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Overview

@ Introduction
e Hash Functions
e Why is hashing?
e How to hash?

@ Succinctness of Hash Functions

o Coping with randomness

o Universal Hashing

e Hashing using 2-universal families
Perfect Hashing

@ Acknowledgements
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Computational Model

Before we talk about hash functions, we need to state our model of
computation:

Definition (Word RAM model)
In the word RAM? model:

o all elements are integers that fit in a machine word of w bits

@ Basic operations (comparison, arithmetic, bitwise) on such words take
©(1) time

@ We can also access any position in the array in ©(1) time

?RAM stands for Random Access Model
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What is hashing?

We want to store n elements (keys) from the set U ={0,1,...,m— 1},

where m >> n, in a data structure that supports insertions, deletions,
search “as efficiently as possible.”

m< 2" " can Aew  each efewm of O
in emne woxd
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What is hashing?

We want to store n elements (keys) from the set U ={0,1,...,m— 1},

where m >> n, in a data structure that supports insertions, deletions,
search “as efficiently as possible.”

Naive approach: use an array A of m elements, initially A[/] =0 for all i,
and when a key is inserted, set A[i] = 1.
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What is hashing?

We want to store n elements (keys) from the set U ={0,1,...,m— 1},

where m >> n, in a data structure that supports insertions, deletions,
search “as efficiently as possible.”

Naive approach: use an array A of m elements, initially A[/] =0 for all i,
and when a key is inserted, set A[i] = 1.

o Insertion: O(1), Deletion: O(1), Search: O(1)
e Memory: O(mlog(m))

‘( Yoo %(m\( w
Yo O(m Aot

(this is very bad!)

6/86


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira



What is hashing?

We want to store n elements (keys) from the set U ={0,1,...,m— 1},

where m >> n, in a data structure that supports insertions, deletions,
search “as efficiently as possible.”

Naive approach: use an array A of m elements, initially A[/] =0 for all i,
and when a key is inserted, set A[i] = 1.

o Insertion: O(1), Deletion: O(1), Search: O(1)

e Memory: O(mlog(m)) (this is very bad!)
Want to also achieve optimal memory O(nlog(m)). For this we will use a
o e e

technique called hashing. g % on cloe oy @mib“
@ A hash function is a function h: U — [0, n— 1], where |U| = m >> n.
@ A hash table is a data structure that consists of:

o atable T with n cells [0, n — 1], each cell storing O(log(m)) bits
e a hash function h: U — [0,n — 1]

From now on, we will define memory as # of cells.
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Why is hashing useful?

o Designing efficient data structures (dictionaries) for searching
o Data streaming algorithms
@ Derandomization

When randomness needed only involves that pairs, or triples, or small
number of elements "look independent.”

o Cryptography
Construct functions that look random to adversaries, but are easy for
us to compute.

@ Complexity Theory

@ many more
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Challenges in Hashing

Setup:

e Universe U ={0,...,m— 1} of size m >> n where n is the size of
the range of our hash function h: U — [0, n — 1]

@ Store O(n) elements of U (keys) in hash table T (which has n cells)
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Challenges in Hashing

Setup:

e Universe U ={0,...,m— 1} of size m >> n where n is the size of
the range of our hash function h: U — [0,n — 1]

@ Store O(n) elements of U (keys) in hash table T (which has n cells)

Ideally, want hash function to map different keys into different locations.

Definition (Collision)

A collision happens for hash function h with inputs x,y € U if

x #y and h(x) = h(y).

Pigeonhole principle = impossible without knowing keys in advance.
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Challenges in Hashing

Setup:

e Universe U ={0,...,m— 1} of size m >> n where n is the size of
the range of our hash function h: U — [0,n — 1]

@ Store O(n) elements of U (keys) in hash table T (which has n cells)

Ideally, want hash function to map different keys into different locations.

Definition (Collision)

A collision happens for hash function h with inputs x,y € U if

x #y and h(x) = h(y).

Pigeonhole principle = impossible without knowing keys in advance.

Will settle for: # collisions small with high probability.
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Our solution: family of hash functions

Construct family of hash functions H such that the number of collisions is
small with high probability, when we pick hash function uniformly at
random from the family .
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Our solution: family of hash functions

Construct family of hash functions H such that the number of collisions is
small with high probability, when we pick hash function uniformly at
random from the family .

