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Why streaming?

In today’s world we have to deal with big data. But not all big data are
created equal. Today we will study one way in which massive data can
appear in our lives: streaming.

1 Data stream: massive sequence of data, too large to store in memory.

1 Network traffic (source/destination)
2 Internet search logs
3 Database transactions
4 sensor networks
5 satellite data feeds

2 Does not come to us at once.

3 Essentially can only look at each piece of data once (or constantly
many times)

How can we deal with it/model it? What can we do if we cannot even see
the whole input?
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What is streaming?

Definition (Basic Data Stream model)

In the data stream model:

receive a stream of elements a1, a2, . . . aN each from a known
alphabet Σ. Each element of Σ takes b bits to represent.

usually assume that N is known

Basic operations (comparison, arithmetic, bitwise) take Θ(1) time

Single or small number of passes over data

Bounded storage

Typically logc(N) for c = O(1) or Nα for some 0 < α < 1

We are allowed to use randomness (almost always necessary)

Probabilistic model: our algorithm must succeed most of the time

(usually) want approximate answers to the true answer

Goal: minimize space complexity (in bits) and the processing time.
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Examples of Streaming Problems

Example (Sum of elements)

Input stream: a1, . . . , aN be integers from the set [−2b + 1, 2b − 1]

Task: maintain the current sum of the elements we have seen so far

Example (Median)

Input stream: a1, . . . , aN be integers from the set [−2b + 1, 2b − 1]

Task: maintain the current median of elements we have seen so far
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Examples of Streaming Problems

Example (Distinct elements)

Input stream: a1, . . . , aN be integers from the set [−2b + 1, 2b − 1]

Task: maintain current # of distinct elements we have seen so far

Example (Heavy hitters)

Input stream: a1, . . . , aN integers from [−2b + 1, 2b − 1], ε > 0

Task: maintain set of elements that contains elements that have
appeared at least ε-fraction of the time (a.k.a. heavy hitters)

Constraint: allowed to also output false positives (low hitters), but
not allowed to miss any heavy hitter!
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Majority Element - Algorithm
Setup: heavy hitters with ε = 1/2.

At time t, we will maintain set St which contains the element that
has appeared at least N/2 times, if any.

S0 = ∅, c ← 0 (c is a counter)

when element at arrives:

If c == 0

St = {at} and c ← 1

Else

if at ∈ St−1, set c ← c + 1
else c ← c − 1 and discard at

At end of stream, return element in SN
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Majority Element - Analysis

If there is no majority element, we could still output a false positive
(low hitter), which is fine.

What happens when there is a majority element?

Every time that we discard a copy of the majority element, we throw
away a different element.
Example: stream 3, 1, 2, 1, 1
Majority element appears more than half the time, so we cannot throw
away all the majority elements

Space used: O(b) (stored set St which has at most one element and
counter)
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Heavy hitters Problem

Example (Heavy hitters)

Input stream: a1, . . . , aN integers from [−2b + 1, 2b − 1], ε > 0

Task: maintain set of elements that contains elements that have
appeared at least ε-fraction of the time (a.k.a. heavy hitters)

Constraint: allowed to also output false positives (low hitters), but
not allowed to miss any heavy hitter!
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Heavy Hitters Algorithm

1 Set k = d1/εe − 1

2 Set array T of length k where each entry T [i ] can hold an element of
Σ (= [−2b + 1, 2b − 1]).

3 Set array C of length k where each entry can hold non-negative
integer

4 Initialize T [i ]← NaN and C [i ]← 0 for i ∈ [k].

5 When receive element at :

1 If there is j ∈ [k] such that at = T [j ], then C [j ]← C [j ] + 1
2 Else, if there is j ∈ [k] such that C [j ] = 0, then T [j ]← at and C [j ]← 1
3 Else make all C [j ]← C [j ]− 1 and discard at

6 Return the array T with the counter array C
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Heavy hitters proof

For element e ∈ Σ, let est(e) =

{
C [j ], if e = T [j ]

0, otherwise.

