorithm

Setup: heavy hitters with $\epsilon=1 / 2$.

- At time t, we will maintain set S_{t} which contains the element that has appeared at least $N / 2$ times, if any.
- $S_{0}=\emptyset, c \leftarrow 0$ (c is a counter)
- when element a_{t} arrives:
- If $c==0$
- $S_{t}=\left\{a_{t}\right\}$ and $c \leftarrow 1$
- Else
- if $a_{t} \in S_{t-1}$, set $c \leftarrow c+1$
- else $c \leftarrow c-1$ and discard a_{t}
- At end of stream, return element in S_{N}

Majority Element - Analysis

- If there is no majority element, we could still output a false positive (low hitter), which is fine.
Example of outputting low hitter:
$12121212 \cdots 123$ no majority element.

Majority Element - Analysis

- If there is no majority element, we could still output a false positive (low hitter), which is fine.
- What happens when there is a majority element?

Majority Element - Analysis

- If there is no majority element, we could still output a false positive (low hitter), which is fine.
- What happens when there is a majority element?
- Every time that we discard a copy of the majority element, we throw away a different element.
- Example: stream 3, 1, 2, 1, 1

Majority Element - Analysis

- If there is no majority element, we could still output a false positive (low hitter), which is fine.
- What happens when there is a majority element?
- Every time that we discard a copy of the majority element, we throw away a different element.
- Example: stream 3, 1, 2, 1, 1
- Majority element appears more than half the time, so we cannot throw away all the majority elements

Majority Element - Analysis

- If there is no majority element, we could still output a false positive (low hitter), which is fine.
- What happens when there is a majority element?
- Every time that we discard a copy of the majority element, we throw away a different element.
- Example: stream 3, 1, 2, 1, 1
- Majority element appears more than half the time, so we cannot throw away all the majority elements
- Space used: $O^{(k)}$ (stored set S_{t} which has at most one element and counter)

- Introduction
- Data Streaming
- Basic Examples
- Main Examples
- Heavy hitters
- Distinct Elements
- Weighted Heavy Hitters
- Acknowledgements

Heavy hitters Problem

Example (Heavy hitters)

- Input stream: a_{1}, \ldots, a_{N} integers from $\left[-2^{b}+1,2^{b}-1\right], \epsilon>0$
- Task: maintain set of elements that contains elements that have appeared at least ϵ-fraction of the time (a.k.a. heavy hitters)
- Constraint: allowed to also output false positives (low hitters), but not allowed to miss any heavy hitter!

Heavy Hitters Algorithm

(1) Set $k=\lceil 1 / \epsilon\rceil-1$

Heavy Hitters Algorithm
(1) Set $k=\lceil 1 / \epsilon\rceil-1$
(2) Set array T of length k where each entry $T[i]$ can hold an element of $\Sigma\left(=\left[-2^{b}+1,2^{b}-1\right]\right)$.
T"areay of heavy hitters"

Heavy Hitters Algorithm
(1) Set $k=\lceil 1 / \epsilon\rceil-1$
(2) Set array T of length k where each entry $T[i]$ can hold an element of $\Sigma\left(=\left[-2^{b}+1,2^{b}-1\right]\right)$.
(3) Set array C of length k where each entry can hold non-negative integer
C array of counters for exch heary-nitter

Heavy Hitters Algorithm

(1) Set $k=\lceil 1 / \epsilon\rceil-1$
(2) Set array T of length k where each entry $T[i]$ can hold an element of $\Sigma\left(=\left[-2^{b}+1,2^{b}-1\right]\right)$.
(3) Set array C of length k where each entry can hold non-negative integer
(9) Initialize $T[i] \leftarrow N a N$ and $C[i] \leftarrow 0$ for $i \in[k]$.

Heavy Hitters Algorithm

(1) Set $k=\lceil 1 / \epsilon\rceil-1$
(2) Set array T of length k where each entry $T[i]$ can hold an element of $\Sigma\left(=\left[-2^{b}+1,2^{b}-1\right]\right)$.
(3) Set array C of length k where each entry can hold non-negative integer
(9) Initialize $T[i] \leftarrow N a N$ and $C[i] \leftarrow 0$ for $i \in[k]$.
(6) When receive element a_{t} :

Heavy Hitters Algorithm

(1) Set $k=\lceil 1 / \epsilon\rceil-1$
(2) Set array T of length k where each entry $T[i]$ can hold an element of $\Sigma\left(=\left[-2^{b}+1,2^{b}-1\right]\right)$.
(3) Set array C of length k where each entry can hold non-negative integer
(9) Initialize $T[i] \leftarrow N a N$ and $C[i] \leftarrow 0$ for $i \in[k]$.
(5) When receive element a_{t} :
(9) If there is $j \in[k]$ such that $a_{t}=T[j]$, then $C[j] \leftarrow C[j]+1$

$$
\text { if } a_{1} \in T \text { then increase approperak cowmen }
$$

Heavy Hitters Algorithm

(1) Set $k=\lceil 1 / \epsilon\rceil-1$
(2) Set array T of length k where each entry $T[i]$ can hold an element of $\Sigma\left(=\left[-2^{b}+1,2^{b}-1\right]\right)$.
(3) Set array C of length k where each entry can hold non-negative integer
(9) Initialize $T[i] \leftarrow N a N$ and $C[i] \leftarrow 0$ for $i \in[k]$.
(5) When receive element a_{t} :
(1) If there is $j \in[k]$ such that $a_{t}=T[j]$, then $C[j] \leftarrow C[j]+1$
(2) Else, if there is $j \in[k]$ such that $C[j]=0$, then $T[j] \leftarrow a_{t}$ and $C[j] \leftarrow 1$
τ in cone we have an "empty entry"
and $a_{t} \& T$

