
Lecture 5: Hashing

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

May 25, 2021

1 / 86

Overview

Introduction
Hash Functions
Why is hashing?
How to hash?

Succinctness of Hash Functions
Coping with randomness
Universal Hashing
Hashing using 2-universal families
Perfect Hashing

Acknowledgements

2 / 86

Computational Model

Before we talk about hash functions, we need to state our model of
computation:

Definition (Word RAM model)

In the word RAMa model:

all elements are integers that fit in a machine word of w bits

Basic operations (comparison, arithmetic, bitwise) on such words take
Θ(1) time

We can also access any position in the array in Θ(1) time

aRAM stands for Random Access Model

3 / 86

What is hashing?

We want to store n elements (keys) from the set U = {0, 1, . . . ,m − 1},
where m >> n, in a data structure that supports insertions, deletions,
search “as efficiently as possible.”

Naive approach: use an array A of m elements, initially A[i] = 0 for all i ,
and when a key is inserted, set A[i] = 1.

Insertion: O(1), Deletion: O(1), Search: O(1)

Memory: O(m log(m)) (this is very bad!)

Want to also achieve optimal memory O(n log(m)). For this we will use a
technique called hashing.

A hash function is a function h : U → [0, n−1], where |U| = m >> n.

A hash table is a data structure that consists of:

a table T with n cells [0, n − 1], each cell storing O(log(m)) bits
a hash function h : U → [0, n − 1]

From now on, we will define memory as # of cells.

4 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

What is hashing?

We want to store n elements (keys) from the set U = {0, 1, . . . ,m − 1},
where m >> n, in a data structure that supports insertions, deletions,
search “as efficiently as possible.”

Naive approach: use an array A of m elements, initially A[i] = 0 for all i ,
and when a key is inserted, set A[i] = 1.

Insertion: O(1), Deletion: O(1), Search: O(1)

Memory: O(m log(m)) (this is very bad!)

Want to also achieve optimal memory O(n log(m)). For this we will use a
technique called hashing.

A hash function is a function h : U → [0, n−1], where |U| = m >> n.

A hash table is a data structure that consists of:

a table T with n cells [0, n − 1], each cell storing O(log(m)) bits
a hash function h : U → [0, n − 1]

From now on, we will define memory as # of cells.

5 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

What is hashing?

We want to store n elements (keys) from the set U = {0, 1, . . . ,m − 1},
where m >> n, in a data structure that supports insertions, deletions,
search “as efficiently as possible.”

Naive approach: use an array A of m elements, initially A[i] = 0 for all i ,
and when a key is inserted, set A[i] = 1.

Insertion: O(1), Deletion: O(1), Search: O(1)

Memory: O(m log(m)) (this is very bad!)

Want to also achieve optimal memory O(n log(m)). For this we will use a
technique called hashing.

A hash function is a function h : U → [0, n−1], where |U| = m >> n.

A hash table is a data structure that consists of:

a table T with n cells [0, n − 1], each cell storing O(log(m)) bits
a hash function h : U → [0, n − 1]

From now on, we will define memory as # of cells.

6 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

What is hashing?

We want to store n elements (keys) from the set U = {0, 1, . . . ,m − 1},
where m >> n, in a data structure that supports insertions, deletions,
search “as efficiently as possible.”

Naive approach: use an array A of m elements, initially A[i] = 0 for all i ,
and when a key is inserted, set A[i] = 1.

Insertion: O(1), Deletion: O(1), Search: O(1)

Memory: O(m log(m)) (this is very bad!)

Want to also achieve optimal memory O(n log(m)). For this we will use a
technique called hashing.

A hash function is a function h : U → [0, n−1], where |U| = m >> n.

A hash table is a data structure that consists of:

a table T with n cells [0, n − 1], each cell storing O(log(m)) bits
a hash function h : U → [0, n − 1]

From now on, we will define memory as # of cells.

7 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Why is hashing useful?

Designing efficient data structures (dictionaries) for searching

Data streaming algorithms

Derandomization

When randomness needed only involves that pairs, or triples, or small
number of elements “look independent.”

Cryptography

Construct functions that look random to adversaries, but are easy for
us to compute.

Complexity Theory

many more

8 / 86

Challenges in Hashing

Setup:

Universe U = {0, . . . ,m − 1} of size m >> n where n is the size of
the range of our hash function h : U → [0, n − 1]

Store O(n) elements of U (keys) in hash table T (which has n cells)

Ideally, want hash function to map different keys into different locations.

Definition (Collision)

A collision happens for hash function h with inputs x , y ∈ U if

x 6= y and h(x) = h(y).

Pigeonhole principle ⇒ impossible without knowing keys in advance.

Will settle for: # collisions small with high probability.

9 / 86

Challenges in Hashing

Setup:

Universe U = {0, . . . ,m − 1} of size m >> n where n is the size of
the range of our hash function h : U → [0, n − 1]

Store O(n) elements of U (keys) in hash table T (which has n cells)

Ideally, want hash function to map different keys into different locations.

Definition (Collision)

A collision happens for hash function h with inputs x , y ∈ U if

x 6= y and h(x) = h(y).

Pigeonhole principle ⇒ impossible without knowing keys in advance.

Will settle for: # collisions small with high probability.

10 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Challenges in Hashing

Setup:

Universe U = {0, . . . ,m − 1} of size m >> n where n is the size of
the range of our hash function h : U → [0, n − 1]

Store O(n) elements of U (keys) in hash table T (which has n cells)

Ideally, want hash function to map different keys into different locations.