Lemma

Let count(e) be the number of occurrences of e in stream up to time N.

0 ≤ count(e)− est(e) ≤ N

k + 1
≤ εN

count(e) ≥ est(e) because never increase C [j ] for e unless we see e

If we don’t increase est(e) by 1 when we see an update to e then we
decrement k counters and discard current update to e

So we drop k + 1 distinct stream updates, but there are N updates,
so we won’t increase est(e) by 1 (when we should) at most
N

k + 1
≤ εN times.
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Heavy hitters proof

At any time N, all heavy hitters e are in T

For an ε-heavy hitter e, we have count(e) > ε · N

est(e) ≥ count(e)− ε · N > 0

est(e) > 0⇒ e is in T

Space used is O(k · (log(Σ) + logN)) = O((1/ε) · (b + logN)) bits
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Distinct Elements

Example (Distinct elements)

Input stream: a1, . . . , aN be integers from [0, 2b − 1]. m := 2b

Task: maintain current # of distinct elements D we have seen so far

Use strongly 2-universal hash function!

Take strongly 2-universal hash function h : [0,m − 1]→ [0,m3].

From previous lecture, w.h.p. no collisions!

Suppose there are D distinct elements b1, . . . , bD

If the D hash values h(b1), . . . , h(bD) are evenly distributed in [0,m3],

then tth smallest hash value should be close to
tm3

D
.

If we know that tth smallest value is T , then T ≈ tm3

D
⇒ D ≈ tm3

T
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Distinct Elements - algorithm

Choose a random hash function h from strongly 2-universal hash
family

For each item ai in the stream:

Compute h(ai )
update list that stores the t smallest hash values
After all data has read, let T be tth smallest hash value in data stream.

Return Y =
tm3

T
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Distinct Elements Analysis

What are our space requirements?

Not going to store the whole hash table, only store hash function h and
t numbers (the t smallest values we have seen)
Need to find good value of t for have high probability of success

Theorem

Setting t = O(1/ε2) we have that

(1− ε) · D ≤ Y ≤ (1 + ε) · D

with constant probability.

62 / 116



Distinct Elements Analysis

What are our space requirements?

Not going to store the whole hash table, only store hash function h and
t numbers (the t smallest values we have seen)

Need to find good value of t for have high probability of success

Theorem

Setting t = O(1/ε2) we have that

(1− ε) · D ≤ Y ≤ (1 + ε) · D

with constant probability.

63 / 116

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Distinct Elements Analysis

What are our space requirements?

Not going to store the whole hash table, only store hash function h and
t numbers (the t smallest values we have seen)
Need to find good value of t for have high probability of success

Theorem

Setting t = O(1/ε2) we have that

(1− ε) · D ≤ Y ≤ (1 + ε) · D

with constant probability.

64 / 116



Distinct Elements Analysis

What are our space requirements?

Not going to store the whole hash table, only store hash function h and
t numbers (the t smallest values we have seen)
Need to find good value of t for have high probability of success

Theorem

Setting t = O(1/ε2) we have that

(1− ε) · D ≤ Y ≤ (1 + ε) · D

with constant probability.

65 / 116

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Distinct Elements Analysis

Theorem

Setting t = O(1/ε2) we have that Y =
tm3

T
satisfies:

(1− ε) · D ≤ Y ≤ (1 + ε) · D

with constant probability.

Upper Bound: Pr[Y > (1 + ε) · D]

Y > (1 + ε) · D ⇒ T <
tm3

(1 + ε) · D
≤ (1− ε/2) · tm3

D

At least t hash values smaller than
(1− ε/2) · tm3

D

Random variable Xi =

1, if h(ai ) ≤
(1− ε/2) · tm3

D
0, otherwise
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Distinct Elements Analysis

Upper Bound: Pr[Y > (1 + ε) · D]

Random variable Xi =

1, if h(ai ) ≤
(1− ε/2) · tm3

D
0, otherwise

E[Xi ] = Pr

[
h(ai ) ≤

(1− ε/2) · tm3

D

]
=

(1− ε/2) · t
D

Each h(ai ) uniformly random in [0,m3].