Heavy Hitters Algorithm

(1) Set $k=\lceil 1 / \epsilon\rceil-1$
(2) Set array T of length k where each entry $T[i]$ can hold an element of $\Sigma\left(=\left[-2^{b}+1,2^{b}-1\right]\right)$.
(3) Set array C of length k where each entry can hold non-negative integer
(9) Initialize $T[i] \leftarrow N a N$ and $C[i] \leftarrow 0$ for $i \in[k]$.
(5) When receive element a_{t} :
(1) If there is $j \in[k]$ such that $a_{t}=T[j]$, then $C[j] \leftarrow C[j]+1$
(2) Else, if there is $j \in[k]$ such that $C[j]=0$, then $T[j] \leftarrow a_{t}$ and $C[j] \leftarrow 1$
(3) Else make all $C[j] \leftarrow C[j]-1$ and discard a_{t}
array T in full and $a_{\varepsilon} \& T$

Heavy Hitters Algorithm

(1) Set $k=\lceil 1 / \epsilon\rceil-1$
(2) Set array T of length k where each entry $T[i]$ can hold an element of $\Sigma\left(=\left[-2^{b}+1,2^{b}-1\right]\right)$.
(3) Set array C of length k where each entry can hold non-negative integer
(9) Initialize $T[i] \leftarrow N a N$ and $C[i] \leftarrow 0$ for $i \in[k]$.
(3) When receive element a_{t} :
(1) If there is $j \in[k]$ such that $a_{t}=T[j]$, then $C[j] \leftarrow C[j]+1$
(2) Else, if there is $j \in[k]$ such that $C[j]=0$, then $T[j] \leftarrow a_{t}$ and $C[j] \leftarrow 1$
(3) Else make all $C[j] \leftarrow C[j]-1$ and discard a_{t}
(0) Return the array T with the counter array C

Heavy hitters proof

- For element $e \in \Sigma$, let est $(e)= \begin{cases}C[j], & \text { if } e=T[j] \\ 0, & \text { otherwise } .\end{cases}$

Heavy hitters proof

- For element $e \in \Sigma$, let est $(e)= \begin{cases}C[j], & \text { if } e=T[j] \\ 0, & \text { otherwise } .\end{cases}$

Lemma

Let count(e) be the number of occurrences of e in stream up to time N.

$$
0 \leq \operatorname{count}(e)-\operatorname{est}(e) \leq \frac{N}{k+1} \leq \epsilon N
$$

Heavy hitters proof

- For element $e \in \Sigma$, let est $(e)= \begin{cases}C[j], & \text { if } e=T[j] \\ 0, & \text { otherwise } .\end{cases}$

Lemma

Let count(e) be the number of occurrences of e in stream up to time N.

$$
0 \leq \operatorname{count}(e)-\operatorname{est}(e) \leq \frac{N}{k+1} \leq \epsilon N
$$

- count $(e) \geq e s t(e)$ because never increase $C[j]$ for e unless we see e

Heavy hitters proof

- For element $e \in \Sigma$, let est $(e)= \begin{cases}C[j], & \text { if } e=T[j] \\ 0, & \text { otherwise } .\end{cases}$

Lemma

Let count(e) be the number of occurrences of e in stream up to time N.

$$
0 \leq \operatorname{count}(e)-\operatorname{est}(e) \leq \frac{N}{k+1} \leq \epsilon N
$$

- count $(e) \geq e s t(e)$ because never increase $C[j]$ for e unless we see e
- If we don't increase est(e) by 1 when we see an update to e then we decrement k counters and discard current update to e

Heavy hitters proof

- For element $e \in \Sigma$, let est $(e)= \begin{cases}C[j], & \text { if } e=T[j] \\ 0, & \text { otherwise } .\end{cases}$

Lemma

Let count(e) be the number of occurrences of e in stream up to time N.

$$
0 \leq \operatorname{count}(e)-\operatorname{est}(e) \leq \frac{N}{k+1} \leq \epsilon N
$$

- count $(e) \geq e s t(e)$ because never increase $C[j]$ for e unless we see e
- If we don't increase est(e) by 1 when we see an update to e then we decrement k counters and discard current update to e
- So we drop $k+1$ distinct stream updates, but there are N updates, so we won't increase est(e) by 1 (when we should) at most $\frac{N}{k+1} \leq \epsilon N$ times.

Heavy hitters proof

- At any time N, all heavy hitters e are in T

Heavy hitters proof

- At any time N, all heavy hitters e are in T
- For an ϵ-heavy hitter e, we have count $(e)>\epsilon \cdot N$
by definition of being
e- heavy hitter

Heavy hitters proof

- At any time N, all heavy hitters e are in T
- For an ϵ-heavy hitter e, we have $\operatorname{count}(e)>\epsilon \cdot N$
- est $(e) \geq \operatorname{count}(e)-\epsilon \cdot N>0$

$$
\operatorname{count}(e)-\operatorname{css}(e) \leq \epsilon N \quad \text { by Lemme }
$$

Heavy hitters proof

- At any time N, all heavy hitters e are in T
- For an ϵ-heavy hitter e, we have count $(e)>\epsilon \cdot N$
- est $(e) \geq \operatorname{count}(e)-\epsilon \cdot N>0$
- est $(e)>0 \Rightarrow e$ is in T