Definition (Collision)

A collision happens for hash function h with inputs x , y ∈ U if

x 6= y and h(x) = h(y).

Pigeonhole principle ⇒ impossible without knowing keys in advance.

Will settle for: # collisions small with high probability.

11 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Our solution: family of hash functions

Construct family of hash functions H such that the number of collisions is
small with high probability, when we pick hash function uniformly at

random from the family H.

Simplest version to keep in mind:

Pr
h∈RH

[h(x) = h(y)] ≤ 1

poly(n)
∀x 6= y ∈ U

Assumptions:

keys are independent from hash function we choose.

we do not know keys in advance (even if we did, nontrivial problem!)

Question

Still could have collisions. How do we handle them?

12 / 86

Our solution: family of hash functions

Construct family of hash functions H such that the number of collisions is
small with high probability, when we pick hash function uniformly at

random from the family H.

Simplest version to keep in mind:

Pr
h∈RH

[h(x) = h(y)] ≤ 1

poly(n)
∀x 6= y ∈ U

Assumptions:

keys are independent from hash function we choose.

we do not know keys in advance (even if we did, nontrivial problem!)

Question

Still could have collisions. How do we handle them?

13 / 86

Our solution: family of hash functions

Construct family of hash functions H such that the number of collisions is
small with high probability, when we pick hash function uniformly at

random from the family H.

Simplest version to keep in mind:

Pr
h∈RH

[h(x) = h(y)] ≤ 1

poly(n)
∀x 6= y ∈ U

Assumptions:

keys are independent from hash function we choose.

we do not know keys in advance (even if we did, nontrivial problem!)

Question

Still could have collisions. How do we handle them?

14 / 86

Random Hash Functions?

Natural to consider following approach:

From all functions h : U → [0, n − 1], just pick one uniformly at random.

This setting is same as our balls-and-bins setting!
So, if we have to store n keys:

Expected number of keys in a location: 1

maximum number of collisions (max load) in one particular location:
O(log n/ log log n) keys

Solving collisions: store all keys hashed into location i by a linked list.

Known as chain hashing.

Could also pick two random hash functions and use power of two choices.
Collision bound becomes O(log log n).

15 / 86

Random Hash Functions?

Natural to consider following approach:

From all functions h : U → [0, n − 1], just pick one uniformly at random.

This setting is same as our balls-and-bins setting!

So, if we have to store n keys:

Expected number of keys in a location: 1

maximum number of collisions (max load) in one particular location:
O(log n/ log log n) keys

Solving collisions: store all keys hashed into location i by a linked list.

Known as chain hashing.

Could also pick two random hash functions and use power of two choices.
Collision bound becomes O(log log n).

16 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Random Hash Functions?

Natural to consider following approach:

From all functions h : U → [0, n − 1], just pick one uniformly at random.

This setting is same as our balls-and-bins setting!
So, if we have to store n keys:

Expected number of keys in a location: 1

maximum number of collisions (max load) in one particular location:
O(log n/ log log n) keys

Solving collisions: store all keys hashed into location i by a linked list.

Known as chain hashing.

Could also pick two random hash functions and use power of two choices.
Collision bound becomes O(log log n).

17 / 86

Random Hash Functions?

Natural to consider following approach:

From all functions h : U → [0, n − 1], just pick one uniformly at random.

This setting is same as our balls-and-bins setting!
So, if we have to store n keys:

Expected number of keys in a location: 1

maximum number of collisions (max load) in one particular location:
O(log n/ log log n) keys

Solving collisions: store all keys hashed into location i by a linked list.

Known as chain hashing.

Could also pick two random hash functions and use power of two choices.
Collision bound becomes O(log log n).

18 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Random Hash Functions?

Natural to consider following approach:

From all functions h : U → [0, n − 1], just pick one uniformly at random.

This setting is same as our balls-and-bins setting!
So, if we have to store n keys:

Expected number of keys in a location: 1

maximum number of collisions (max load) in one particular location:
O(log n/ log log n) keys

Solving collisions: store all keys hashed into location i by a linked list.

Known as chain hashing.

Could also pick two random hash functions and use power of two choices.
Collision bound becomes O(log log n).

19 / 86

Random Hash Functions?
Random hash functions look very good. However, we haven’t discussed
the following:

Question

How much resource (time & space) does it take to compute random hash
functions?

Storing entire function h : U → [0, n− 1] require O(m log n) bits (way
too much space!)

Even if we only stored the elements we saw, would require O(n) time
to evaluate h(x) (need to decide if we had already computed it!)

Remark

Thus, for random function all operations (insert, delete, search) take
O(n logm) time (at best!)

How do we cope with the computational problem that arose with
randomness?

20 / 86

Random Hash Functions?
Random hash functions look very good. However, we haven’t discussed
the following:

Question

How much resource (time & space) does it take to compute random hash
functions?

Storing entire function h : U → [0, n− 1] require O(m log n) bits (way
too much space!)

Even if we only stored the elements we saw, would require O(n) time
to evaluate h(x) (need to decide if we had already computed it!)

Remark

Thus, for random function all operations (insert, delete, search) take
O(n logm) time (at best!)

How do we cope with the computational problem that arose with
randomness?

21 / 86

Random Hash Functions?
Random hash functions look very good. However, we haven’t discussed
the following:

Question

How much resource (time & space) does it take to compute random hash
functions?

Storing entire function h : U → [0, n− 1] require O(m log n) bits (way
too much space!)