If there are D distinct elements,

E
[

# elements with hash value ≤ (1− ε/2) · tm3

D

]
≤ t(1− ε/2)

but we assumed we have at least t such elements! Now need to show
that this cannot happen with high probability
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Distinct Elements Analysis
Upper Bound: Pr[Y > (1 + ε) · D]

If there are D distinct elements, let X =
∑D

i=1 Xi

E [X ] ≤ t(1− ε/2)

Probability we will see ≥ t elements smaller than
(1− ε/2) · tm3

D

Var[X ] =
∑D

i=1 Var[Xi ] (pairwise independence)

Var[Xi ] = E[(Xi − E[Xi ])
2] = E[X 2

i ]− E[Xi ]
2 ≤ E[Xi ] (indicator

variable)

Chebyshev’s inequality:

Pr [X > t] = Pr [X > t · (1− ε/2) + ε · t/2]

≤ Pr [|X − E[X ]| > ε · t/2] ≤ 4 · Var[X ]

ε2t2
≤ 4

ε2t

75 / 116



Distinct Elements Analysis
Upper Bound: Pr[Y > (1 + ε) · D]

If there are D distinct elements, let X =
∑D

i=1 Xi

E [X ] ≤ t(1− ε/2)

Probability we will see ≥ t elements smaller than
(1− ε/2) · tm3

D

Var[X ] =
∑D

i=1 Var[Xi ] (pairwise independence)

Var[Xi ] = E[(Xi − E[Xi ])
2] = E[X 2

i ]− E[Xi ]
2 ≤ E[Xi ] (indicator

variable)

Chebyshev’s inequality:

Pr [X > t] = Pr [X > t · (1− ε/2) + ε · t/2]

≤ Pr [|X − E[X ]| > ε · t/2] ≤ 4 · Var[X ]

ε2t2
≤ 4

ε2t

76 / 116



Distinct Elements Analysis
Upper Bound: Pr[Y > (1 + ε) · D]

If there are D distinct elements, let X =
∑D

i=1 Xi

E [X ] ≤ t(1− ε/2)

Probability we will see ≥ t elements smaller than
(1− ε/2) · tm3

D

Var[X ] =
∑D

i=1 Var[Xi ] (pairwise independence)

Var[Xi ] = E[(Xi − E[Xi ])
2] = E[X 2

i ]− E[Xi ]
2 ≤ E[Xi ] (indicator

variable)

Chebyshev’s inequality:

Pr [X > t] = Pr [X > t · (1− ε/2) + ε · t/2]

≤ Pr [|X − E[X ]| > ε · t/2] ≤ 4 · Var[X ]

ε2t2
≤ 4

ε2t

77 / 116



Distinct Elements Analysis
Upper Bound: Pr[Y > (1 + ε) · D]

If there are D distinct elements, let X =
∑D

i=1 Xi

E [X ] ≤ t(1− ε/2)

Probability we will see ≥ t elements smaller than
(1− ε/2) · tm3

D
Var[X ] =

∑D
i=1 Var[Xi ] (pairwise independence)

Var[Xi ] = E[(Xi − E[Xi ])
2] = E[X 2

i ]− E[Xi ]
2 ≤ E[Xi ] (indicator

variable)

Chebyshev’s inequality:

Pr [X > t] = Pr [X > t · (1− ε/2) + ε · t/2]

≤ Pr [|X − E[X ]| > ε · t/2] ≤ 4 · Var[X ]

ε2t2
≤ 4

ε2t

78 / 116

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Distinct Elements Analysis
Upper Bound: Pr[Y > (1 + ε) · D]