Heavy hitters proof

- At any time N, all heavy hitters e are in T
- For an ϵ-heavy hitter e, we have count $(e)>\epsilon \cdot N$
- est $(e) \geq \operatorname{count}(e)-\epsilon \cdot N>0$
- $\operatorname{est}(e)>0 \Rightarrow e$ is in T
- Space used is $O(k \cdot(\log (\Sigma)+\log N))=O((1 / \epsilon) \cdot(b+\log N))$ bits coentres
- Introduction
- Data Streaming
- Basic Examples
- Main Examples
- Heavy hitters
- Distinct Elements
- Weighted Heavy Hitters
- Acknowledgements

Distinct Elements

Example (Distinct elements)

- Input stream: a_{1}, \ldots, a_{N} be integers from $\left[0,2^{b}-1\right] . m:=2^{b}$
- Task: maintain current \# of distinct elements D we have seen so far

Distinct Elements

Example (Distinct elements)

- Input stream: a_{1}, \ldots, a_{N} be integers from $\left[0,2^{b}-1\right] . m:=2^{b}$
- Task: maintain current $\#$ of distinct elements D we have seen so far

Use strongly 2-universal hash function!

Distinct Elements

Example (Distinct elements)

- Input stream: a_{1}, \ldots, a_{N} be integers from $\left[0,2^{b}-1\right] . m:=2^{b}$
- Task: maintain current \# of distinct elements D we have seen so far

Use strongly 2-universal hash function!

- Take strongly 2 -universal hash function $h:[0, m-1] \rightarrow\left[0, m^{3}\right]$.

Distinct Elements

Example (Distinct elements)

- Input stream: a_{1}, \ldots, a_{N} be integers from $\left[0,2^{b}-1\right] . m:=2^{b}$
- Task: maintain current $\#$ of distinct elements D we have seen so far

Use strongly 2-universal hash function!

- Take strongly 2 -universal hash function $h:[0, m-1] \rightarrow\left[0, m^{3}\right]$.
- From previous lecture, w.h.p. no collisions!

Distinct Elements

Example (Distinct elements)

- Input stream: a_{1}, \ldots, a_{N} be integers from $\left[0,2^{b}-1\right] . m:=2^{b}$
- Task: maintain current $\#$ of distinct elements D we have seen so far

Use strongly 2-universal hash function!

- Take strongly 2 -universal hash function $h:[0, m-1] \rightarrow\left[0, m^{3}\right]$.
- From previous lecture, w.h.p. no collisions!
- Suppose there are D distinct elements b_{1}, \ldots, b_{D}

Distinct Elements

Example (Distinct elements)

- Input stream: a_{1}, \ldots, a_{N} be integers from $\left[0,2^{b}-1\right] . m:=2^{b}$
- Task: maintain current $\#$ of distinct elements D we have seen so far

Use strongly 2-universal hash function!

- Take strongly 2 -universal hash function $h:[0, m-1] \rightarrow\left[0, m^{3}\right]$.
- From previous lecture, w.h.p. no collisions!
- Suppose there are D distinct elements b_{1}, \ldots, b_{D}
- If the D hash values $h\left(b_{1}\right), \ldots, h\left(b_{D}\right)$ are evenly distributed in $\left[0, m^{3}\right]$, then $t^{t h}$ smallest hash value should be close to $\frac{t m^{3}}{D}$.

Distinct Elements

Example (Distinct elements)

- Input stream: a_{1}, \ldots, a_{N} be integers from $\left[0,2^{b}-1\right] . m:=2^{b}$
- Task: maintain current $\#$ of distinct elements D we have seen so far

Use strongly 2-universal hash function!

- Take strongly 2 -universal hash function $h:[0, m-1] \rightarrow\left[0, m^{3}\right]$.
- From previous lecture, w.h.p. no collisions!
- Suppose there are D distinct elements b_{1}, \ldots, b_{D}
- If the D hash values $h\left(b_{1}\right), \ldots, h\left(b_{D}\right)$ are evenly distributed in $\left[0, m^{3}\right]$, then $t^{t h}$ smallest hash value should be close to $\frac{t m^{3}}{D}$.
- If we know that $t^{t h}$ smallest value is T, then $T \approx \frac{t m^{3}}{D} \Rightarrow D \approx \frac{t m^{3}}{T}$

Distinct Elements - algorithm

- Choose a random hash function h from strongly 2-universal hash family
- For each item a_{i} in the stream:
- Compute $h\left(a_{i}\right)$
- update list that stores the t smallest hash values
- After all data has read, let T be $t^{\text {th }}$ smallest hash value in data stream.

$$
\text { Return } Y=\frac{t m^{3}}{T}
$$

Distinct Elements Analysis

- What are our space requirements?

Distinct Elements Analysis

- What are our space requirements?
- Not going to store the whole hash table, only store hash function h and t numbers (the t smallest values we have seen)

$$
O(\log m)
$$ hash function

$$
O(t \cdot \log m)
$$

t smallest values

Distinct Elements Analysis

- What are our space requirements?
- Not going to store the whole hash table, only store hash function h and t numbers (the t smallest values we have seen)
- Need to find good value of t for have high probability of success

Distinct Elements Analysis

- What are our space requirements?
- Not going to store the whole hash table, only store hash function h and t numbers (the t smallest values we have seen)
- Need to find good value of t for have high probability of success

Theorem

Setting $t=O\left(1 / \epsilon^{2}\right)$ we have that

$$
(1-\epsilon) \cdot D \leq Y \leq(1+\epsilon) \cdot D
$$

true \#
distinct
with constant probability. our estimates
from algorithm

Distinct Elements Analysis

Theorem

Setting $t=O\left(1 / \epsilon^{2}\right)$ we have that $Y=\frac{t m^{3}}{T}$ satisfies:

$$
(1-\epsilon) \cdot D \leq Y \leq(1+\epsilon) \cdot D
$$

with constant probability.

