Lecture 3: Concentration Inequalities

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

May 18, 2021

Overview

- Introduction
- Concentration Inequalities
- Markov's Inequality
- Higher Moments
- Moments and Variance
- Chebyshev's Inequality
- Chernoff-Hoeffding's Inequality
- Acknowledgements

Why do we want concentration?

When evaluating performance of randomized algorithms, not enough to know our algorithm runs in expected time T. What we want to say is
"our algorithm will run in time $\approx T$ very often."

Game
for each step expected proem ing tim is

Why do we want concentration?

When evaluating performance of randomized algorithms, not enough to know our algorithm runs in expected time T. What we want to say is
"our algorithm will run in time $\approx T$ very often."

That is,

- not only analyse the expected running times of the algorithms,
- we would also like to know if the algorithm runs in time close to its expected running time most of the time.

Why do we want concentration?

When evaluating performance of randomized algorithms, not enough to know our algorithm runs in expected time T. What we want to say is
"our algorithm will run in time $\approx T$ very often."

That is,

- not only analyse the expected running times of the algorithms,
- we would also like to know if the algorithm runs in time close to its expected running time most of the time.

Running time small with high probability better than small expected running time.

Why do we want concentration?

When evaluating performance of randomized algorithms, not enough to know our algorithm runs in expected time T. What we want to say is
"our algorithm will run in time $\approx T$ very often."

That is,

- not only analyse the expected running times of the algorithms,
- we would also like to know if the algorithm runs in time close to its expected running time most of the time.

Running time small with high probability better than small expected running time.

Often times in algorithm analysis, running time is concentrated around expectation. This concentration of measure proves that our algorithms will typically run in time close to expectation.

Today's inequalities

Theorem (Markov's Inequality)
Let X be a non-negative discrete random variable. Then

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}, \quad \forall t>0
$$

X take value in $\underbrace{\text { discrete et t }}_{\text {finis sets }}$ X is the outcome of fours coin toss $\times \underset{>1 / 2}{N}$

Today's inequalities

Theorem (Markov's Inequality)

Let X be a non-negative discrete random variable. Then

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}, \quad \forall t>0
$$

Theorem (Chebyshev's Inequality)

Let X be a discrete random variable. Then

$$
\operatorname{Pr}[|X-\mathbb{E}[X]| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}, \quad \forall t>0
$$

how much we are deviating from Expectation

Today's inequalities II
indicator variable: random variable which tats values in $\{0,1\}$

Theorem (Chernoff-Hoeffding's Inequality)
Let X_{1}, \ldots, X_{n} be independent indicator variables such that $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$, where $0<p_{i}<1$. Let $X=\sum_{i=1}^{n} X_{i}$ and $\delta>0$. Then

$$
\operatorname{Pr}[X \geq(1+\delta) \cdot \mathbb{E}[X]] \leq\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mathbb{E}[X]}
$$

and

$$
\operatorname{Pr}[X \leq(1-\delta) \cdot \mathbb{E}[X]] \leq \exp \left(-\mathbb{E}[X] \cdot \delta^{2} / 2\right)
$$

sums of independend roudsm variables concentrate strongly around expectation

Markov's Inequality
Theorem (Markov's Inequality)
Let X be a non-negative discrete random variable. Then

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}, \quad \forall t>0 .
$$

Proof:

$$
\begin{aligned}
& \mathbb{E}[x]=\sum_{y=0}^{\infty} P_{n}[x=y] \cdot y \\
& =\frac{d q_{i x} \text { ido }}{=\sum_{y=0}^{t-1}} \underbrace{P_{x}[x=y]}_{\geqslant 0} \cdot \underset{\geqslant 0}{y}+\sum_{y \geqslant t} P_{x}[x=y] \cdot y \\
& \geqslant t \cdot \sum_{y \geqslant t} P_{n}[x=y]=t \cdot P_{n}[x \geqslant t]
\end{aligned}
$$

Markov's Inequality

Theorem (Markov's Inequality)

Let X be a non-negative discrete random variable. Then

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}, \quad \forall t>0
$$

- Quicksort: Expected running time of Quicksort is $2 n \ln n$. Markov's inequality tells us that the runtime is at least $2 c n \ln n$ with probability $\leq 1 / c$, for any $c \geq 1$

Markov's Inequality

Theorem (Markov's Inequality)