Simplest version to keep in mind:

Pr [h(x) = h(y)] < —>

v U
herH poly(n) X7y €
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Our solution: family of hash functions

Construct family of hash functions H such that the number of collisions is
small with high probability, when we pick hash function uniformly at
random from the family .

Simplest version to keep in mind:

Pr [h(x) = h(y)] < —>

herH poly(n) WFyel

Assumptions:
@ keys are independent from hash function we choose.

e we do not know keys in advance (even if we did, nontrivial problem!)

Still could have collisions. How do we handle them? \
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Random Hash Functions?

Natural to consider following approach:

From all functions h: U — [0, n — 1], just pick one uniformly at random.
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Random Hash Functions?

Natural to consider following approach:
From all functions h: U — [0, n — 1], just pick one uniformly at random.

This setting is same as our balls-and-bins setting!
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Random Hash Functions?

Natural to consider following approach:

From all functions h: U — [0, n — 1], just pick one uniformly at random.
This setting is same as our balls-and-bins setting!
So, if we have to store n keys:
@ Expected number of keys in a location: 1

e maximum number of collisions (max load) in one particular location:
O(log n/ log log n) keys
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Random Hash Functions?

Natural to consider following approach:

From all functions h: U — [0, n — 1], just pick one uniformly at random.
This setting is same as our balls-and-bins setting!
So, if we have to store n keys:
@ Expected number of keys in a location: 1

e maximum number of collisions (max load) in one particular location:
O(log n/ log log n) keys

Solving collisions: store all keys hashed into location i by a linked list.

Known as chain hashing.

v i
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Random Hash Functions?

Natural to consider following approach:

From all functions h: U — [0, n — 1], just pick one uniformly at random.
This setting is same as our balls-and-bins setting!
So, if we have to store n keys:
@ Expected number of keys in a location: 1

e maximum number of collisions (max load) in one particular location:
O(log n/ log log n) keys

Solving collisions: store all keys hashed into location i by a linked list.

Known as chain hashing.

Could also pick two random hash functions and use power of two choices.
Collision bound becomes O(log log n).
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Random Hash Functions?

Random hash functions look very good. However, we haven't discussed
the following:
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Random Hash Functions?

Random hash functions look very good. However, we haven't discussed
the following:

How much resource (time & space) does it take to compute random hash
functions?
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Random Hash Functions?

Random hash functions look very good. However, we haven't discussed
the following:

How much resource (time & space) does it take to compute random hash
functions?

e Storing entire function h: U — [0, n — 1] require O(mlog n) bits (way
too much space!)

@ Even if we only stored the elements we saw, would require O(n) time
to evaluate h(x) (need to decide if we had already computed it!)

()= 2 W)= { (i¥) = ‘1(

[ b i whl | ofseady dified t

Comm in N
i3 a (O(n) hims)

22/86


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira



Random Hash Functions?

Random hash functions look very good. However, we haven't discussed
the following:

How much resource (time & space) does it take to compute random hash
functions?

e Storing entire function h: U — [0, n — 1] require O(mlog n) bits (way
too much space!)

@ Even if we only stored the elements we saw, would require O(n) time
to evaluate h(x) (need to decide if we had already computed it!)

Thus, for random function all operations (insert, delete, search) take
O(nlog m) time (at best!)
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Random Hash Functions?

Random hash functions look very good. However, we haven't discussed
the following:

How much resource (time & space) does it take to compute random hash
functions?

e Storing entire function h: U — [0, n — 1] require O(mlog n) bits (way
too much space!)

@ Even if we only stored the elements we saw, would require O(n) time
to evaluate h(x) (need to decide if we had already computed it!)

Thus, for random function all operations (insert, delete, search) take
O(nlog m) time (at best!)

How do we cope with the computational problem that arose with
randomness?
24 /86



@ Introduction

@ Succinctness of Hash Functions
e Coping with randomness

@ Acknowledgements
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How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.
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How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

Ideally something that takes O(log m) time to compute (size of our input).

Y .
t ()J’td “'u

o(1)
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How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

Ideally something that takes O(log m) time to compute (size of our input).