Distinct Elements Analysis

Theorem

Setting $t=O\left(1 / \epsilon^{2}\right)$ we have that $Y=\frac{t m^{3}}{T}$ satisfies:

$$
(1-\epsilon) \cdot D \leq Y \leq(1+\epsilon) \cdot D
$$

with constant probability.
Upper Bound: $\operatorname{Pr}[Y>(1+\epsilon) \cdot D]$ "estimate too high"
one bad
event

Distinct Elements Analysis

Theorem

Setting $t=O\left(1 / \epsilon^{2}\right)$ we have that $Y=\frac{t m^{3}}{T}$ satisfies:

$$
(1-\epsilon) \cdot D \leq Y \leq(1+\epsilon) \cdot D
$$

with constant probability.
Upper Bound: $\operatorname{Pr}[Y>(1+\epsilon) \cdot D]$

$$
\begin{aligned}
& \text { - } Y>(1+\epsilon) \cdot D \Rightarrow T<\frac{t m^{3}}{(1+\epsilon) \cdot D} \leq \frac{(1-\epsilon / 2) \cdot t m^{3}}{D} \\
& Y=\frac{t m^{3}}{T} \quad \frac{1}{1+\epsilon} \leqslant 1-\frac{\epsilon}{2}
\end{aligned}
$$

Distinct Elements Analysis

Theorem

Setting $t=O\left(1 / \epsilon^{2}\right)$ we have that $Y=\frac{t m^{3}}{T}$ satisfies:

$$
(1-\epsilon) \cdot D \leq Y \leq(1+\epsilon) \cdot D
$$

with constant probability.
Upper Bound: $\operatorname{Pr}[Y>(1+\epsilon) \cdot D]$

- $Y>(1+\epsilon) \cdot D \Rightarrow T<\frac{t m^{3}}{(1+\epsilon) \cdot D} \leq \frac{(1-\epsilon / 2) \cdot t m^{3}}{D}$
- At least t hash values smaller than $\frac{(1-\epsilon / 2) \cdot t m^{3}}{D}$

Distinct Elements Analysis

Theorem

Setting $t=O\left(1 / \epsilon^{2}\right)$ we have that $Y=\frac{t m^{3}}{T}$ satisfies:

$$
(1-\epsilon) \cdot D \leq Y \leq(1+\epsilon) \cdot D
$$

with constant probability.
Upper Bound: $\operatorname{Pr}[Y>(1+\epsilon) \cdot D]$

- $Y>(1+\epsilon) \cdot D \Rightarrow T<\frac{t m^{3}}{(1+\epsilon) \cdot D} \leq \frac{(1-\epsilon / 2) \cdot t m^{3}}{D}$
- At least t hash values smaller than $\frac{(1-\epsilon / 2) \cdot t m^{3}}{D}$
- Random variable $X_{i}= \begin{cases}1, & \text { if } h\left(a_{i}\right) \leq \frac{(1-\epsilon / 2) \cdot t m^{3}}{D} \\ 0, & \text { otherwise }\end{cases}$

Distinct Elements Analysis

Upper Bound: $\operatorname{Pr}[Y>(1+\epsilon) \cdot D]$

- Random variable $X_{i}= \begin{cases}1, & \text { if } h\left(a_{i}\right) \leq \frac{(1-\epsilon / 2) \cdot t m^{3}}{D} \\ 0, & \text { otherwise }\end{cases}$

Distinct Elements Analysis

Upper Bound: $\operatorname{Pr}[Y>(1+\epsilon) \cdot D]$

- Random variable $X_{i}= \begin{cases}1, & \text { if } h\left(a_{i}\right) \leq \frac{(1-\epsilon / 2) \cdot t m^{3}}{D} \\ 0, & \text { otherwise }\end{cases}$
- $\mathbb{E}\left[X_{i}\right]=\operatorname{Pr}\left[h\left(a_{i}\right) \leq \frac{(1-\epsilon / 2) \cdot t m^{3}}{D}\right]=\frac{(1-\epsilon / 2) \cdot t}{D}$

Each $h\left(a_{i}\right)$ uniformly random in $\left[0, m^{3}\right]$.

Distinct Elements Analysis

Upper Bound: $\operatorname{Pr}[Y>(1+\epsilon) \cdot D]$

- Random variable $X_{i}= \begin{cases}1, & \text { if } h\left(a_{i}\right) \leq \frac{(1-\epsilon / 2) \cdot t m^{3}}{D} \\ 0, & \text { otherwise }\end{cases}$
- $\mathbb{E}\left[X_{i}\right]=\operatorname{Pr}\left[h\left(a_{i}\right) \leq \frac{(1-\epsilon / 2) \cdot t m^{3}}{D}\right]=\frac{(1-\epsilon / 2) \cdot t}{D}$

Each $h\left(a_{i}\right)$ uniformly random in $\left[0, m^{3}\right]$.

- If there are D distinct elements,
$\mathbb{E}\left[\#\right.$ elements with hash value $\left.\leq \frac{(1-\epsilon / 2) \cdot t m^{3}}{D}\right] \leq t(1-\epsilon / 2)$

Distinct Elements Analysis

Upper Bound: $\operatorname{Pr}[Y>(1+\epsilon) \cdot D]$

- Random variable $X_{i}= \begin{cases}1, & \text { if } h\left(a_{i}\right) \leq \frac{(1-\epsilon / 2) \cdot t m^{3}}{D} \\ 0, & \text { otherwise }\end{cases}$
- $\mathbb{E}\left[X_{i}\right]=\operatorname{Pr}\left[h\left(a_{i}\right) \leq \frac{(1-\epsilon / 2) \cdot t m^{3}}{D}\right]=\frac{(1-\epsilon / 2) \cdot t}{D}$

Each $h\left(a_{i}\right)$ uniformly random in $\left[0, m^{3}\right]$.