Let X be a non-negative discrete random variable. Then

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}, \quad \forall t>0
$$

- Quicksort: Expected running time of Quicksort is $2 n \ln n$. Markov's inequality tells us that the runtime is at least $2 c n \ln n$ with probability $\leq 1 / c$, for any $c \geq 1$
- Coin Flipping: If we flip n fair coins, the expected number of heads is $n / 2$. Markov's inequality tells us that $\operatorname{Pr}[\#$ heads $\geq 3 n / 4] \leq 2 / 3$

$$
\begin{aligned}
& X=\text { \# heads offer } n \text { cain tones } \\
& \mathbb{E}[x]=n / 2
\end{aligned}
$$

Markov's Inequality

Theorem (Markov's Inequality)

Let X be a non-negative discrete random variable. Then

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}, \quad \forall t>0
$$

- Quicksort: Expected running time of Quicksort is $2 n \ln n$. Markov's inequality tells us that the runtime is at least $2 c n \ln n$ with probability $\leq 1 / c$, for any $c \geq 1$
- Coin Flipping: If we flip n fair coins, the expected number of heads is $n / 2$. Markov's inequality tells us that $\operatorname{Pr}[\#$ heads $\geq 3 n / 4] \leq 2 / 3$

Remark

Useful when we have no information beyond expected value (or when random variable difficult to analyze). Otherwise other inequalities much sharper!

Markov's Inequality

Some practice problems.

- Is Markov's inequality tight? Can you give an example?

Markov's Inequality

Some practice problems.

- Is Markov's inequality tight? Can you give an example?
- Does it hold for general random variables (not just non-negative)?

Markov's Inequality

Some practice problems.

- Is Markov's inequality tight? Can you give an example?
- Does it hold for general random variables (not just non-negative)?
- Can it be modified to upper bound $\operatorname{Pr}[X \leq t]$?
- Introduction
- Concentration Inequalities
- Markov's Inequality
- Higher Moments
- Moments and Variance
- Chebyshev's Inequality
- Chernoff-Hoeffding's Inequality

- Acknowledgements

Moments and Variance

To give better bounds, we need more information about the random variable (beyond expected value).
How to distinguish between:

Moments and Variance

To give better bounds, we need more information about the random variable (beyond expected value).
How to distinguish between:

- X such that $\operatorname{Pr}[X=i]=\left\{\begin{array}{ll}1 / n, & \text { if } 1 \leq i \leq n \\ 0, & \text { otherwise }\end{array} \quad \mathbb{E}[X]=\frac{\ell}{n} \cdot \sum_{i=1}^{n} i\right.$
- Y such that $\operatorname{Pr}[Y=1]=1 / 2$ and $\operatorname{Pr}[Y=n]=1 / 2$
- Y such that $\operatorname{Pr}[Y=1]=1 / 2$ and $\operatorname{Pr}[Y=n]=1 / 2$
$\{1,2, \ldots, n\} \quad \mathbb{E}[y]=\frac{i}{2} \cdot 1+\frac{1}{2} n=\frac{n+1}{2}$

Moments and Variance

To give better bounds, we need more information about the random variable (beyond expected value).
How to distinguish between:

- X such that $\operatorname{Pr}[X=i]= \begin{cases}1 / n, \quad \text { if } 1 \leq i \leq n \\ 0, & \text { otherwise }\end{cases}$
- Y such that $\operatorname{Pr}[Y=1]=1 / 2$ and $\operatorname{Pr}[Y=n]=1 / 2$ from expectetion
- same expectation, but very different random variables...

Moments and Variance

To give better bounds, we need more information about the random variable (beyond expected value).
How to distinguish between:

- X such that $\operatorname{Pr}[X=i]=\left\{\begin{array}{l}1 / n, \quad \text { if } 1 \leq i \leq n \\ 0, \quad \text { otherwise }\end{array}\right.$
- Y such that $\operatorname{Pr}[Y=1]=1 / 2$ and $\operatorname{Pr}[Y=n]=1 / 2$
- same expectation, but very different random variables...
- Look at how far variable usually is from its expectation. How to do that?

Moments and Variance

To give better bounds, we need more information about the random variable (beyond expected value).
How to distinguish between:

- X such that $\operatorname{Pr}[X=i]= \begin{cases}1 / n, \quad \text { if } 1 \leq i \leq n \\ 0, & \text { otherwise }\end{cases}$
- Y such that $\operatorname{Pr}[Y=1]=1 / 2$ and $\operatorname{Pr}[Y=n]=1 / 2$
- same expectation, but very different random variables...
- Look at how far variable usually is from its expectation. How to do that?
- How to bound $\operatorname{Pr}[|X-\mathbb{E}[X]| \geq t]$?

$$
\begin{aligned}
Z=X-\mathbb{E}[x] \quad Z & \text { measeres how for we } \\
& \text { are from our expectation }
\end{aligned}
$$

Moments and Variance

To give better bounds, we need more information about the random variable (beyond expected value).
How to distinguish between:

- X such that $\operatorname{Pr}[X=i]= \begin{cases}1 / n, \quad \text { if } 1 \leq i \leq n \\ 0, & \text { otherwise }\end{cases}$
- Y such that $\operatorname{Pr}[Y=1]=1 / 2$ and $\operatorname{Pr}[Y=n]=1 / 2$
- same expectation, but very different random variables...
- Look at how far variable usually is from its expectation. How to do that?
- How to bound $\operatorname{Pr}[|X-\mathbb{E}[X]| \geq t]$?