If there are D distinct elements, let X =
∑D

i=1 Xi

E [X ] ≤ t(1− ε/2)

Probability we will see ≥ t elements smaller than
(1− ε/2) · tm3

D
Var[X ] =

∑D
i=1 Var[Xi ] (pairwise independence)

Var[Xi ] = E[(Xi − E[Xi ])
2] = E[X 2

i ]− E[Xi ]
2 ≤ E[Xi ] (indicator

variable)

Chebyshev’s inequality:

Pr [X > t] = Pr [X > t · (1− ε/2) + ε · t/2]

≤ Pr [|X − E[X ]| > ε · t/2] ≤ 4 · Var[X ]

ε2t2
≤ 4

ε2t

79 / 116

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Distinct Elements Analysis
Upper Bound: Pr[Y > (1 + ε) · D]

If there are D distinct elements, let X =
∑D

i=1 Xi

E [X ] ≤ t(1− ε/2)

Probability we will see ≥ t elements smaller than
(1− ε/2) · tm3

D
Var[X ] =

∑D
i=1 Var[Xi ] (pairwise independence)

Var[Xi ] = E[(Xi − E[Xi ])
2] = E[X 2

i ]− E[Xi ]
2 ≤ E[Xi ] (indicator

variable)

Chebyshev’s inequality:

Pr [X > t] = Pr [X > t · (1− ε/2) + ε · t/2]

≤ Pr [|X − E[X ]| > ε · t/2] ≤ 4 · Var[X ]

ε2t2
≤ 4

ε2t

80 / 116

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Distinct Elements Analysis

Lower Bound: Pr[Y < (1− ε) · D].

Similar calculation as previous slide.1

Practice problem: do this part of the proof.

Pr[Y > (1 + ε) · D] ≤ 4

ε2t

Pr[Y < (1− ε) · D] ≤ 4

ε2t
Setting t = 24/ε2 gives us

Pr[(1− ε) · D ≤ Y ≤ (1 + ε) · D] ≥ 1− 8

ε2t
= 2/3

Practice problem: how can we make the success probability much higher?

1replacing 1− ε by 1 + ε and using Chebyshev
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Space requirements and running time

Total space used: O

(
1

ε2
logm

)
bits

we stored O(1/ε2) hash values each of log(m) bits

hash function only requires O(logm) bits to store.

Running time per operation: O(log(m) + 1/ε2) steps

compute hash in O(logm) time

Since we keep track of O(1/ε2) elements, and need to update the list,
this takes O(1/ε2) time (though there are smarter ways)
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Heavy hitters with weights

Example (Weighted heavy hitters)

Input stream: (a1,w1), . . . , (aN ,wN) tuples of integers from
Σ = [−2b + 1, 2b − 1], parameter q ∈ N

Total weight

Q =
N∑
t=1

wt

Total weight of e ∈ Σ:

Q(e) =
∑
t:at=e

wt

Task: find all elements e such that Q(e) ≥ q

Constraint: allowed to also output false positives (low hitters), but
not allowed to miss any heavy hitter!
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Weighted heavy hitters - algorithm setup

We will see an algorithm that gives us the following guarantees:

1 All heavy hitters are reported
2 if Q(e) ≤ q − ε · Q, then e is reported with probability at most δ

That is, have low probability of reporting a really low hitter

Use 2-universal hash functions!

k , ` are parameters to be chosen later

Pick k hash functions h1, . . . , hk where hi : Σ→ [0, `− 1]

Let’s maintain k · ` counters Ci ,j , where each Ci ,j adds the weight of
items that are mapped to j th entry by the i th hash function. Start
with Ci ,j = 0 for all 1 ≤ i ≤ k and 1 ≤ j ≤ `.
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Weighted heavy hitters - algorithm

Given (at ,wt), for each 1 ≤ i ≤ k set Ci ,hi (at) ← Ci ,hi (at) + wt .