- If there are D distinct elements,

$$
\mathbb{E}\left[\# \text { elements with hash value } \leq \frac{(1-\epsilon / 2) \cdot t m^{3}}{D}\right] \leq t(1-\epsilon / 2)
$$

- but we assumed we have at least t such elements! Now need to show that this cannot happen with high probability

Distinct Elements Analysis

Upper Bound: $\operatorname{Pr}[Y>(1+\epsilon) \cdot D]$

- If there are D distinct elements, let $X=\sum_{i=1}^{D} X_{i}$

$$
\mathbb{E}[X] \leq t(1-\epsilon / 2)
$$

Distinct Elements Analysis

Upper Bound: $\operatorname{Pr}[Y>(1+\epsilon) \cdot D]$

- If there are D distinct elements, let $X=\sum_{i=1}^{D} X_{i}$

$$
\mathbb{E}[X] \leq t(1-\epsilon / 2)
$$

Distinct Elements Analysis

Upper Bound: $\operatorname{Pr}[Y>(1+\epsilon) \cdot D]$

- If there are D distinct elements, let $X=\sum_{i=1}^{D} X_{i}$

$$
\mathbb{E}[X] \leq t(1-\epsilon / 2)
$$

- Probability we will see $\geq t$ elements smaller than $\frac{(1-\epsilon / 2) \cdot t m^{3}}{D}$

Distinct Elements Analysis

Upper Bound: $\operatorname{Pr}[Y>(1+\epsilon) \cdot D]$

- If there are D distinct elements, let $X=\sum_{i=1}^{D} X_{i}$

$$
\mathbb{E}[X] \leq t(1-\epsilon / 2)
$$

- Probability we will see $\geq t$ elements smaller than $\frac{(1-\epsilon / 2) \cdot t m^{3}}{D}$

$$
\text { - } \operatorname{Var}[X]=\sum_{i=1}^{D} \operatorname{Var}\left[X_{i}\right]
$$

(pairwise independence)

Distinct Elements Analysis

Upper Bound: $\operatorname{Pr}[Y>(1+\epsilon) \cdot D]$

- If there are D distinct elements, let $X=\sum_{i=1}^{D} X_{i}$

$$
\mathbb{E}[X] \leq t(1-\epsilon / 2)
$$

- Probability we will see $\geq t$ elements smaller than $\frac{(1-\epsilon / 2) \cdot t m^{3}}{D}$
- $\operatorname{Var}[X]=\sum_{i=1}^{D} \operatorname{Var}\left[X_{i}\right] \quad$ (pairwise independence)
- $\operatorname{Var}\left[X_{i}\right]=\mathbb{E}\left[\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)^{2}\right]=\mathbb{E}\left[X_{i}^{2}\right]-\mathbb{E}\left[X_{i}\right]^{2} \leq \mathbb{E}\left[X_{i}\right]$
(indicator variable)
$\|\left[X_{i}\right] \geqslant 0$
becouse $X_{i} \sim\{0,1\}$

Distinct Elements Analysis

Upper Bound: $\operatorname{Pr}[Y>(1+\epsilon) \cdot D]$

- If there are D distinct elements, let $X=\sum_{i=1}^{D} X_{i}$

$$
\mathbb{E}[X] \leq \underline{t(1-\epsilon / 2)}
$$

- Probability we will see $\geq t$ elements smaller than $\frac{(1-\epsilon / 2) \cdot t m^{3}}{D}$
- $\operatorname{Var}[X]=\sum_{i=1}^{D} \operatorname{Var}\left[X_{i}\right] \quad$ (pairwise independence)
- $\operatorname{Var}\left[X_{i}\right]=\mathbb{E}\left[\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)^{2}\right]=\mathbb{E}\left[X_{i}^{2}\right]-\mathbb{E}\left[X_{i}\right]^{2} \leq \mathbb{E}\left[X_{i}\right]$
(indicator variable) $\Rightarrow \operatorname{Var}[X] \leq \mathbb{E}[x]$
- Chebyshev's inequality:

$$
\begin{aligned}
\operatorname{Pr}[X>t] & =\operatorname{Pr}[X>t \cdot(1-\epsilon / 2)+\epsilon \cdot t / 2] \uparrow \\
& \leq \operatorname{Pr}[|X-\mathbb{E}[X]|>\epsilon \cdot t / 2] \leq \frac{4 \cdot \operatorname{Var}[X]}{\epsilon^{2} t^{2}} \leq \frac{4}{\epsilon^{2} t} \\
& \text { 亿 becon- abs oft Value }
\end{aligned}
$$

Distinct Elements Analysis

Lower Bound: $\operatorname{Pr}[Y<(1-\epsilon) \cdot D]$.
Similar calculation as previous slide. ${ }^{1}$ Practice problem: do this part of the proof.

Distinct Elements Analysis

Lower Bound: $\operatorname{Pr}[Y<(1-\epsilon) \cdot D]$.
Similar calculation as previous slide. ${ }^{1}$ Practice problem: do this part of the proof.