Theorem (Chebyshev's Inequality)

Let X be a discrete random variable. Then

$$
\operatorname{Pr}[|X-\mathbb{E}[X]| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}, \quad \forall t>0
$$

Chebyshev's inequality

Let X be a random variable.

Chebyshev's inequality

Let X be a random variable.

- Its Variance is defined as $\operatorname{Var}[X]:=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$
- and its standard deviation is $\sigma(X):=\sqrt{\operatorname{Var}[X]}$

Chebyshev's inequality
Let X be a random variable.

- Its Variance is defined as $\operatorname{Var}[X]:=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$
- and its standard deviation is $\sigma(X):=\sqrt{\operatorname{Var}[X]}$

Theorem (Chebyshev's Inequality)
Let X be a discrete random variable. Then

$$
\operatorname{Pr}[|X-\mathbb{E}[X]| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}, \quad \forall t>0
$$

Pref: only thing we know is Markov. Lect's use it: $z:=(X-\mathbb{E}(x))^{2} \quad$ non-negative \& disouk random variable

$$
\begin{aligned}
\text { Markov } \Rightarrow & P_{r}\left[z \geqslant t^{2}\right] \leqslant \frac{\mathbb{E}[z]}{t^{2}}=\frac{\operatorname{Var}[x]}{t^{2}} \\
& P_{n}[|x-E(x)| \geqslant t]
\end{aligned}
$$

Covariance

How do we measure the correlation between two random variables?

Covariance

How do we measure the correlation between two random variables?

Definition (Covariance)

The covariance of two random variables X, Y is defined as

$$
\operatorname{Cov}[X, Y]:=\mathbb{E}[(X-\mathbb{E}[X]) \cdot(Y-\mathbb{E}[Y])]
$$

We say that X, Y are positively correlated if $\operatorname{Cov}[X, Y]>0$ and negatively correlated if $\operatorname{Cov}[X, Y]<0$.

Covariance

How do we measure the correlation between two random variables?

Definition (Covariance)

The covariance of two random variables X, Y is defined as

$$
\operatorname{Cov}[X, Y]:=\mathbb{E}[(X-\mathbb{E}[X]) \cdot(Y-\mathbb{E}[Y])]
$$

We say that X, Y are positively correlated if $\operatorname{Cov}[X, Y]>0$ and negatively correlated if $\operatorname{Cov}[X, Y]<0$.

Proposition

- $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}[X, Y]$
- If X, Y are independent, then $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$

Chebyshev \& Covariance example

Coin Flipping: If X be \# heads in n independent unbiased coin flips, let us bound again $\operatorname{Pr}[X \geq 3 n / 4]$.

Chebyshev \& Covariance example

Coin Flipping: If X be \# heads in n independent unbiased coin flips, let us bound again $\operatorname{Pr}[X \geq 3 n / 4]$.

- $X_{i}=\left\{\begin{array}{ll}1, & \text { if coin flipped heads } \\ 0, & \text { otherwise }\end{array} i^{\text {th }}\right.$ cain toss
- $X=\sum_{i=1}^{n} X_{i}$, and we know that X_{i}, X_{j} are independent
X_{i} indicator variables

Chebyshev \& Covariance example

Coin Flipping: If X be \# heads in n independent unbiased coin flips, let us bound again $\operatorname{Pr}[X \geq 3 n / 4]$.

- $X_{i}= \begin{cases}1, & \text { if coin flipped heads } \\ 0, & \text { otherwise }\end{cases}$
- $X=\sum_{i=1}^{n} X_{i}$, and we know that X_{i}, X_{j} are independent
- By proposition:

$$
\operatorname{Var}[X]=\sum_{i=1}^{n} \underbrace{\operatorname{Var}\left[X_{i}\right]}_{\frac{1}{4}}=n / 4
$$

$\begin{aligned} \operatorname{Var}\left[x_{i}\right] & =\mathbb{E}\left[\left(x_{i}-\mathbb{E}\left(x_{i}\right)\right)^{2}\right] \\ & =\mathbb{E}\left[\left(x_{i}-1 / 2\right)^{2}\right]=\frac{1}{2} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{1}{4}=\frac{1}{4}\end{aligned}$

Chebyshev \& Covariance example

Coin Flipping: If X be $\#$ heads in n independent unbiased coin flips, let us bound again $\operatorname{Pr}[X \geq 3 n / 4]$.