Even if we only stored the elements we saw, would require O(n) time
to evaluate h(x) (need to decide if we had already computed it!)

Remark

Thus, for random function all operations (insert, delete, search) take
O(n logm) time (at best!)

How do we cope with the computational problem that arose with
randomness?

22 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Random Hash Functions?
Random hash functions look very good. However, we haven’t discussed
the following:

Question

How much resource (time & space) does it take to compute random hash
functions?

Storing entire function h : U → [0, n− 1] require O(m log n) bits (way
too much space!)

Even if we only stored the elements we saw, would require O(n) time
to evaluate h(x) (need to decide if we had already computed it!)

Remark

Thus, for random function all operations (insert, delete, search) take
O(n logm) time (at best!)

How do we cope with the computational problem that arose with
randomness?

23 / 86

Random Hash Functions?
Random hash functions look very good. However, we haven’t discussed
the following:

Question

How much resource (time & space) does it take to compute random hash
functions?

Storing entire function h : U → [0, n− 1] require O(m log n) bits (way
too much space!)

Even if we only stored the elements we saw, would require O(n) time
to evaluate h(x) (need to decide if we had already computed it!)

Remark

Thus, for random function all operations (insert, delete, search) take
O(n logm) time (at best!)

How do we cope with the computational problem that arose with
randomness?

24 / 86

Introduction
Hash Functions
Why is hashing?
How to hash?

Succinctness of Hash Functions
Coping with randomness
Universal Hashing
Hashing using 2-universal families
Perfect Hashing

Acknowledgements

25 / 86

How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

Ideally something that takes O(logm) time to compute (size of our input).

Question

How many hash functions can we have with the property above?

poly(m) functions, as each function takes at most O(logm) bits to
describe. Thus these are succinct functions (easy to describe and

compute) which have random-like properties!

Part of derandomization/pseudorandomness: huge subfield in TCS!

26 / 86

How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

Ideally something that takes O(logm) time to compute (size of our input).

Question

How many hash functions can we have with the property above?

poly(m) functions, as each function takes at most O(logm) bits to
describe. Thus these are succinct functions (easy to describe and

compute) which have random-like properties!

Part of derandomization/pseudorandomness: huge subfield in TCS!

27 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

Ideally something that takes O(logm) time to compute (size of our input).

Question

How many hash functions can we have with the property above?

poly(m) functions, as each function takes at most O(logm) bits to
describe. Thus these are succinct functions (easy to describe and

compute) which have random-like properties!

Part of derandomization/pseudorandomness: huge subfield in TCS!

28 / 86

How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

Ideally something that takes O(logm) time to compute (size of our input).

Question

How many hash functions can we have with the property above?

poly(m) functions, as each function takes at most O(logm) bits to
describe. Thus these are succinct functions (easy to describe and

compute) which have random-like properties!

Part of derandomization/pseudorandomness: huge subfield in TCS!

29 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

Ideally something that takes O(logm) time to compute (size of our input).

Question

How many hash functions can we have with the property above?

poly(m) functions, as each function takes at most O(logm) bits to
describe. Thus these are succinct functions (easy to describe and

compute) which have random-like properties!

Part of derandomization/pseudorandomness: huge subfield in TCS!

30 / 86

k-wise independence

Weaker notion of independence.

Definition (Full Independence)

A set of random variables X1, . . . ,Xn are said to be (fully) independent if
they satisfy

Pr

[
n⋂

i=1

Xi = ai

]
=

n∏
i=1

Pr[Xi = ai]

Definition (k-wise Independence)

A set of random variables X1, . . . ,Xn are said to be k-wise independent if
for any set J ⊂ [n] such that |J| ≤ k they satisfy

Pr

[⋂
i∈J

Xi = ai

]
=

∏
i∈J

Pr[Xi = ai]

31 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

k-wise independence

Weaker notion of independence.

Definition (Full Independence)

A set of random variables X1, . . . ,Xn are said to be (fully) independent if
they satisfy

Pr

[
n⋂

i=1

Xi = ai

]
=

n∏
i=1

Pr[Xi = ai]

Definition (k-wise Independence)

A set of random variables X1, . . . ,Xn are said to be k-wise independent if
for any set J ⊂ [n] such that |J| ≤ k they satisfy

Pr

[⋂
i∈J

Xi = ai

]
=

∏
i∈J

Pr[Xi = ai]

32 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

k-wise independence

Weaker notion of independence.

Definition (Full Independence)

A set of random variables X1, . . . ,Xn are said to be (fully) independent if
they satisfy

Pr

[
n⋂

i=1

Xi = ai

]
=

n∏
i=1

Pr[Xi = ai]

Definition (k-wise Independence)

A set of random variables X1, . . . ,Xn are said to be k-wise independent if
for any set J ⊂ [n] such that |J| ≤ k they satisfy

Pr

[⋂
i∈J

Xi = ai

]
=

∏
i∈J

Pr[Xi = ai]

33 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Pairwise independence
When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)

Given b uniformly distributed, independent random bits Y1, . . . ,Yb, we can
generate 2b − 1 pairwise independent, uniform random variables as follows:

XS :=
⊕
i∈S

Yi S ⊆ [b] \ ∅

Why are they uniformly random?

Why are they pairwise independent?

Are they also 3-wise independent?

34 / 86

Pairwise independence
When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)

Given b uniformly distributed, independent random bits Y1, . . . ,Yb, we can
generate 2b − 1 pairwise independent, uniform random variables as follows:

XS :=
⊕
i∈S

Yi S ⊆ [b] \ ∅

Why are they uniformly random?