How many hash functions can we have with the property above? l
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How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

Ideally something that takes O(log m) time to compute (size of our input).

How many hash functions can we have with the property above? l

poly(m) functions, as each function takes at most O(log m) bits to
describe. Thus these are succinct functions (easy to describe and
compute) which have random-like properties!

&0(%‘"): g\c-ﬂva"" ) mc . pee:)(vn)
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How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

Ideally something that takes O(log m) time to compute (size of our input).

How many hash functions can we have with the property above? l

poly(m) functions, as each function takes at most O(log m) bits to
describe. Thus these are succinct functions (easy to describe and
compute) which have random-like properties!

Part of derandomization/pseudorandomness: huge subfield in TCS!
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k-wise independence

Weaker notion of independence.
hn. ..
00 @-u NAomt
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k-wise independence

Weaker notion of independence.

Definition (Full Independence)

A set of random variables Xj, ..., X, are said to be (fully) independent if

they satisfy
n
m X,' = daj
i=1

VQ,‘ Pr
/
L) in JtOAgle( )(;

= ﬁ PI’[X,' = a,-]
i=1
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k-wise independence

Weaker notion of independence.

Definition (Full Independence)

A set of random variables Xj, ..., X, are said to be (fully) independent if
they satisfy

Pr mXi =aj| = H Pr[X,' = a,-]
i=1 i=1
Definition (k-wise Independence)
A set of random variables Xi, ..., X, are said to be k-wise independent if

for[any|set J C [n] such that |J| < k they satisfy
— ——, smell mbah o o omelom

vasiablee
m Xi = ai] = H Pr[X,- = a,']

ied ied

Pr

Y a; in neng Xi
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Pairwise independence

When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)

Given b uniformly distributed, independent random bits Y7, ..., Y}, we can
generate 22 — 1 pairwise independent, uniform random variables as follows:

Xs: =PV SCb\0

ieS
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Pairwise independence

When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)

Given b uniformly distributed, independent random bits Y7, ..., Y}, we can
generate 22 — 1 pairwise independent, uniform random variables as follows:

Xs: =PV SCb\0

ieS
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Pairwise independence

When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)

Given b uniformly distributed, independent random bits Y7, ..., Y}, we can
generate 22 — 1 pairwise independent, uniform random variables as follows:

Xs: =PV SC[b]\0

ieS

@ Why are they uniformly random?

5:{(,2155 0O w.p %
oY 7
Ko = L?/Yl xj\:" | wp
o~ I-a
)
ho 19
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Pairwise independence

When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)

Given b uniformly distributed, independent random bits Y7, ..., Y}, we can
generate 22 — 1 pairwise independent, uniform random variables as follows:

Xs: =PV SC[b]\0

ieS

@ Why are they uniformly random? ?f‘[xﬁ: a, ond Xs,= a:_\

@ Why are they pairwise independent? -

5,45 3 je 5\ - P (%52 ) - Pr(Xsn: @)
' bl N S
e i we.-%t‘ df/:on

K = YJ @ (1 w4
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Pairwise independence

When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)

Given b uniformly distributed, independent random bits Y7, ..., Y}, we can
generate 22 — 1 pairwise independent, uniform random variables as follows:

Xs: =PV SCb\0

ieS

@ Why are they uniformly random?
@ Why are they pairwise independent?
@ Are they also 3-wise independent?

Xio X Xinss

Fo) 0 =y O o1
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Pairwise independence I

Example (Pairwise independence in F),)

Let p be a prime number. Given 2 uniformly random variables

Y1, Y2 ~ [0,..., p— 1], generate p pairwise independent random variables
as follows:

Xi=Y1+i-Y> modp

Fo = 24z (inkg mp)

iE[O,p—l]
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Pairwise independence I

Example (Pairwise independence in F),)

Let p be a prime number. Given 2 uniformly random variables

Y1, Y2 ~ [0,..., p— 1], generate p pairwise independent random variables
as follows:

Xi=Y1+i-Y, modp i€0,p—1]

@ Why are they uniformly random?