- $X_{i}= \begin{cases}1, & \text { if coin flipped heads } \\ 0, & \text { otherwise }\end{cases}$
- $X=\sum_{i=1}^{n} X_{i}$, and we know that X_{i}, X_{j} are independent
- By proposition:

$$
\operatorname{Var}[X]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]=n / 4
$$

- Chebyshev:

$$
\begin{aligned}
& \operatorname{Pr}[\overbrace{X \geq 3 n / 4}^{B} \leq \operatorname{Pr}[\overbrace{X-n / 2 \mid \geq n / 4}]_{-2}^{\downarrow} \leq \frac{n / 4}{(n / 4)^{2}}=4 / n \\
& \text { 生 }[x]
\end{aligned}
$$

in comparison Monks gave us $p_{r}[x \geqslant 3 \pi / 4) \leqslant 2 / 3$

Higher Moments

To obtain even more information of a random variable, useful to see more of its moments:

Higher Moments

To obtain even more information of a random variable, useful to see more of its moments:

- the $k^{\text {th }}$ moment of random variable X is $\mathbb{E}\left[X^{k}\right]$.

Higher Moments

To obtain even more information of a random variable, useful to see more of its moments:

- the $k^{\text {th }}$ moment of random variable X is $\mathbb{E}\left[X^{k}\right]$.
- the $k^{\text {th }}$ central moment of random variable X is Practice problem:

$$
\left.\mu_{X}^{(k)}:=\mathbb{E}\left[(X-\mathbb{E}[X])^{k}\right], \begin{array}{l}
\text { give examples of } \\
\text { random volidbles without } \\
\text { ex tain } k(\text { central }) \\
\text { maiming }
\end{array}\right) .
$$

if it exists.

$$
\begin{aligned}
1^{\text {st }} \text { moment } \leftarrow \text { expectation } \quad g_{x}^{(1)} & =\mathbb{E}[x-\mathbb{E}[x]] \\
2^{\text {nd }} \text { central moment } \leftarrow \text { variance } & =\mathbb{E}[x]-\mathbb{E}[x]=0
\end{aligned}
$$

Practice: if $l e$ is even, can you prove a gemenclization of Chabysher?

Higher Moments

To obtain even more information of a random variable, useful to see more of its moments:

- the $k^{\text {th }}$ moment of random variable X is $\mathbb{E}\left[X^{k}\right]$.
- the $k^{\text {th }}$ central moment of random variable X is

$$
\mu_{X}^{(k)}:=\mathbb{E}\left[(X-\mathbb{E}[X])^{k}\right]
$$

if it exists.

Remark

Chebyshev's inequality is most useful when we only have information about the second moment of our random variable X.

Higher Moments

To obtain even more information of a random variable, useful to see more of its moments:

- the $k^{\text {th }}$ moment of random variable X is $\mathbb{E}\left[X^{k}\right]$.
- the $k^{\text {th }}$ central moment of random variable X is

$$
\mu_{X}^{(k)}:=\mathbb{E}\left[(X-\mathbb{E}[X])^{k}\right]
$$

if it exists.

Remark

Chebyshev's inequality is most useful when we only have information about the second moment of our random variable X.

Practice problem: Can you generalize Chebyshev's inequality to $k^{\text {th }}$ order moments?

Sums of Independent Random Variables

Often times in analysis of algorithms we deal with random variables which are sums of independent random variables (Distinct Elements, hashing, balls \& bins, etc).

Sums of Independent Random Variables

Often times in analysis of algorithms we deal with random variables which are sums of independent random variables (Distinct Elements, hashing, balls \& bins, etc).

Can we use this information to get better tail inequalities?

Sums of Independent Random Variables

Often times in analysis of algorithms we deal with random variables which are sums of independent random variables (Distinct Elements, hashing, balls \& bins, etc).

Can we use this information to get better tail inequalities?
Law of large numbers: average of independent, identically distributed variables is approximately the expectation of the random variables. That is, if each X_{i} is an independent copy of random variable X

$$
\underbrace{\frac{1}{n} \cdot \sum_{i=1}^{n} X_{i} \approx \mathbb{E}[X]}_{z_{n}}
$$

Sums of Independent Random Variables

Often times in analysis of algorithms we deal with random variables which are sums of independent random variables (Distinct Elements, hashing, balls \& bins, etc).