At the end,2 report all elements e with

min
1≤i≤k

Ci ,hi (e) ≥ q

Data structure as a table:

2In this version need to do second pass over data. But this can be fixed. Practice
problem: fix this so that we can report on the fly.
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Weighted heavy hitters - analysis
Heavy hitter always reported, as all their counters are large

Need to show now that if e is not a heavy hitter, with high probability
we will have one counter Ci ,hi (e) < q.

If Q(e) ≤ q − ε ·Q, what is prob. e will be reported as heavy hitter?

Look at counter Ci,hi (e). Since e is reported, must have Ci,hi (e) ≥ q
Contribution from e is Q(e) ≤ q − ε · Q. So other elements that map
to hi (e) must have contributed ≥ ε · Q.
Let Zi be the value of Ci,hi (e) that was added by other elements
hi chosen from 2-universal hash family then probability that another
element f is mapped to hi (e) is ≤ 1/`.
Thus E[Zi ] ≤ Q/`. By Markov:

Pr[Zi ≥ ε · Q] ≤ E[Z ]

ε · Q
≤ 1

ε`

Hash functions hi chosen independently ⇒

Pr

[
min

1≤i≤k
Zi ≥ ε · Q

]
≤
(

1

ε`

)k

103 / 116



Weighted heavy hitters - analysis
Heavy hitter always reported, as all their counters are large

Need to show now that if e is not a heavy hitter, with high probability
we will have one counter Ci ,hi (e) < q.

If Q(e) ≤ q − ε ·Q, what is prob. e will be reported as heavy hitter?

Look at counter Ci,hi (e). Since e is reported, must have Ci,hi (e) ≥ q
Contribution from e is Q(e) ≤ q − ε · Q. So other elements that map
to hi (e) must have contributed ≥ ε · Q.
Let Zi be the value of Ci,hi (e) that was added by other elements
hi chosen from 2-universal hash family then probability that another
element f is mapped to hi (e) is ≤ 1/`.
Thus E[Zi ] ≤ Q/`. By Markov:

Pr[Zi ≥ ε · Q] ≤ E[Z ]

ε · Q
≤ 1

ε`

Hash functions hi chosen independently ⇒

Pr

[
min

1≤i≤k
Zi ≥ ε · Q

]
≤
(

1

ε`

)k

104 / 116



Weighted heavy hitters - analysis
Heavy hitter always reported, as all their counters are large

Need to show now that if e is not a heavy hitter, with high probability
we will have one counter Ci ,hi (e) < q.

If Q(e) ≤ q − ε ·Q, what is prob. e will be reported as heavy hitter?

Look at counter Ci,hi (e). Since e is reported, must have Ci,hi (e) ≥ q
Contribution from e is Q(e) ≤ q − ε · Q. So other elements that map
to hi (e) must have contributed ≥ ε · Q.
Let Zi be the value of Ci,hi (e) that was added by other elements
hi chosen from 2-universal hash family then probability that another
element f is mapped to hi (e) is ≤ 1/`.
Thus E[Zi ] ≤ Q/`. By Markov:

Pr[Zi ≥ ε · Q] ≤ E[Z ]

ε · Q
≤ 1

ε`

Hash functions hi chosen independently ⇒

Pr

[
min

1≤i≤k
Zi ≥ ε · Q

]
≤
(

1

ε`

)k

105 / 116



Weighted heavy hitters - analysis
Heavy hitter always reported, as all their counters are large

Need to show now that if e is not a heavy hitter, with high probability
we will have one counter Ci ,hi (e) < q.