X| =Y " maJ(J haw o (YY)

oefp  (x, %) 24 X (1R = ©
- L
(PJlLXn-“ ‘9:_3 =":§TL~ - P
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Pairwise independence I

Example (Pairwise independence in F),)

Let p be a prime number. Given 2 uniformly random variables

Y1, Y2 ~ [0,..., p— 1], generate p pairwise independent random variables
as follows:

Xi=Y1+i-Y, modp i€0,p—1]

@ Why are they uniformly random? ?ﬁ[)(; ;A ’(j-'%]: ‘l";,
@ Why are they pairwise independent? (:;““;‘3
om 2 ow (! ?
YitiYy =i made ’?‘t’“;{. ..,:’M a-i)
'n e
r i = 0 mip
YI A ! ‘ (:)-l.\yl < (‘a.)"o\‘)
My ow aslubm =
we have €xoct(y 40
- A
Pal¥izoi AXyeay] “-?
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Pairwise independence I

Example (Pairwise independence in F),)

Let p be a prime number. Given 2 uniformly random variables

Y1, Y2 ~ [0,..., p— 1], generate p pairwise independent random variables
as follows:

Xi=Y1+i-Y, modp i€0,p—1]

@ Why are they uniformly random?
@ Why are they pairwise independent?

@ Are they also 3-wise independent?

NO. Xp = 0 Pnob O a{ l,w”m.'ns
Xy = 0
ku < A (incounintent 2K 60
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Pairwise independence I

Example (Pairwise independence in F),)

Let p be a prime number. Given 2 uniformly random variables

Y1, Y2 ~ [0,..., p— 1], generate p pairwise independent random variables
as follows:

Xi=Y1+i-Y, modp i€0,p—1]

@ Why are they uniformly random?
@ Why are they pairwise independent?
@ Are they also 3-wise independent?
Can think of these random variables as picking a random line.

@ If we only know one point of the line, the second point is still
uniformly random. pairwise independence

@ Two points determine the line. not 3-wise independent
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@ Introduction

@ Succinctness of Hash Functions

o Universal Hashing

@ Acknowledgements
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Universal Hash Functions
We want hash functions. Why are we talking about random variables?
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Universal Hash Functions
We want hash functions. Why are we talking about random variables?

Definition (Universal Hash Functions)

Let U be a universe with |U| > n. A family of hash functions

H={h:U—[0,n—1]} is k-universal if, for any distinct elements
ui,...,ux € U, we have

hEPRrH [h(u) = h(uz) = ... = h(u)] < 1/n%71
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Universal Hash Functions

We want hash functions. Why are we talking about random variables?

Definition (Universal Hash Functions)

Let U be a universe with |U| > n. A family of hash functions

H={h:U—[0,n—1]} is k-universal if, for any distinct elements
ui,...,ux € U, we have

hEPRrH [h(u) = h(uz) = ... = h(u)] < 1/n%71

Definition (Strongly Universal Hash Functions)

H ={h:U— [0,n— 1]} is strongly k-universal if, for any distinct
elements uy, ..., ux € U and for any values y1, ..., yx € [0,n— 1], we have

=y,... =yl < 1/n*
thrH[h(ul) Yy, h(ug) = ye] < 1/n
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Relation to k-wise independent random variables

What do the previous definitions have to do with random variables?
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Relation to k-wise independent random variables

What do the previous definitions have to do with random variables?

Family H is strongly k-universal if the random variables
h(0), ..., h(JU| — 1) are k-wise independent.
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Relation to k-wise independent random variables

What do the previous definitions have to do with random variables?

Family H is strongly k-universal if the random variables
h(0), ..., h(JU| — 1) are k-wise independent.

Can use random variables to construct universal hash functions!

50 /86



Strongly 2-universal families of hash functions

Let p be a prime number, U = [0, p — 1].

Proposition

H={hyp(x):==a-x+b modp | abel0,p—1]}

is strongly 2-universal.

R,y (i) i ()
[ u
o.-i‘+ b 0-j4b

50"“ p‘sbf R Aid L’d"“
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Strongly 2-universal families of hash functions

Let p be a prime number, U = [0, p — 1].

Proposition

H={hyp(x):==a-x+b modp | abel0,p—1]}

is strongly 2-universal.

How do we make the domain U much larger than image of the maps? (as
usually in hashing size of universe much larger than size of table)
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Strongly 2-universal families of hash functions

Let p be a prime number, U = [0, p — 1].