Can we use this information to get better tail inequalities?
Law of large numbers: average of independent, identically distributed variables is approximately the expectation of the random variables. That is, if each X_{i} is an independent copy of random variable X

$$
\frac{1}{n} \cdot \sum_{i=1}^{n} X_{i} \approx \mathbb{E}[X]
$$

Central Limit Theorem: if we let $Z_{n}=\sum_{i=1}^{n} X_{i}$, where X_{i} independent copy of X, the random variable

$$
Y_{n}=\frac{Z_{n}-n \cdot \mathbb{E}[X]}{\sqrt{n \cdot \sigma(X)^{2}}} \rightarrow \mathcal{N}(0,1)
$$

Chernoff Bounds

Chernoff bounds give us quantitative estimates of the probability that X is far from $\mathbb{E}[X]$ for large enough values of n, when $X=X_{1}+\cdots+X_{n} .{ }^{1}$
${ }^{1}$ Also works for sums of random variables which are not identically distributed!

Chernoff Bounds

Chernoff bounds give us quantitative estimates of the probability that X is far from $\mathbb{E}[X]$ for large enough values of n, when $X=X_{1}+\cdots+X_{n} .{ }^{1}$

Simple Setting: we have n coin flips, each is head with probability p. So

$$
X_{i}=\left\{\begin{array}{l}
1, \text { with probability } p \\
0, \text { otherwise }
\end{array} \quad \text { and } X=\sum_{i=1}^{n} X_{i} .\right.
$$

[^0]
Chernoff Bounds

Chernoff bounds give us quantitative estimates of the probability that X is far from $\mathbb{E}[X]$ for large enough values of n, when $X=X_{1}+\cdots+X_{n}{ }^{1}$ adependent
Simple Setting: we have n coin flips, each is head with probability p. So

$$
X_{i}=\left\{\begin{array}{l}
1, \text { with probability } p \\
0, \text { otherwise }
\end{array} \quad \text { and } X=\sum_{i=1}^{n} X_{i}\right.
$$

- Expected \# heads: $n \cdot p$

[^1]
Chernoff Bounds

Chernoff bounds give us quantitative estimates of the probability that X is far from $\mathbb{E}[X]$ for large enough values of n, when $X=X_{1}+\cdots+X_{n}{ }^{1}$

Simple Setting: we have n coin flips, each is head with probability p. So

$$
X_{i}=\left\{\begin{array}{l}
1, \text { with probability } p \\
0, \text { otherwise }
\end{array} \quad \text { and } X=\sum_{i=1}^{n} X_{i}\right.
$$

- Expected \# heads: $n \cdot p$
- To bound upper tail, need to compute:
${ }^{1}$ Also works for sums of random variables which are not identically distributed!

Chernoff Bounds

Chernoff bounds give us quantitative estimates of the probability that X is far from $\mathbb{E}[X]$ for large enough values of n, when $X=X_{1}+\cdots+X_{n}{ }^{1}$

Simple Setting: we have n coin flips, each is head with probability p. So

$$
X_{i}=\left\{\begin{array}{l}
1, \text { with probability } p \\
0, \text { otherwise }
\end{array} \quad \text { and } X=\sum_{i=1}^{n} X_{i}\right.
$$

- Expected \# heads: $n \cdot p$
- To bound upper tail, need to compute:

$$
\operatorname{Pr}[X \geq k]=\sum_{i \geq k}\binom{n}{i} p^{i}(1-p)^{n-i}
$$

- Not easy to work with, hard to generalize

[^2]Chernoff Bounds
Generic Chernoff Bounds: apply Markov in the following way:

$$
\operatorname{Pr}[X \geq a]=\operatorname{Pr}\left[e^{t X} \geq e^{t a}\right] \leq \mathbb{E}\left[e^{t X}\right] / e^{t a}, \quad \text { for any } t>0
$$

exponential is strictly increasing function

Chernoff Bounds

Generic Chernoff Bounds: apply Markov in the following way:

$$
\operatorname{Pr}[X \geq a]=\operatorname{Pr}\left[e^{t X} \geq e^{t a}\right] \leq \mathbb{E}\left[e^{t X}\right] / e^{t a}, \quad \text { for any } t>0
$$

What do we gain by doing this?

Chernoff Bounds

Generic Chernoff Bounds: apply Markov in the following way:

$$
\operatorname{Pr}[X \geq a]=\operatorname{Pr}\left[e^{t X} \geq e^{t a}\right] \leq \mathbb{E}\left[e^{t X}\right] / e^{t a}, \quad \text { for any } t>0
$$

What do we gain by doing this?