Why are they pairwise independent?

Are they also 3-wise independent?

35 / 86

Pairwise independence
When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)

Given b uniformly distributed, independent random bits Y1, . . . ,Yb, we can
generate 2b − 1 pairwise independent, uniform random variables as follows:

XS :=
⊕
i∈S

Yi S ⊆ [b] \ ∅

Why are they uniformly random?

Why are they pairwise independent?

Are they also 3-wise independent?

36 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Pairwise independence
When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)

Given b uniformly distributed, independent random bits Y1, . . . ,Yb, we can
generate 2b − 1 pairwise independent, uniform random variables as follows:

XS :=
⊕
i∈S

Yi S ⊆ [b] \ ∅

Why are they uniformly random?

Why are they pairwise independent?

Are they also 3-wise independent?

37 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Pairwise independence
When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)

Given b uniformly distributed, independent random bits Y1, . . . ,Yb, we can
generate 2b − 1 pairwise independent, uniform random variables as follows:

XS :=
⊕
i∈S

Yi S ⊆ [b] \ ∅

Why are they uniformly random?

Why are they pairwise independent?

Are they also 3-wise independent?

38 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Pairwise independence II
Example (Pairwise independence in Fp)

Let p be a prime number. Given 2 uniformly random variables
Y1,Y2 ∼ [0, . . . , p − 1], generate p pairwise independent random variables
as follows:

Xi := Y1 + i · Y2 mod p i ∈ [0, p − 1]

Why are they uniformly random?

Why are they pairwise independent?

Are they also 3-wise independent?

Can think of these random variables as picking a random line.

If we only know one point of the line, the second point is still
uniformly random. pairwise independence

Two points determine the line. not 3-wise independent

39 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Pairwise independence II
Example (Pairwise independence in Fp)

Let p be a prime number. Given 2 uniformly random variables
Y1,Y2 ∼ [0, . . . , p − 1], generate p pairwise independent random variables
as follows:

Xi := Y1 + i · Y2 mod p i ∈ [0, p − 1]

Why are they uniformly random?

Why are they pairwise independent?

Are they also 3-wise independent?

Can think of these random variables as picking a random line.

If we only know one point of the line, the second point is still
uniformly random. pairwise independence

Two points determine the line. not 3-wise independent

40 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Pairwise independence II
Example (Pairwise independence in Fp)

Let p be a prime number. Given 2 uniformly random variables
Y1,Y2 ∼ [0, . . . , p − 1], generate p pairwise independent random variables
as follows:

Xi := Y1 + i · Y2 mod p i ∈ [0, p − 1]

Why are they uniformly random?

Why are they pairwise independent?

Are they also 3-wise independent?

Can think of these random variables as picking a random line.

If we only know one point of the line, the second point is still
uniformly random. pairwise independence

Two points determine the line. not 3-wise independent

41 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Pairwise independence II
Example (Pairwise independence in Fp)

Let p be a prime number. Given 2 uniformly random variables
Y1,Y2 ∼ [0, . . . , p − 1], generate p pairwise independent random variables
as follows:

Xi := Y1 + i · Y2 mod p i ∈ [0, p − 1]

Why are they uniformly random?

Why are they pairwise independent?

Are they also 3-wise independent?

Can think of these random variables as picking a random line.

If we only know one point of the line, the second point is still
uniformly random. pairwise independence

Two points determine the line. not 3-wise independent

42 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Pairwise independence II
Example (Pairwise independence in Fp)

Let p be a prime number. Given 2 uniformly random variables
Y1,Y2 ∼ [0, . . . , p − 1], generate p pairwise independent random variables
as follows:

Xi := Y1 + i · Y2 mod p i ∈ [0, p − 1]

Why are they uniformly random?

Why are they pairwise independent?

Are they also 3-wise independent?

Can think of these random variables as picking a random line.

If we only know one point of the line, the second point is still
uniformly random. pairwise independence

Two points determine the line. not 3-wise independent

43 / 86

Introduction
Hash Functions
Why is hashing?
How to hash?

Succinctness of Hash Functions
Coping with randomness
Universal Hashing
Hashing using 2-universal families
Perfect Hashing

Acknowledgements

44 / 86

Universal Hash Functions
We want hash functions. Why are we talking about random variables?

Definition (Universal Hash Functions)

Let U be a universe with |U| ≥ n. A family of hash functions
H = {h : U → [0, n − 1]} is k-universal if, for any distinct elements
u1, . . . , uk ∈ U, we have

Pr
h∈RH

[h(u1) = h(u2) = . . . = h(uk)] ≤ 1/nk−1

Definition (Strongly Universal Hash Functions)

H = {h : U → [0, n − 1]} is strongly k-universal if, for any distinct
elements u1, . . . , uk ∈ U and for any values y1, . . . , yk ∈ [0, n−1], we have

Pr
h∈RH

[h(u1) = y1, . . . , h(uk) = yk] ≤ 1/nk

45 / 86

Universal Hash Functions
We want hash functions. Why are we talking about random variables?