Proposition

H={h,p(x):=a-x+b modp | abe[0,p—1]}

is strongly 2-universal.

How do we make the domain U much larger than image of the maps? (as
usually in hashing size of universe much larger than size of table)

Proposition
Let U=1[0,pk—1]1=1[0,p— 1] and a = (a0, ..., ak_1) € ﬂ'P"‘

H={hap(x):==(a,x)+b modp | acU,bel0,p—1]}

. . : X4+ Oy Xa-
is strongly 2-universal. G agretasns e
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Strongly 2-universal families of hash functions

Proposition
Let U=1[0,pk —1]=[0,p —1]¥ and a = (ao, . .., ak—_1)

H={hap(x):=(@,x)+b modp | acUbel0,p—1]}

is strongly 2-universal.
’P,w( pimi o Yo fimd prof (Au‘o/uh)
(Hn @=2)
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2-universal families of hash functions

Nimple hanh funcfiom
ff p Fp — Z/V»Z . f“
v

What if my hash table size is not a prime?

Proposition

H = {hap(x):=((a-x+b)mod p)mod n | a,be[0,p—1], \a # 0}(

is 2-universal (but not strongly 2-universal). 'SP

Practice problem: prove the proposition above. v
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k-universal families of hash functions

Can we construct k-universal families of hash functions like this?
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k-universal families of hash functions

Can we construct k-universal families of hash functions like this?

@ YES! Instead of constructing random lines (degree 1 polynomials),
can construct random univariate polynomials of degree k — 1

kn,b(") = ax b

hoyb,e ()6) ot birc B-win (nclrponsl-t
o9,

57/86


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira



k-universal families of hash functions

Can we construct k-universal families of hash functions like this?

@ YES! Instead of constructing random lines (degree 1 polynomials),
can construct random univariate polynomials of degree k — 1

@ Two points determine a line. Similarly, k points determine a
univariate polynomial of degree kK — 1
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k-universal families of hash functions

Can

we construct k-universal families of hash functions like this?

YES! Instead of constructing random lines (degree 1 polynomials),
can construct random univariate polynomials of degree k — 1

Two points determine a line. Similarly, k points determine a
univariate polynomial of degree kK — 1

Random degree k — 1 polynomials are k-wise independent!
Practice problem: prove this!
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Efficiency

How did pairwise independence improve over random functions?
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Efficiency

How did pairwise independence improve over random functions?

For random function all operations (insert, delete, search) take O(nlog m)
time (at best!) to compute. And it takes O(nlog m) storage!
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Efficiency

How did pairwise independence improve over random functions?

RENEILS

For random function all operations (insert, delete, search) take O(nlog m)
time (at best!) to compute. And it takes O(nlog m) storage!

RENETLS

| A\

@ In XOR example, our function takes O(b) storage space, and O(b)

time to compute.? e xiS gt b bk cualmk @Y
Bk €5 :
e In F, examples, our function takes O(1) storage space and O(1) time

to compute!® slae a,b de fisig hyy Compete

5 xib
?Reminder that we assume that b < w. X a
b\We assume that p < 2.
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@ Introduction

@ Succinctness of Hash Functions

e Hashing using 2-universal families

@ Acknowledgements
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Hashing with 2-universal families

@ Let U=[0,m — 1], and p be a prime number such that m < p <2m
(exists by Bertrand's postulate)
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Hashing with 2-universal families

@ Let U=[0,m — 1], and p be a prime number such that m < p <2m
(exists by Bertrand's postulate)

o H={hyp(x) :=((a-x+b)mod p)modn | a,be[0,p—1], a##0}
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Hashing with 2-universal families

@ Let U=[0,m — 1], and p be a prime number such that m < p <2m
(exists by Bertrand's postulate)

o H={hyp(x) :=((a-x+b)mod p)modn | a,be[0,p—1], a##0}
@ Only need 0 # a and b € [0, p — 1] to store a function from H.

djsom ) aecy spea
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Hashing with 2-universal families

@ Let U=[0,m — 1], and p be a prime number such that m < p <2m
(exists by Bertrand's postulate)

o H={hyp(x) :=((a-x+b)mod p)modn | a,be[0,p—1], a##0}
@ Only need 0 # a and b € [0, p — 1] to store a function from .