- The moment generating function
dineanity

$$
\begin{aligned}
& \qquad M_{X}(t):=\mathbb{E}\left[e^{t X}\right]=\mathbb{E}\left[\sum_{i \geq 0} \frac{t^{i}}{i!} \cdot X^{i}\right] \stackrel{\downarrow}{=} \sum_{i \geq 0} \frac{t^{i}}{i!} \cdot \underbrace{\mathbb{E}\left[X^{i}\right]}_{k^{\text {th }} \text { moment }} \\
& \text { contains information about all moments! }
\end{aligned}
$$

Chernoff Bounds

Generic Chernoff Bounds: apply Markov in the following way:

$$
\operatorname{Pr}[X \geq a]=\operatorname{Pr}\left[e^{t X} \geq e^{t a}\right] \leq \mathbb{E}\left[e^{t X}\right] / e^{t a}, \quad \text { for any } t>0
$$

What do we gain by doing this?

- The moment generating function

$$
M_{X}(t):=\mathbb{E}\left[e^{t X}\right]=\mathbb{E}\left[\sum_{i \geq 0} \frac{t^{i}}{i!} \cdot X^{i}\right]=\sum_{i \geq 0} \frac{t^{i}}{i!} \cdot \mathbb{E}\left[X^{i}\right]
$$

contains information about all moments!

- If $X=X_{1}+X_{2}$, where X_{1}, X_{2} are independent, note that

$$
\mathbb{E}\left[e^{t X}\right]=\mathbb{E}\left[e^{t X_{1}} e^{t X_{2}}\right]=\mathbb{E}\left[e^{t X_{1}}\right] \cdot \mathbb{E}\left[e^{t X_{2}}\right]
$$

Chernoff Bounds for Bounded Variables
Example (Heterogeneous Coin Flips)
Let $X_{i}=\left\{\begin{array}{l}1, \text { with probability } p_{i} \\ 0, \text { otherwise }\end{array}, X=\sum_{i=1}^{n} X_{i}\right.$ and $\mu=\mathbb{E}[X]$

$$
\begin{aligned}
& \text { (0) for } \delta>0, \operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu} \\
& \boldsymbol{K}=\mathbb{E}[x]=\mathbb{E}\left[\sum_{i=1}^{n} x_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[x_{i}\right]=\sum_{i=1}^{n} p_{i} \\
& \text { Proof: } \operatorname{Pr}[x \geqslant(1+\delta) \mu]=P_{r}\left[e^{t x} \geqslant e^{(1 \sigma t) t k}\right] \leqslant \mathbb{E}\left[e^{t x}\right] / e^{t(1+\delta) \mu} \\
& =\frac{1}{e^{t(1-1) \mu}} \cdot \prod_{i=1}^{n} \mathbb{E}\left[e^{t x_{i}}\right]=\frac{1}{e^{t(1+\delta) / \lambda}} \cdot \prod_{i=1}^{n}\left(p_{i} \cdot e^{t}+\left(1-p_{i}\right) \cdot 1\right)<p_{i}\left(e^{t}-1\right) \leqslant e^{n}\left(e^{t}-1\right) \quad \leqslant \\
& \leqslant \frac{1}{n} \cdot \prod^{n} e^{p_{i}\left(e^{t_{-1}}-1\right)}=e^{x \cdot\left(e^{t_{1}}\right) \quad 1+p_{i}\left(e^{-}-1\right) \leqslant e^{p}} \begin{array}{l}
1+x \leq e^{x} \quad \forall x
\end{array} \\
& \leq \frac{1}{e^{t(1+\delta)}} \cdot \prod_{i=1} e^{(i n}=\frac{e}{e^{t(18) \pi /}} \quad t=\ln (1+\delta)
\end{aligned}
$$

Chernoff Bounds for Bounded Variables
Example (Heterogeneous Coin Flips)
Let $X_{i}=\left\{\begin{array}{l}1, \text { with probability } p_{i} \\ 0, \text { otherwise }\end{array}, X=\sum_{i=1}^{n} X_{i}\right.$ and $\mu=\mathbb{E}[X]$
(0) for $\delta>0, \operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu}$
(2) for $0<\delta<1, \operatorname{Pr}[X \geq(1+\delta) \mu] \leq e^{-\delta^{2} \mu / 3}$
just note $0<\delta<1 \Rightarrow \frac{e^{\delta}}{(l+\delta)^{\delta+1}} \leq e^{-\delta^{2} / 3}$
$f(\delta)=\delta-(l+\delta) \ln (l+\delta)+\frac{\delta^{2}}{3}$ show that
$f(\delta) \leqslant 0$ in $[0,1]$.