Definition (Universal Hash Functions)

Let U be a universe with |U| ≥ n. A family of hash functions
H = {h : U → [0, n − 1]} is k-universal if, for any distinct elements
u1, . . . , uk ∈ U, we have

Pr
h∈RH

[h(u1) = h(u2) = . . . = h(uk)] ≤ 1/nk−1

Definition (Strongly Universal Hash Functions)

H = {h : U → [0, n − 1]} is strongly k-universal if, for any distinct
elements u1, . . . , uk ∈ U and for any values y1, . . . , yk ∈ [0, n−1], we have

Pr
h∈RH

[h(u1) = y1, . . . , h(uk) = yk] ≤ 1/nk

46 / 86

Universal Hash Functions
We want hash functions. Why are we talking about random variables?

Definition (Universal Hash Functions)

Let U be a universe with |U| ≥ n. A family of hash functions
H = {h : U → [0, n − 1]} is k-universal if, for any distinct elements
u1, . . . , uk ∈ U, we have

Pr
h∈RH

[h(u1) = h(u2) = . . . = h(uk)] ≤ 1/nk−1

Definition (Strongly Universal Hash Functions)

H = {h : U → [0, n − 1]} is strongly k-universal if, for any distinct
elements u1, . . . , uk ∈ U and for any values y1, . . . , yk ∈ [0, n−1], we have

Pr
h∈RH

[h(u1) = y1, . . . , h(uk) = yk] ≤ 1/nk

47 / 86

Relation to k-wise independent random variables

What do the previous definitions have to do with random variables?

Family H is strongly k-universal if the random variables
h(0), . . . , h(|U| − 1) are k-wise independent.

Can use random variables to construct universal hash functions!

48 / 86

Relation to k-wise independent random variables

What do the previous definitions have to do with random variables?

Family H is strongly k-universal if the random variables
h(0), . . . , h(|U| − 1) are k-wise independent.

Can use random variables to construct universal hash functions!

49 / 86

Relation to k-wise independent random variables

What do the previous definitions have to do with random variables?

Family H is strongly k-universal if the random variables
h(0), . . . , h(|U| − 1) are k-wise independent.

Can use random variables to construct universal hash functions!

50 / 86

Strongly 2-universal families of hash functions

Let p be a prime number, U = [0, p − 1].

Proposition

H = {ha,b(x) := a · x + b mod p | a, b ∈ [0, p − 1]}

is strongly 2-universal.

How do we make the domain U much larger than image of the maps? (as
usually in hashing size of universe much larger than size of table)

Proposition

Let U = [0, pk − 1] ≡ [0, p − 1]k and a = (a0, . . . , ak−1)

H = {ha,b(x) := 〈a, x〉+ b mod p | a ∈ U, b ∈ [0, p − 1]}

is strongly 2-universal.

51 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Strongly 2-universal families of hash functions

Let p be a prime number, U = [0, p − 1].

Proposition

H = {ha,b(x) := a · x + b mod p | a, b ∈ [0, p − 1]}

is strongly 2-universal.

How do we make the domain U much larger than image of the maps? (as
usually in hashing size of universe much larger than size of table)

Proposition

Let U = [0, pk − 1] ≡ [0, p − 1]k and a = (a0, . . . , ak−1)

H = {ha,b(x) := 〈a, x〉+ b mod p | a ∈ U, b ∈ [0, p − 1]}

is strongly 2-universal.

52 / 86

Strongly 2-universal families of hash functions

Let p be a prime number, U = [0, p − 1].

Proposition

H = {ha,b(x) := a · x + b mod p | a, b ∈ [0, p − 1]}

is strongly 2-universal.

How do we make the domain U much larger than image of the maps? (as
usually in hashing size of universe much larger than size of table)

Proposition

Let U = [0, pk − 1] ≡ [0, p − 1]k and a = (a0, . . . , ak−1)

H = {ha,b(x) := 〈a, x〉+ b mod p | a ∈ U, b ∈ [0, p − 1]}

is strongly 2-universal.

53 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Strongly 2-universal families of hash functions
Proposition

Let U = [0, pk − 1] ≡ [0, p − 1]k and a = (a0, . . . , ak−1)

H = {ha,b(x) := 〈a, x〉+ b mod p | a ∈ U, b ∈ [0, p − 1]}

is strongly 2-universal.

54 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

2-universal families of hash functions

What if my hash table size is not a prime?

Proposition

H = {ha,b(x) := ((a · x + b) mod p) mod n | a, b ∈ [0, p − 1], a 6= 0}

is 2-universal (but not strongly 2-universal).

Practice problem: prove the proposition above.

55 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

k-universal families of hash functions

Can we construct k-universal families of hash functions like this?

YES! Instead of constructing random lines (degree 1 polynomials),
can construct random univariate polynomials of degree k − 1

Two points determine a line. Similarly, k points determine a
univariate polynomial of degree k − 1

Random degree k − 1 polynomials are k-wise independent!

Practice problem: prove this!

56 / 86

k-universal families of hash functions

Can we construct k-universal families of hash functions like this?

YES! Instead of constructing random lines (degree 1 polynomials),
can construct random univariate polynomials of degree k − 1

Two points determine a line. Similarly, k points determine a
univariate polynomial of degree k − 1

Random degree k − 1 polynomials are k-wise independent!

Practice problem: prove this!

57 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

k-universal families of hash functions

Can we construct k-universal families of hash functions like this?

YES! Instead of constructing random lines (degree 1 polynomials),
can construct random univariate polynomials of degree k − 1

Two points determine a line. Similarly, k points determine a
univariate polynomial of degree k − 1

Random degree k − 1 polynomials are k-wise independent!

Practice problem: prove this!

58 / 86

k-universal families of hash functions

Can we construct k-universal families of hash functions like this?