If Q(e) ≤ q − ε ·Q, what is prob. e will be reported as heavy hitter?
Look at counter Ci,hi (e). Since e is reported, must have Ci,hi (e) ≥ q

Contribution from e is Q(e) ≤ q − ε · Q. So other elements that map
to hi (e) must have contributed ≥ ε · Q.
Let Zi be the value of Ci,hi (e) that was added by other elements
hi chosen from 2-universal hash family then probability that another
element f is mapped to hi (e) is ≤ 1/`.
Thus E[Zi ] ≤ Q/`. By Markov:

Pr[Zi ≥ ε · Q] ≤ E[Z ]

ε · Q
≤ 1

ε`

Hash functions hi chosen independently ⇒

Pr

[
min

1≤i≤k
Zi ≥ ε · Q

]
≤
(

1

ε`

)k

106 / 116



Weighted heavy hitters - analysis
Heavy hitter always reported, as all their counters are large

Need to show now that if e is not a heavy hitter, with high probability
we will have one counter Ci ,hi (e) < q.

If Q(e) ≤ q − ε ·Q, what is prob. e will be reported as heavy hitter?
Look at counter Ci,hi (e). Since e is reported, must have Ci,hi (e) ≥ q
Contribution from e is Q(e) ≤ q − ε · Q. So other elements that map
to hi (e) must have contributed ≥ ε · Q.

Let Zi be the value of Ci,hi (e) that was added by other elements
hi chosen from 2-universal hash family then probability that another
element f is mapped to hi (e) is ≤ 1/`.
Thus E[Zi ] ≤ Q/`. By Markov:

Pr[Zi ≥ ε · Q] ≤ E[Z ]

ε · Q
≤ 1

ε`

Hash functions hi chosen independently ⇒

Pr

[
min

1≤i≤k
Zi ≥ ε · Q

]
≤
(

1

ε`

)k

107 / 116



Weighted heavy hitters - analysis
Heavy hitter always reported, as all their counters are large

Need to show now that if e is not a heavy hitter, with high probability
we will have one counter Ci ,hi (e) < q.

If Q(e) ≤ q − ε ·Q, what is prob. e will be reported as heavy hitter?
Look at counter Ci,hi (e). Since e is reported, must have Ci,hi (e) ≥ q
Contribution from e is Q(e) ≤ q − ε · Q. So other elements that map
to hi (e) must have contributed ≥ ε · Q.
Let Zi be the value of Ci,hi (e) that was added by other elements

hi chosen from 2-universal hash family then probability that another
element f is mapped to hi (e) is ≤ 1/`.
Thus E[Zi ] ≤ Q/`. By Markov:

Pr[Zi ≥ ε · Q] ≤ E[Z ]

ε · Q
≤ 1

ε`

Hash functions hi chosen independently ⇒

Pr

[
min

1≤i≤k
Zi ≥ ε · Q

]
≤
(

1

ε`

)k

108 / 116



Weighted heavy hitters - analysis
Heavy hitter always reported, as all their counters are large

Need to show now that if e is not a heavy hitter, with high probability
we will have one counter Ci ,hi (e) < q.

If Q(e) ≤ q − ε ·Q, what is prob. e will be reported as heavy hitter?
Look at counter Ci,hi (e). Since e is reported, must have Ci,hi (e) ≥ q
Contribution from e is Q(e) ≤ q − ε · Q. So other elements that map
to hi (e) must have contributed ≥ ε · Q.
Let Zi be the value of Ci,hi (e) that was added by other elements
hi chosen from 2-universal hash family then probability that another
element f is mapped to hi (e) is ≤ 1/`.

Thus E[Zi ] ≤ Q/`. By Markov:

Pr[Zi ≥ ε · Q] ≤ E[Z ]

ε · Q
≤ 1

ε`

Hash functions hi chosen independently ⇒

Pr

[
min

1≤i≤k
Zi ≥ ε · Q

]
≤
(

1

ε`

)k

109 / 116



Weighted heavy hitters - analysis
Heavy hitter always reported, as all their counters are large

Need to show now that if e is not a heavy hitter, with high probability
we will have one counter Ci ,hi (e) < q.