Chernoff Bounds for Bounded Variables

Example (Heterogeneous Coin Flips)

Let $X_{i}=\left\{\begin{array}{l}1, \text { with probability } p_{i} \\ 0, \text { otherwise }\end{array} \quad, X=\sum_{i=1}^{n} X_{i}\right.$ and $\mu=\mathbb{E}[X]$
(1) for $\delta>0, \operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu}$
(2) for $0<\delta<1, \operatorname{Pr}[X \geq(1+\delta) \mu] \leq e^{-\delta^{2} \mu / 3}$
(3) for $R \geq 6 \mu, \operatorname{Pr}[X \geq R] \leq 2^{-R}$

$R \geqslant 6 \mu$ them $\delta \geqslant 5$ in (1).

Chernoff Bounds for Bounded Variables

What about the lower tail?

[^3] Theorem 4.5]

Chernoff Bounds for Bounded Variables

What about the lower tail?
Similar proof, by setting $t<0$. 2

[^4] Theorem 4.5]

Chernoff Bounds for Bounded Variables

What about the lower tail?
Similar proof, by setting $t<0$. 2

Theorem (Heterogeneous Coin Flips - lower tail)

(1) $\operatorname{Pr}[X \leq(1-\delta) \cdot \mu] \leq\left[\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right]^{\mu}$
(2) if $0<\delta<1$ then $\operatorname{Pr}[X \leq(1-\delta) \cdot \mu] \leq e^{-\mu \delta^{2} / 2}$

[^5] Theorem 4.5]

Hoeffding's generalization

What if the variables X_{i} took values in $\left[a_{i}, b_{i}\right]$?

Hoeffding's generalization

What if the variables X_{i} took values in $\left[a_{i}, b_{i}\right]$?

Theorem (Hoeffding's Inequality)

Let X_{i} be independent random variables, taking values in $\left[a_{i}, b_{i}\right]$, $X=\sum_{i=1}^{n} X_{i}$. Then

$$
\operatorname{Pr}[|X-\mathbb{E}[X]| \geq \ell] \leq 2 \cdot \exp \left(-\frac{2 \ell^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

Hoeffding's generalization

What if the variables X_{i} took values in $\left[a_{i}, b_{i}\right]$?

Theorem (Hoeffding's Inequality)

Let X_{i} be independent random variables, taking values in $\left[a_{i}, b_{i}\right]$, $X=\sum_{i=1}^{n} X_{i}$. Then

$$
\operatorname{Pr}[|X-\mathbb{E}[X]| \geq \ell] \leq 2 \cdot \exp \left(-\frac{2 \ell^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

Proof uses Hoeffding's lemma: $\mathbb{E}[\underbrace{\left.e^{t\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)}\right]}_{\substack{\text { eentral } \\ \text { monmils }}} \leq \exp \left(\frac{t^{2}\left(b_{i}-a_{i}\right)^{2}}{8}\right)$

Remarks

- In coin flips example from beginning of lecture, by flipping n independent fair coins, expected \# heads is $n / 2$. Chernoff-Hoeffding implies:

$$
\begin{aligned}
& \operatorname{Pr}[\mid \# \text { heads }-\mu \mid \geq \delta \mu] \leq 2 \exp \left(-\mu \delta^{2} / 3\right)=2 \exp \left(-n \delta^{2} / 6\right) \\
& V=\int_{l}^{n} \mathbf{X} . \quad \quad \mu=n / 2
\end{aligned}
$$

$\sum_{i=1}^{i}$
opting heads in $i^{\text {th }}$ cain toss independent

Remarks

- In coin flips example from beginning of lecture, by flipping n independent fair coins, expected \# heads is $n / 2$. Chernoff-Hoeffding implies:

$$
\operatorname{Pr}[\mid \# \text { heads }-\mu \mid \geq \delta \mu] \leq 2 \exp \left(-\mu \delta^{2} / 3\right)=2 \exp \left(-n \delta^{2} / 6\right)
$$

- Setting $\delta=\sqrt{60 / n}$, probability above is $\leq 2 e^{-10}$. Thus

$$
\operatorname{Pr}[\mid \# \text { heads }-n / 2 \mid \geq \sqrt{15 \cdot n}] \leq 2 e^{-10}
$$

Remarks

- In coin flips example from beginning of lecture, by flipping n independent fair coins, expected $\#$ heads is $n / 2$. Chernoff-Hoeffding implies:

$$
\operatorname{Pr}[\mid \# \text { heads }-\mu \mid \geq \delta \mu] \leq 2 \exp \left(-\mu \delta^{2} / 3\right)=2 \exp \left(-n \delta^{2} / \sigma\right)
$$

- Setting $\delta=\sqrt{60 / n}$, probability above is $\leq 2 e^{-10}$. Thus

$$
\operatorname{Pr}[\mid \# \text { heads }-n / 2 \mid \geq \sqrt{15 \cdot n}] \leq 2 e^{-10}
$$

- With high probability, \# heads is within $O(\sqrt{n})$ of the expected value (this comes up in many places). Practice problem: prove that with constant probability that $\mid \#$ heads $-n / 2 \mid=\Omega(\sqrt{n})$.