YES! Instead of constructing random lines (degree 1 polynomials),
can construct random univariate polynomials of degree k − 1

Two points determine a line. Similarly, k points determine a
univariate polynomial of degree k − 1

Random degree k − 1 polynomials are k-wise independent!

Practice problem: prove this!

59 / 86

Efficiency

How did pairwise independence improve over random functions?

Remark

For random function all operations (insert, delete, search) take O(n logm)
time (at best!) to compute. And it takes O(n logm) storage!

Remark

In XOR example, our function takes O(b) storage space, and O(b)
time to compute.a

In Fp examples, our function takes O(1) storage space and O(1) time
to compute!b

aReminder that we assume that b < w .
bWe assume that p < 2w .

60 / 86

Efficiency

How did pairwise independence improve over random functions?

Remark

For random function all operations (insert, delete, search) take O(n logm)
time (at best!) to compute. And it takes O(n logm) storage!

Remark

In XOR example, our function takes O(b) storage space, and O(b)
time to compute.a

In Fp examples, our function takes O(1) storage space and O(1) time
to compute!b

aReminder that we assume that b < w .
bWe assume that p < 2w .

61 / 86

Efficiency

How did pairwise independence improve over random functions?

Remark

For random function all operations (insert, delete, search) take O(n logm)
time (at best!) to compute. And it takes O(n logm) storage!

Remark

In XOR example, our function takes O(b) storage space, and O(b)
time to compute.a

In Fp examples, our function takes O(1) storage space and O(1) time
to compute!b

aReminder that we assume that b < w .
bWe assume that p < 2w .

62 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Introduction
Hash Functions
Why is hashing?
How to hash?

Succinctness of Hash Functions
Coping with randomness
Universal Hashing
Hashing using 2-universal families
Perfect Hashing

Acknowledgements

63 / 86

Hashing with 2-universal families

Let U = [0,m − 1], and p be a prime number such that m ≤ p < 2m
(exists by Bertrand’s postulate)

H = {ha,b(x) := ((a · x +b) mod p) mod n | a, b ∈ [0, p− 1], a 6= 0}
Only need 0 6= a and b ∈ [0, p − 1] to store a function from H.

Computation time of ha,b is also O(logm)

Can this hash function match chain hashing parameters?
(O(log log n) search time)

Do not have same expected search time as chain hashing.

Lemma (Maximum number of collisions)

The expected number of collisions when hashing ` elements using a
2-universal hash family is

`2/2n

64 / 86

Hashing with 2-universal families

Let U = [0,m − 1], and p be a prime number such that m ≤ p < 2m
(exists by Bertrand’s postulate)

H = {ha,b(x) := ((a · x +b) mod p) mod n | a, b ∈ [0, p− 1], a 6= 0}

Only need 0 6= a and b ∈ [0, p − 1] to store a function from H.

Computation time of ha,b is also O(logm)

Can this hash function match chain hashing parameters?
(O(log log n) search time)

Do not have same expected search time as chain hashing.

Lemma (Maximum number of collisions)

The expected number of collisions when hashing ` elements using a
2-universal hash family is

`2/2n

65 / 86

Hashing with 2-universal families

Let U = [0,m − 1], and p be a prime number such that m ≤ p < 2m
(exists by Bertrand’s postulate)

H = {ha,b(x) := ((a · x +b) mod p) mod n | a, b ∈ [0, p− 1], a 6= 0}
Only need 0 6= a and b ∈ [0, p − 1] to store a function from H.

Computation time of ha,b is also O(logm)

Can this hash function match chain hashing parameters?
(O(log log n) search time)

Do not have same expected search time as chain hashing.

Lemma (Maximum number of collisions)

The expected number of collisions when hashing ` elements using a
2-universal hash family is

`2/2n

66 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Hashing with 2-universal families

Let U = [0,m − 1], and p be a prime number such that m ≤ p < 2m
(exists by Bertrand’s postulate)

H = {ha,b(x) := ((a · x +b) mod p) mod n | a, b ∈ [0, p− 1], a 6= 0}
Only need 0 6= a and b ∈ [0, p − 1] to store a function from H.

Computation time of ha,b is also O(logm)

Can this hash function match chain hashing parameters?
(O(log log n) search time)

Do not have same expected search time as chain hashing.

Lemma (Maximum number of collisions)

The expected number of collisions when hashing ` elements using a
2-universal hash family is

`2/2n

67 / 86

Hashing with 2-universal families

Let U = [0,m − 1], and p be a prime number such that m ≤ p < 2m
(exists by Bertrand’s postulate)

H = {ha,b(x) := ((a · x +b) mod p) mod n | a, b ∈ [0, p− 1], a 6= 0}
Only need 0 6= a and b ∈ [0, p − 1] to store a function from H.

Computation time of ha,b is also O(logm)

Can this hash function match chain hashing parameters?
(O(log log n) search time)

Do not have same expected search time as chain hashing.

Lemma (Maximum number of collisions)

The expected number of collisions when hashing ` elements using a
2-universal hash family is

`2/2n

68 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Hashing with 2-universal families

Let U = [0,m − 1], and p be a prime number such that m ≤ p < 2m
(exists by Bertrand’s postulate)

H = {ha,b(x) := ((a · x +b) mod p) mod n | a, b ∈ [0, p− 1], a 6= 0}
Only need 0 6= a and b ∈ [0, p − 1] to store a function from H.