e Computation time of h,p is also O(log m)
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Hashing with 2-universal families

@ Let U=[0,m — 1], and p be a prime number such that m < p <2m
(exists by Bertrand's postulate)

o H={hyp(x) :=((a-x+b)mod p)modn | a,be[0,p—1], a##0}
@ Only need 0 # a and b € [0, p — 1] to store a function from .
e Computation time of h,p is also O(log m)

@ Can this hash function match chain hashing parameters?
(O(log log n) search time)

N9
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Hashing with 2-universal families

@ Let U=[0,m — 1], and p be a prime number such that m < p <2m
(exists by Bertrand's postulate)

o H={hyp(x) :=((a-x+b)mod p)modn | a,be[0,p—1], a##0}
@ Only need 0 # a and b € [0, p — 1] to store a function from H.

e Computation time of h,p is also O(log m)

@ Can this hash function match chain hashing parameters?

(O(log log n) search time)

Do not have same expected search time as chain hashing.
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Hashing with 2-universal families

@ Let U=[0,m — 1], and p be a prime number such that m < p <2m
(exists by Bertrand's postulate)

o H={hyp(x) :=((a-x+b)mod p)modn | a,be[0,p—1], a##0}
@ Only need 0 # a and b € [0, p — 1] to store a function from .
e Computation time of h,p is also O(log m)

@ Can this hash function match chain hashing parameters?

(O(log log n) search time) _
S aang tws samddom iorh fumhiong
Do not have same expected search time as chain hashing.

Lemma (Maximum number of collisions)

The expected number of collisionskwhhin hashing ¢ elements using a
P

2-universal hash family is
£ (?/2n
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Hashing with 2-universal families

Lemma (Maximum number of collisions)

The expected number of collisionsywhen hashing ¢ elements using a

2-universal hash family is Pai
a 22 /2n
X:: = 1 i{ kep iand { ane mogped to Nam docatim
,“_'1\‘ B ‘io o-Humuiine
7 x--} _ ?l[m)'mg
VN ‘IJ E[x1 - z E[ |a = Z.
X = 2_ x‘o (ci<yet leicjee — —
1gicjeL < -
-~
tokll # callinirn

§
1 .
f (f)_% xé{ 2-«m\lmm9

. d 1
“- ’2)7‘1“1")l&\'—9 Kt linim ?@.nq‘f.ﬁaa in

Le0d in ngpore a8t o F =l
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Hashing with 2-universal families

Lemma (Maximum number of collisions)

The expected number of collisions when hashing ¢ elements using a
2-universal hash family is

22 /2n
B
Thus, by Markov's inequality, we have ?;t[X 2 t] €

Lemma (Maximum load of entry of hash table)

With probability > 1/2 the rufiibet st ecHidicts when hashing { elements
using a 2-universal hash family is ~ ™Max

/202
<4/=.
n

When ¢ =~ n (as is usually assumed in hashing), we expect \/2n.

€am prowe Max Qeod i1 W wax # col)irma,
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@ Introduction

@ Succinctness of Hash Functions

o Perfect Hashing

@ Acknowledgements
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Perfect Hashing

@ Setup: we are given in advance a static set S C U of size n
@ How to build a hash table with O(1) search time and O(n) memory?
@ Can we still do it with a 2-universal family of hash functions?
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Perfect Hashing

@ Setup: we are given in advance a static set S C U of size n
@ How to build a hash table with O(1) search time and O(n) memory?
@ Can we still do it with a 2-universal family of hash functions?

If h € H is a random hash function from a 2-universal family of hash
functions, then for any set S C U of size £ < \/n, the probability of h
being perfect for S is at least 1/2.

Proof: There is no collision with probability > 1/2.
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Perfect Hashing

@ Setup: we are given in advance a static set S C U of size n
@ How to build a hash table with O(1) search time and O(n) memory?
@ Can we still do it with a 2-universal family of hash functions?

If h € H is a random hash function from a 2-universal family of hash
functions, then for any set S C U of size £ < \/n, the probability of h
being perfect for S is at least 1/2.

Proof: There is no collision with probability > 1/2.