Remarks

- In coin flips example from beginning of lecture, by flipping n independent fair coins, expected $\#$ heads is $n / 2$. Chernoff-Hoeffding implies:

$$
\operatorname{Pr}[\mid \# \text { heads }-\mu \mid \geq \delta \mu] \leq 2 \exp \left(-\mu \delta^{2} / 3\right)=2 \exp \left(-n \delta^{2} / 6\right)
$$

- Setting $\delta=\sqrt{60 / n}$, probability above is $\leq 2 e^{-10}$. Thus

$$
\operatorname{Pr}[\mid \# \text { heads }-n / 2 \mid \geq \sqrt{15 \cdot n}] \leq 2 e^{-10}
$$

- With high probability, \# heads is within $O(\sqrt{n})$ of the expected value (this comes up in many places). Practice problem: prove that with constant probability that $\mid \#$ heads $-n / 2 \mid=\Omega(\sqrt{n})$.
- From previous slides:

Markov: $\operatorname{Pr}[\#$ heads $\geq 3 n / 4] \leq 2 / 3$
Chebyshev: $\operatorname{Pr}[\#$ heads $\geq 3 n / 4] \leq 4 / n$.
Chernoff: $\operatorname{Pr}[\#$ heads $\geq 3 n / 4] \leq e^{-n / 24}$.

Remarks

- It is often easier to compute moments by computing the moment generating functions

Remarks

- It is often easier to compute moments by computing the moment generating functions
- Why do we want to compute moments? See Sum-of-Squares and pseudo-distributions references in course webpage. These methods give very powerful tools to solve many challenging problems! (great final project topic!)

Remarks

- It is often easier to compute moments by computing the moment generating functions
- Why do we want to compute moments? See Sum-of-Squares and pseudo-distributions references in course webpage. These methods give very powerful tools to solve many challenging problems! (great final project topic!)
- Chernoff-Hoeffding bounds also hold for negatively correlated variables, because all we need is

$$
\mathbb{E}\left[e^{t(X+Y)}\right] \leq \mathbb{E}\left[e^{t X}\right] \cdot \mathbb{E}\left[e^{t Y}\right]
$$

This observation is very useful in many applications (also great source of final projects!)

Remarks

- It is often easier to compute moments by computing the moment generating functions
- Why do we want to compute moments? See Sum-of-Squares and pseudo-distributions references in course webpage. These methods give very powerful tools to solve many challenging problems! (great final project topic!)
- Chernoff-Hoeffding bounds also hold for negatively correlated variables, because all we need is

$$
\mathbb{E}\left[e^{t(X+Y)}\right] \leq \mathbb{E}\left[e^{t X}\right] \cdot \mathbb{E}\left[e^{t Y}\right]
$$

This observation is very useful in many applications (also great source of final projects!)

- For instance: two edges appear in a random spanning tree is a negatively correlated event, thus Chernoff bounds are useful to analyze random spanning trees.

Acknowledgement

- Lecture based largely on Lap Chi's notes and [Motwani \& Raghavan 2007, Chapters 3 and 4].
- See Lap Chi's notes at https://cs.uwaterloo.ca/~lapchi/cs466/notes/L02.pdf

References I

R
Motwani, Rajeev and Raghavan, Prabhakar (2007)
Randomized Algorithms
R
Mitzenmacher, Michael, and Eli Upfal (2017)
Probability and computing: Randomization and probabilistic techniques in algorithms and data analysis.
Cambridge university press, 2017.

[^0]: ${ }^{1}$ Also works for sums of random variables which are not identically distributed!

[^1]: ${ }^{1}$ Also works for sums of random variables which are not identically distributed!

[^2]: ${ }^{1}$ Also works for sums of random variables which are not identically distributed!

[^3]: ${ }^{2}$ See [Motwani \& Raghavan 2007, Theorem 4.2] or [Mitzenmacher \& Upfal,

[^4]: ${ }^{2}$ See [Motwani \& Raghavan 2007, Theorem 4.2] or [Mitzenmacher \& Upfal,

[^5]: ${ }^{2}$ See [Motwani \& Raghavan 2007, Theorem 4.2] or [Mitzenmacher \& Upfal,