- $\operatorname{Pr}[Y>(1+\epsilon) \cdot D] \leq \frac{4}{\epsilon^{2} t}$
- $\operatorname{Pr}[Y<(1-\epsilon) \cdot D] \leq \frac{4}{\epsilon^{2} t}$

Distinct Elements Analysis

Lower Bound: $\operatorname{Pr}[Y<(1-\epsilon) \cdot D]$.
Similar calculation as previous slide. ${ }^{1}$ Practice problem: do this part of the proof.

- $\operatorname{Pr}[Y>(1+\epsilon) \cdot D] \leq \frac{4}{\epsilon^{2} t}$
- $\operatorname{Pr}[Y<(1-\epsilon) \cdot D] \leq \frac{4}{\epsilon^{2} t}$
- Setting $t=24 / \epsilon^{2}$ gives us

$$
\begin{gathered}
\operatorname{Pr}[(1-\epsilon) \cdot D \leq Y \leq(1+\epsilon) \cdot D] \geq 1-\frac{8}{\epsilon^{2} t}=2 / 3 \\
1-\operatorname{Pn}[Y>(1+\epsilon) D]-\operatorname{Pr}[Y<(1-\epsilon) D]^{1 /}
\end{gathered}
$$

${ }^{1}$ replacing $1-\epsilon$ by $1+\epsilon$ and using Chebyshev

Distinct Elements Analysis

Lower Bound: $\operatorname{Pr}[Y<(1-\epsilon) \cdot D]$.
Similar calculation as previous slide. ${ }^{1}$
Practice problem: do this part of the proof.

- $\operatorname{Pr}[Y>(1+\epsilon) \cdot D] \leq \frac{4}{\epsilon^{2} t}$
- $\operatorname{Pr}[Y<(1-\epsilon) \cdot D] \leq \frac{4}{\epsilon^{2} t}$
- Setting $t=24 / \epsilon^{2}$ gives us

$$
\operatorname{Pr}[(1-\epsilon) \cdot D \leq Y \leq(1+\epsilon) \cdot D] \geq 1-\frac{8}{\epsilon^{2} t}=2 / 3
$$

Practice problem: how can we make the success probability much higher?

[^0]Space requirements and running time

$$
\log m=b
$$

- Total space used: $O\left(\frac{1}{\epsilon^{2}} \log m\right)$ bits
hash function stound $t=24 / \epsilon^{2}$
$O(\log m)$ hash values

$$
O\left(\frac{1}{\epsilon^{2}} \cdot \log m\right)
$$

Space requirements and running time

- Total space used: $O\left(\frac{1}{\epsilon^{2}} \log m\right)$ bits
- we stored $O\left(1 / \epsilon^{2}\right)$ hash values each of $\log (m)$ bits
- hash function only requires $O(\log m)$ bits to store.

Space requirements and running time

- Total space used: $O\left(\frac{1}{\epsilon^{2}} \log m\right)$ bits
- we stored $O\left(1 / \epsilon^{2}\right)$ hash values each of $\log (m)$ bits
- hash function only requires $O(\log m)$ bits to store.
- Running time per operation: $O\left(\log (m)+1 / \epsilon^{2}\right)$ steps

Space requirements and running time

- Total space used: $O\left(\frac{1}{\epsilon^{2}} \log m\right)$ bits
- we stored $O\left(1 / \epsilon^{2}\right)$ hash values each of $\log (m)$ bits
- hash function only requires $O(\log m)$ bits to store.
- Running time per operation: $O\left(\log (m)+1 / \epsilon^{2}\right)$ steps
- compute hash in $O(\log m)$ time
- Since we keep track of $O\left(1 / \epsilon^{2}\right)$ elements, and need to update the list, this takes $O\left(1 / \epsilon^{2}\right)$ time (though there are smarter ways)
- Introduction
- Data Streaming
- Basic Examples
- Main Examples
- Heavy hitters
- Distinct Elements
- Weighted Heavy Hitters
- Acknowledgements

Heavy hitters with weights

Example (Weighted heavy hitters)

- Input stream: $\left(a_{1}, w_{1}\right), \ldots,\left(a_{N}, w_{N}\right)$ tuples of integers from $\Sigma=\left[-2^{b}+1,2^{b}-1\right]$, parameter $q \in \mathbb{N}$

Heavy hitters with weights

Example (Weighted heavy hitters)

- Input stream: $\left(a_{1}, w_{1}\right), \ldots,\left(a_{N}, w_{N}\right)$ tuples of integers from $\Sigma=\left[-2^{b}+1,2^{b}-1\right]$, parameter $q \in \mathbb{N}$
- Total weight

$$
Q=\sum_{t=1}^{N} w_{t}
$$

Heavy hitters with weights

Example (Weighted heavy hitters)

- Input stream: $\left(a_{1}, w_{1}\right), \ldots,\left(a_{N}, w_{N}\right)$ tuples of integers from $\Sigma=\left[-2^{b}+1,2^{b}-1\right]$, parameter $q \in \mathbb{N}$
- Total weight

$$
Q=\sum_{t=1}^{N} w_{t}
$$

- Total weight of $e \in \Sigma$:

$$
Q(e)=\sum_{t: a_{t}=e} w_{t}
$$

Heavy hitters with weights

Example (Weighted heavy hitters)

- Input stream: $\left(a_{1}, w_{1}\right), \ldots,\left(a_{N}, w_{N}\right)$ tuples of integers from $\Sigma=\left[-2^{b}+1,2^{b}-1\right]$, parameter $q \in \mathbb{N}$
- Total weight

$$
Q=\sum_{t=1}^{N} w_{t}
$$

- Total weight of $e \in \Sigma$:

$$
Q(e)=\sum_{t: a_{t}=e} w_{t}
$$

- Task: find all elements e such that $Q(e) \geq q$

Heavy hitters with weights

Example (Weighted heavy hitters)