New idea: build a two-level hash table!
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Perfect Hashing

@ Setup: we are given in advance a static set S C U of size n
@ How to build a hash table with O(1) search time and O(n) memory?
@ Can we still do it with a 2-universal family of hash functions?

If h € H is a random hash function from a 2-universal family of hash
functions, then for any set S C U of size { < +/n, the probability of h
being perfect for S is at least 1/2.

Proof: There is no collision with probability > 1/2.

New idea: build a two-level hash table!

The two-level approach gives perfect hashing scheme.
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Proof (sketch) of Theorem

@ Pick first layer hash function h uniformly at random from our
2-universal family 7. Test h on our set S.

v

s

O

.

|
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Proof (sketch) of Theorem
@ Pick first layer hash function h uniformly at random from our
2-universal family 7. Test h on our set S.

@ With probability > 1/2, max number of collisions in one bin is < \/n.
Thus, we will find good hash function for first layer with constant
many tries. (with high probability)

79/86



Proof (sketch) of Theorem

@ Pick first layer hash function h uniformly at random from our
2-universal family 7. Test h on our set S.

@ With probability > 1/2, max number of collisions in one bin is < \/n.
Thus, we will find good hash function for first layer with constant
many tries. (with high probability)

@ Assume max number of collisions (h,S) is < y/n. Let ¢; be the load
at it cell of hash table given by h

v ;1>memd&iéd?c
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Proof (sketch) of Theorem
@ Pick first layer hash function h uniformly at random from our
2-universal family 7. Test h on our set S.

@ With probability > 1/2, max number of collisions in one bin is < \/n.
Thus, we will find good hash function for first layer with constant
many tries. (with high probability)

@ Assume max number of collisions (h,S) is < y/n. Let ¢; be the load
at it cell of hash table given by h

@ Thus ¢; < \/ﬁ and 27:15,' = ‘5’ =n
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Proof (sketch) of Theorem

Pick first layer hash function h uniformly at random from our
2-universal family 7. Test h on our set S.

With probability > 1/2, max number of collisions in one bin is < /n.
Thus, we will find good hash function for first layer with constant
many tries. (with high probability)
Assume max number of collisions (h, S) is < y/n. Let /; be the load
at it cell of hash table given by h

Thus ¢; < +/nand Y7 ;¢;i=1|S|=n
By our lemma, if take h; : S — [612] from our 2-universal hash family,
h; is perfect with high probability

vgﬂl. S
Tt elomemn meppedt +9 1
(ls:l‘f"fﬁ)
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Proof (sketch) of Theorem

Pick first layer hash function h uniformly at random from our
2-universal family 7. Test h on our set S.

With probability > 1/2, max number of collisions in one bin is < /n.
Thus, we will find good hash function for first layer with constant
many tries. (with high probability)
Assume max number of collisions (h, S) is < y/n. Let /; be the load
at it cell of hash table given by h

Thus £; < +/nand .7 ;¢;i=|S|=n

By our lemma, if take h; : S — [¢2] from our 2-universal hash family,
h; is perfect with high probability

Memory needed: to store all hash functions, need O(n) memory

° O( ) memory for the top level hash function h
) memory for each of the second-layer hash functions (and we have
n of them) WM i

® B
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Proof (sketch) of Theorem

Pick first layer hash function h uniformly at random from our
2-universal family 7. Test h on our set S.
With probability > 1/2, max number of collisions in one bin is < /n.
Thus, we will find good hash function for first layer with constant
many tries. (with high probability)
Assume max number of collisions (h, S) is < y/n. Let /; be the load
at it cell of hash table given by h
Thus £; < +/nand .7 ;¢;i=|S|=n
By our lemma, if take h; : S — [¢2] from our 2-universal hash family,
h; is perfect with high probability
Memory needed: to store all hash functions, need O(n) memory

e O(1) memory for the top level hash function h

o O(1) memory for each of the second-layer hash functions (and we have

n of them)

Time to hash: O(1) time to evaluate each hash function, and we only
have two layers. So total time O(1)
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@ Lecture based largely on Lap Chi's notes and on [CLRS 2009, Chapter
11].

@ See Lap Chi’s notes at
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L05.pdf
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