Computation time of ha,b is also O(logm)

Can this hash function match chain hashing parameters?
(O(log log n) search time)

Do not have same expected search time as chain hashing.

Lemma (Maximum number of collisions)

The expected number of collisions when hashing ` elements using a
2-universal hash family is

`2/2n

69 / 86

Hashing with 2-universal families

Let U = [0,m − 1], and p be a prime number such that m ≤ p < 2m
(exists by Bertrand’s postulate)

H = {ha,b(x) := ((a · x +b) mod p) mod n | a, b ∈ [0, p− 1], a 6= 0}
Only need 0 6= a and b ∈ [0, p − 1] to store a function from H.

Computation time of ha,b is also O(logm)

Can this hash function match chain hashing parameters?
(O(log log n) search time)

Do not have same expected search time as chain hashing.

Lemma (Maximum number of collisions)

The expected number of collisions when hashing ` elements using a
2-universal hash family is

`2/2n

70 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Hashing with 2-universal families

Lemma (Maximum number of collisions)

The expected number of collisions when hashing ` elements using a
2-universal hash family is

`2/2n

Thus, by Markov’s inequality, we have

Lemma (Maximum load of entry of hash table)

With probability ≥ 1/2 the number of collisions when hashing ` elements
using a 2-universal hash family is

≤
√

2`2

n
.

When ` ≈ n (as is usually assumed in hashing), we expect
√

2n.

71 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Hashing with 2-universal families

Lemma (Maximum number of collisions)

The expected number of collisions when hashing ` elements using a
2-universal hash family is

`2/2n

Thus, by Markov’s inequality, we have

Lemma (Maximum load of entry of hash table)

With probability ≥ 1/2 the number of collisions when hashing ` elements
using a 2-universal hash family is

≤
√

2`2

n
.

When ` ≈ n (as is usually assumed in hashing), we expect
√

2n.

72 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Introduction
Hash Functions
Why is hashing?
How to hash?

Succinctness of Hash Functions
Coping with randomness
Universal Hashing
Hashing using 2-universal families
Perfect Hashing

Acknowledgements

73 / 86

Perfect Hashing

Setup: we are given in advance a static set S ⊂ U of size n

How to build a hash table with O(1) search time and O(n) memory?

Can we still do it with a 2-universal family of hash functions?

Corollary

If h ∈ H is a random hash function from a 2-universal family of hash
functions, then for any set S ⊆ U of size ` ≤

√
n, the probability of h

being perfect for S is at least 1/2.

Proof: There is no collision with probability ≥ 1/2.

New idea: build a two-level hash table!

Theorem

The two-level approach gives perfect hashing scheme.

74 / 86

Perfect Hashing

Setup: we are given in advance a static set S ⊂ U of size n

How to build a hash table with O(1) search time and O(n) memory?

Can we still do it with a 2-universal family of hash functions?

Corollary

If h ∈ H is a random hash function from a 2-universal family of hash
functions, then for any set S ⊆ U of size ` ≤

√
n, the probability of h

being perfect for S is at least 1/2.

Proof: There is no collision with probability ≥ 1/2.

New idea: build a two-level hash table!

Theorem

The two-level approach gives perfect hashing scheme.

75 / 86

Perfect Hashing

Setup: we are given in advance a static set S ⊂ U of size n

How to build a hash table with O(1) search time and O(n) memory?

Can we still do it with a 2-universal family of hash functions?

Corollary

If h ∈ H is a random hash function from a 2-universal family of hash
functions, then for any set S ⊆ U of size ` ≤

√
n, the probability of h

being perfect for S is at least 1/2.

Proof: There is no collision with probability ≥ 1/2.

New idea: build a two-level hash table!

Theorem

The two-level approach gives perfect hashing scheme.

76 / 86

Perfect Hashing

Setup: we are given in advance a static set S ⊂ U of size n

How to build a hash table with O(1) search time and O(n) memory?

Can we still do it with a 2-universal family of hash functions?

Corollary

If h ∈ H is a random hash function from a 2-universal family of hash
functions, then for any set S ⊆ U of size ` ≤

√
n, the probability of h

being perfect for S is at least 1/2.

Proof: There is no collision with probability ≥ 1/2.

New idea: build a two-level hash table!

Theorem

The two-level approach gives perfect hashing scheme.

77 / 86

Proof (sketch) of Theorem

Pick first layer hash function h uniformly at random from our
2-universal family H. Test h on our set S .

With probability ≥ 1/2, max number of collisions in one bin is ≤
√
n.

Thus, we will find good hash function for first layer with constant
many tries. (with high probability)

Assume max number of collisions (h,S) is ≤
√
n. Let `i be the load

at i th cell of hash table given by h

Thus `i ≤
√
n and

∑n
i=1 `i = |S | = n

By our lemma, if take hi : S → [`2i] from our 2-universal hash family,
hi is perfect with high probability

Memory needed: to store all hash functions, need O(n) memory

O(1) memory for the top level hash function h
O(1) memory for each of the second-layer hash functions (and we have
n of them)

Time to hash: O(1) time to evaluate each hash function, and we only
have two layers. So total time O(1)

78 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Proof (sketch) of Theorem

Pick first layer hash function h uniformly at random from our
2-universal family H. Test h on our set S .

With probability ≥ 1/2, max number of collisions in one bin is ≤
√
n.