- Input stream: $\left(a_{1}, w_{1}\right), \ldots,\left(a_{N}, w_{N}\right)$ tuples of integers from $\Sigma=\left[-2^{b}+1,2^{b}-1\right]$, parameter $q \in \mathbb{N}$
- Total weight

$$
Q=\sum_{t=1}^{N} w_{t}
$$

- Total weight of $e \in \Sigma$:

$$
Q(e)=\sum_{t: a_{t}=e} w_{t}
$$

- Task: find all elements e such that $Q(e) \geq q$
- Constraint: allowed to also output false positives (low hitters), but not allowed to miss any heavy hitter!

Weighted heavy hitters - algorithm setup

We will see an algorithm that gives us the following guarantees:

Weighted heavy hitters - algorithm setup

We will see an algorithm that gives us the following guarantees:
(1) All heavy hitters are reported

Weighted heavy hitters - algorithm setup

We will see an algorithm that gives us the following guarantees:
(1) All heavy hitters are reported
(2) if $Q(e) \leq q-\epsilon \cdot Q$, then e is reported with probability at most δ

- That is, have low probability of reporting a really low hitter

Weighted heavy hitters - algorithm setup

We will see an algorithm that gives us the following guarantees:
(1) All heavy hitters are reported
(2) if $Q(e) \leq q-\epsilon \cdot Q$, then e is reported with probability at most δ

- That is, have low probability of reporting a really low hitter

Use 2-universal hash functions!

Weighted heavy hitters - algorithm setup

We will see an algorithm that gives us the following guarantees:
(1) All heavy hitters are reported
(2) if $Q(e) \leq q-\epsilon \cdot Q$, then e is reported with probability at most δ

- That is, have low probability of reporting a really low hitter

Use 2-universal hash functions!

- k, ℓ are parameters to be chosen later

Weighted heavy hitters - algorithm setup

We will see an algorithm that gives us the following guarantees:
(1) All heavy hitters are reported
(2) if $Q(e) \leq q-\epsilon \cdot Q$, then e is reported with probability at most δ

- That is, have low probability of reporting a really low hitter

Use 2-universal hash functions!

- k, ℓ are parameters to be chosen later
- Pick k hash functions h_{1}, \ldots, h_{k} where $h_{i}: \Sigma \rightarrow[0, \ell-1]$

Weighted heavy hitters - algorithm setup

We will see an algorithm that gives us the following guarantees:
(1) All heavy hitters are reported
(2) if $Q(e) \leq q-\epsilon \cdot Q$, then e is reported with probability at most δ

- That is, have low probability of reporting a really low hitter

Use 2-universal hash functions!

- k, ℓ are parameters to be chosen later
- Pick k hash functions h_{1}, \ldots, h_{k} where $h_{i}: \Sigma \rightarrow[0, \ell-1]$
- Let's maintain $k \cdot \ell$ counters $C_{i, j}$, where each $C_{i, j}$ adds the weight of items that are mapped to $j^{\text {th }}$ entry by the $i^{\text {th }}$ hash function. Start with $C_{i, j}=0$ for all $1 \leq i \leq k$ and $1 \leq j \leq \ell$.

Weighted heavy hitters - algorithm

- Given $\left(a_{t}, w_{t}\right)$, for each $1 \leq i \leq k$ set $C_{i, h_{i}\left(a_{t}\right)} \leftarrow C_{i, h_{i}\left(a_{t}\right)}+w_{t}$.
- At the end, ${ }^{2}$ report all elements e with

$$
\min _{1 \leq i \leq k} C_{i, h_{i}(e)} \geq q
$$

- Data structure as a table:
${ }^{2}$ In this version need to do second pass over data. But this can be fixed. Practice problem: fix this so that we can report on the fly.

Weighted heavy hitters - analysis

- Heavy hitter always reported, as all their counters are large

Weighted heavy hitters - analysis

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter $C_{i, h_{i}(e)}<q$.

Weighted heavy hitters - analysis

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter $C_{i, h_{i}(e)}<q$.
- If $Q(e) \leq q-\epsilon \cdot Q$, what is prob. e will be reported as heavy hitter?

Weighted heavy hitters - analysis

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter $C_{i, h_{i}(e)}<q$.
- If $Q(e) \leq q-\epsilon \cdot Q$, what is prob. e will be reported as heavy hitter?
- Look at counter $C_{i, h_{i}(e)}$. Since e is reported, must have $C_{i, h_{i}(e)} \geq q$

Weighted heavy hitters - analysis

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter $C_{i, h_{i}(e)}<q$.
- If $Q(e) \leq q-\epsilon \cdot Q$, what is prob. e will be reported as heavy hitter?
- Look at counter $C_{i, h_{i}(e)}$. Since e is reported, must have $C_{i, h_{i}(e)} \geq q$
- Contribution from e is $Q(e) \leq q-\epsilon \cdot Q$. So other elements that map to $h_{i}(e)$ must have contributed $\geq \epsilon \cdot Q$.