If Q(e) ≤ q − ε ·Q, what is prob. e will be reported as heavy hitter?
Look at counter Ci,hi (e). Since e is reported, must have Ci,hi (e) ≥ q
Contribution from e is Q(e) ≤ q − ε · Q. So other elements that map
to hi (e) must have contributed ≥ ε · Q.
Let Zi be the value of Ci,hi (e) that was added by other elements
hi chosen from 2-universal hash family then probability that another
element f is mapped to hi (e) is ≤ 1/`.
Thus E[Zi ] ≤ Q/`. By Markov:

Pr[Zi ≥ ε · Q] ≤ E[Z ]

ε · Q
≤ 1

ε`

Hash functions hi chosen independently ⇒

Pr

[
min

1≤i≤k
Zi ≥ ε · Q

]
≤
(

1

ε`

)k

110 / 116



Weighted heavy hitters - analysis
Heavy hitter always reported, as all their counters are large

Need to show now that if e is not a heavy hitter, with high probability
we will have one counter Ci ,hi (e) < q.

If Q(e) ≤ q − ε ·Q, what is prob. e will be reported as heavy hitter?
Look at counter Ci,hi (e). Since e is reported, must have Ci,hi (e) ≥ q
Contribution from e is Q(e) ≤ q − ε · Q. So other elements that map
to hi (e) must have contributed ≥ ε · Q.
Let Zi be the value of Ci,hi (e) that was added by other elements
hi chosen from 2-universal hash family then probability that another
element f is mapped to hi (e) is ≤ 1/`.
Thus E[Zi ] ≤ Q/`. By Markov:

Pr[Zi ≥ ε · Q] ≤ E[Z ]

ε · Q
≤ 1

ε`

Hash functions hi chosen independently ⇒

Pr

[
min

1≤i≤k
Zi ≥ ε · Q

]
≤
(

1

ε`

)k

111 / 116



Weighted heavy hitters - analysis

We have

Pr

[
min

1≤i≤k
Zi ≥ ε · Q

]
≤
(

1

ε`

)k

Setting ` = 2/ε and k = log(δ) we get that probability above ≤ δ.

Space requirement for counters O(1/ε · log(1/δ))

Space required to store all hash functions and evaluation time O(k · `)

112 / 116



Weighted heavy hitters - analysis

We have

Pr

[
min

1≤i≤k
Zi ≥ ε · Q

]
≤
(

1

ε`

)k

Setting ` = 2/ε and k = log(δ) we get that probability above ≤ δ.

Space requirement for counters O(1/ε · log(1/δ))

Space required to store all hash functions and evaluation time O(k · `)

113 / 116



Weighted heavy hitters - analysis

We have

Pr

[
min

1≤i≤k
Zi ≥ ε · Q

]
≤
(

1

ε`

)k

Setting ` = 2/ε and k = log(δ) we get that probability above ≤ δ.

Space requirement for counters O(1/ε · log(1/δ))

Space required to store all hash functions and evaluation time O(k · `)

114 / 116



Weighted heavy hitters - analysis

We have

Pr

[
min

1≤i≤k
Zi ≥ ε · Q

]
≤
(

1

ε`

)k

Setting ` = 2/ε and k = log(δ) we get that probability above ≤ δ.

Space requirement for counters O(1/ε · log(1/δ))

Space required to store all hash functions and evaluation time O(k · `)

115 / 116



Acknowledgement

Lecture based largely on Lap Chi’s notes and David Woodruff’s notes.

See Lap Chi’s notes at
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L05.pdf

See David’s notes at
https://www.cs.cmu.edu/~15451-s20/lectures/lec6.pdf

116 / 116

https://cs.uwaterloo.ca/~lapchi/cs466/notes/L05.pdf
https://www.cs.cmu.edu/~15451-s20/lectures/lec6.pdf

	Introduction
	Data Streaming
	Basic Examples

	Main Examples
	Heavy hitters
	Distinct Elements
	Weighted Heavy Hitters

	Acknowledgements