Thus, we will find good hash function for first layer with constant
many tries. (with high probability)

Assume max number of collisions (h,S) is ≤
√
n. Let `i be the load

at i th cell of hash table given by h

Thus `i ≤
√
n and

∑n
i=1 `i = |S | = n

By our lemma, if take hi : S → [`2i] from our 2-universal hash family,
hi is perfect with high probability

Memory needed: to store all hash functions, need O(n) memory

O(1) memory for the top level hash function h
O(1) memory for each of the second-layer hash functions (and we have
n of them)

Time to hash: O(1) time to evaluate each hash function, and we only
have two layers. So total time O(1)

79 / 86

Proof (sketch) of Theorem

Pick first layer hash function h uniformly at random from our
2-universal family H. Test h on our set S .

With probability ≥ 1/2, max number of collisions in one bin is ≤
√
n.

Thus, we will find good hash function for first layer with constant
many tries. (with high probability)

Assume max number of collisions (h,S) is ≤
√
n. Let `i be the load

at i th cell of hash table given by h

Thus `i ≤
√
n and

∑n
i=1 `i = |S | = n

By our lemma, if take hi : S → [`2i] from our 2-universal hash family,
hi is perfect with high probability

Memory needed: to store all hash functions, need O(n) memory

O(1) memory for the top level hash function h
O(1) memory for each of the second-layer hash functions (and we have
n of them)

Time to hash: O(1) time to evaluate each hash function, and we only
have two layers. So total time O(1)

80 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Proof (sketch) of Theorem

Pick first layer hash function h uniformly at random from our
2-universal family H. Test h on our set S .

With probability ≥ 1/2, max number of collisions in one bin is ≤
√
n.

Thus, we will find good hash function for first layer with constant
many tries. (with high probability)

Assume max number of collisions (h,S) is ≤
√
n. Let `i be the load

at i th cell of hash table given by h

Thus `i ≤
√
n and

∑n
i=1 `i = |S | = n

By our lemma, if take hi : S → [`2i] from our 2-universal hash family,
hi is perfect with high probability

Memory needed: to store all hash functions, need O(n) memory

O(1) memory for the top level hash function h
O(1) memory for each of the second-layer hash functions (and we have
n of them)

Time to hash: O(1) time to evaluate each hash function, and we only
have two layers. So total time O(1)

81 / 86

Proof (sketch) of Theorem

Pick first layer hash function h uniformly at random from our
2-universal family H. Test h on our set S .

With probability ≥ 1/2, max number of collisions in one bin is ≤
√
n.

Thus, we will find good hash function for first layer with constant
many tries. (with high probability)

Assume max number of collisions (h,S) is ≤
√
n. Let `i be the load

at i th cell of hash table given by h

Thus `i ≤
√
n and

∑n
i=1 `i = |S | = n

By our lemma, if take hi : S → [`2i] from our 2-universal hash family,
hi is perfect with high probability

Memory needed: to store all hash functions, need O(n) memory

O(1) memory for the top level hash function h
O(1) memory for each of the second-layer hash functions (and we have
n of them)

Time to hash: O(1) time to evaluate each hash function, and we only
have two layers. So total time O(1)

82 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Proof (sketch) of Theorem

Pick first layer hash function h uniformly at random from our
2-universal family H. Test h on our set S .

With probability ≥ 1/2, max number of collisions in one bin is ≤
√
n.

Thus, we will find good hash function for first layer with constant
many tries. (with high probability)

Assume max number of collisions (h,S) is ≤
√
n. Let `i be the load

at i th cell of hash table given by h

Thus `i ≤
√
n and

∑n
i=1 `i = |S | = n

By our lemma, if take hi : S → [`2i] from our 2-universal hash family,
hi is perfect with high probability

Memory needed: to store all hash functions, need O(n) memory

O(1) memory for the top level hash function h
O(1) memory for each of the second-layer hash functions (and we have
n of them)

Time to hash: O(1) time to evaluate each hash function, and we only
have two layers. So total time O(1)

83 / 86

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Proof (sketch) of Theorem

Pick first layer hash function h uniformly at random from our
2-universal family H. Test h on our set S .

With probability ≥ 1/2, max number of collisions in one bin is ≤
√
n.

Thus, we will find good hash function for first layer with constant
many tries. (with high probability)

Assume max number of collisions (h,S) is ≤
√
n. Let `i be the load

at i th cell of hash table given by h

Thus `i ≤
√
n and

∑n
i=1 `i = |S | = n

By our lemma, if take hi : S → [`2i] from our 2-universal hash family,
hi is perfect with high probability

Memory needed: to store all hash functions, need O(n) memory

O(1) memory for the top level hash function h
O(1) memory for each of the second-layer hash functions (and we have
n of them)

Time to hash: O(1) time to evaluate each hash function, and we only
have two layers. So total time O(1)

84 / 86

Acknowledgement

Lecture based largely on Lap Chi’s notes and on [CLRS 2009, Chapter
11].

See Lap Chi’s notes at
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L05.pdf

85 / 86

https://cs.uwaterloo.ca/~lapchi/cs466/notes/L05.pdf

References I

Motwani, Rajeev and Raghavan, Prabhakar (2007)

Randomized Algorithms

Mitzenmacher, Michael, and Eli Upfal (2017)

Probability and computing: Randomization and probabilistic techniques in
algorithms and data analysis.

Cambridge university press, 2017.

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.

MIT Press

86 / 86

	Introduction
	Hash Functions
	Why is hashing?
	How to hash?

	Succinctness of Hash Functions
	Coping with randomness
	Universal Hashing
	Hashing using 2-universal families
	Perfect Hashing

	Acknowledgements