Weighted heavy hitters - analysis

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter $C_{i, h_{i}(e)}<q$.
- If $Q(e) \leq q-\epsilon \cdot Q$, what is prob. e will be reported as heavy hitter?
- Look at counter $C_{i, h_{i}(e)}$. Since e is reported, must have $C_{i, h_{i}(e)} \geq q$
- Contribution from e is $Q(e) \leq q-\epsilon \cdot Q$. So other elements that map to $h_{i}(e)$ must have contributed $\geq \epsilon \cdot Q$.
- Let Z_{i} be the value of $C_{i, h_{i}(e)}$ that was added by other elements

Weighted heavy hitters - analysis

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter $C_{i, h_{i}(e)}<q$.
- If $Q(e) \leq q-\epsilon \cdot Q$, what is prob. e will be reported as heavy hitter?
- Look at counter $C_{i, h_{i}(e)}$. Since e is reported, must have $C_{i, h_{i}(e)} \geq q$
- Contribution from e is $Q(e) \leq q-\epsilon \cdot Q$. So other elements that map to $h_{i}(e)$ must have contributed $\geq \epsilon \cdot Q$.
- Let Z_{i} be the value of $C_{i, h_{i}(e)}$ that was added by other elements
- h_{i} chosen from 2-universal hash family then probability that another element f is mapped to $h_{i}(e)$ is $\leq 1 / \ell$.

Weighted heavy hitters - analysis

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter $C_{i, h_{i}(e)}<q$.
- If $Q(e) \leq q-\epsilon \cdot Q$, what is prob. e will be reported as heavy hitter?
- Look at counter $C_{i, h_{i}(e)}$. Since e is reported, must have $C_{i, h_{i}(e)} \geq q$
- Contribution from e is $Q(e) \leq q-\epsilon \cdot Q$. So other elements that map to $h_{i}(e)$ must have contributed $\geq \epsilon \cdot Q$.
- Let Z_{i} be the value of $C_{i, h_{i}(e)}$ that was added by other elements
- h_{i} chosen from 2-universal hash family then probability that another element f is mapped to $h_{i}(e)$ is $\leq 1 / \ell$.
- Thus $\mathbb{E}\left[Z_{i}\right] \leq Q / \ell$. By Markov:

$$
\operatorname{Pr}\left[Z_{i} \geq \epsilon \cdot Q\right] \leq \frac{\mathbb{E}[Z]}{\epsilon \cdot Q} \leq \frac{1}{\epsilon \ell}
$$

Weighted heavy hitters - analysis

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter $C_{i, h_{i}(e)}<q$.
- If $Q(e) \leq q-\epsilon \cdot Q$, what is prob. e will be reported as heavy hitter?
- Look at counter $C_{i, h_{i}(e)}$. Since e is reported, must have $C_{i, h_{i}(e)} \geq q$
- Contribution from e is $Q(e) \leq q-\epsilon \cdot Q$. So other elements that map to $h_{i}(e)$ must have contributed $\geq \epsilon \cdot Q$.
- Let Z_{i} be the value of $C_{i, h_{i}(e)}$ that was added by other elements
- h_{i} chosen from 2-universal hash family then probability that another element f is mapped to $h_{i}(e)$ is $\leq 1 / \ell$.
- Thus $\mathbb{E}\left[Z_{i}\right] \leq Q / \ell$. By Markov:

$$
\operatorname{Pr}\left[Z_{i} \geq \epsilon \cdot Q\right] \leq \frac{\mathbb{E}[Z]}{\epsilon \cdot Q} \leq \frac{1}{\epsilon \ell}
$$

- Hash functions h_{i} chosen independently \Rightarrow

$$
\operatorname{Pr}\left[\min _{1 \leq i \leq k} Z_{i} \geq \epsilon \cdot Q\right] \leq\left(\frac{1}{\epsilon \ell}\right)^{k}
$$

Weighted heavy hitters - analysis

We have

$$
\operatorname{Pr}\left[\min _{1 \leq i \leq k} Z_{i} \geq \epsilon \cdot Q\right] \leq\left(\frac{1}{\epsilon \ell}\right)^{k}
$$

Weighted heavy hitters - analysis

We have

$$
\operatorname{Pr}\left[\min _{1 \leq i \leq k} Z_{i} \geq \epsilon \cdot Q\right] \leq\left(\frac{1}{\epsilon \ell}\right)^{k}
$$

- Setting $\ell=2 / \epsilon$ and $k=\log (\delta)$ we get that probability above $\leq \delta$.

Weighted heavy hitters - analysis

We have

$$
\operatorname{Pr}\left[\min _{1 \leq i \leq k} Z_{i} \geq \epsilon \cdot Q\right] \leq\left(\frac{1}{\epsilon \ell}\right)^{k}
$$

- Setting $\ell=2 / \epsilon$ and $k=\log (\delta)$ we get that probability above $\leq \delta$.
- Space requirement for counters $O(1 / \epsilon \cdot \log (1 / \delta))$

Weighted heavy hitters - analysis

We have

$$
\operatorname{Pr}\left[\min _{1 \leq i \leq k} Z_{i} \geq \epsilon \cdot Q\right] \leq\left(\frac{1}{\epsilon \ell}\right)^{k}
$$

- Setting $\ell=2 / \epsilon$ and $k=\log (\delta)$ we get that probability above $\leq \delta$.
- Space requirement for counters $O(1 / \epsilon \cdot \log (1 / \delta))$
- Space required to store all hash functions and evaluation time $O(k \cdot \ell)$

Acknowledgement

- Lecture based largely on Lap Chi's notes and David Woodruff's notes.
- See Lap Chi's notes at https://cs.uwaterloo.ca/~lapchi/cs466/notes/L05.pdf
- See David's notes at https://www.cs.cmu.edu/~15451-s20/lectures/lec6.pdf

[^0]: ${ }^{1}$ replacing $1-\epsilon$ by $1+\epsilon$ and using Chebyshev

