
05/27/2021 CS 466/666 Homework 2

Problem 1

Perfect hashing is nice, but does have the drawback that the perfect hash function has a lengthy description

(since you have to describe the second-level hash function for each bucket). Consider the following alternative

approach to producing a perfect hash function with a small description. Define bi-bucket hashing, or bashing,

as follows. Given n items, allocate two arrays of size n3/2. When inserting an item, map it to one bucket in

each array, and place it in the emptier of the two buckets.

1. Suppose a random function (i.e., all function values are uniformly random and mutually independent) is

used to map each item to buckets. Give a good upper bound on the expected number of collisions (i.e.,

the number of pairs of items that are placed in the same bucket).

Hint: what is the probablility that the kth inserted item collides with some previously inserted item?

2. Argue that bashing can be implemented efficiently, with the same expected outcome, using the ideas from

2-universal hashing.

3. Conclude an algorithm with linear expected time (ignoring array initialization) for identifying a perfect

bash function for a set of n items. How large is the description of the resulting function?

1

05/27/2021 CS 466/666 Homework 2

Problem 2

Consider again the distinct elements problem that we saw in class. We are given a sequence of elements

a1, . . . , an from our universe U = {0, 1, . . . , 2b − 1} as a stream, possibly with repetitions, and we would like

to know how many distinct elements are there in the sequence. Since we are in the streaming setting, we will

make only one pass through the sequence above, and we have little memory.

We will now analyze a different algorithm for the distinct elements problem:

• Let N > n be an integer

• Pick at random a function h : U → [N] from a strongly 2-universal family.

• Let m := min{h(a1), . . . , h(an)}

• Output N/m

1. Suppose that a1, . . . , an contains k distinct elements. Show that

Pr[algorithm outputs a number > 4k] ≤ 1

4

2. Suppose that a1, . . . , an contains k distinct elements. Show that

Pr[algorithm outputs a number < k/4] ≤ 1

4

3. Assuming that U = [poly(n)], what is the memory requirement of the algorithm above?

Problem 3

One advantage of Karger’s random contraction algorithm for the minimum cut problem is that it can be

used to output all minimum cuts. In this question, we assume Karger’s algorithm as a black box, which can

be used to output a minimum cut with probability at least 2/n(n − 1) in time O(n2), where n is the number

of vertices in the input graph. Explain how Karger’s algorithm can be used to output all minimum cuts and

analyze its running time to output all minimum cuts with success probability at least 0.9999.

2

05/27/2021 CS 466/666 Homework 2

Problem 4

Another problem about Karger’s randomized algorithm for minimum cut:

1. Suppose Karger’s algorithm is applied to a tree. Show that it finds a minimum cut in the tree with

probability 1.

2. Consider the following modification of Karger’s algorithm: instead of choosing an edge uniformly at

random and merging the endpoints, the algorithm chooses any two distinct vertices uniformly at random

and marges them. Show that for any n there is a graph Gn with n vertices such that when the modified

algorithm is run on Gn, the probability that it finds a minimum cut is exponentially small in n.

3. How many times would you have to repeat the modified algorithm of the previous part to have a reasonable

chance of finding a minimum cut? What does this tell us about the practicality of the modified algorithm?

4. Show that for any n ≥ 3 there is a graph Gn with n vertices that has n(n− 1)/2 distinct minimum cuts.

Problem 5

Sublinear-time algorithms for connectedness in graphs with bounded degree.

Given a graph G of max degree d (as adjacency list), and a parameter ε > 0, give an algorithm which has the

following behavior: if G is connected, then the algorithm should pass with probability 1, and if G is ε-far from

connected (at least ε · n · d edges must be added to connect G), then the algorithm should fail with probability

at least 3/4. Your algorithm should look at a number of edges that is independent of n, and polynomial in d, ε.

For this problem, when proving the correctness of your algorithm, it is ok to show that if the input graph G

is likely to be passed, then it is ε-close to a graph G0 which is connected, without requiring that G0 has degree

at most d.

3

05/27/2021 CS 466/666 Homework 2

Problem 6

In this problem we analyze a common algorithmic application of the Johnson-Lindenstrauss lemma.

Consider the k-means clustering problem. Given points x1, . . . , xn ∈ Rd, the goal is to partition the points

into k disjoint sets (clusters) C1, . . . , Ck to minimize the following cost:

Cost(x1, . . . , xn, C1, . . . , Ck) =

k∑
i=1

∑
j∈Ci

‖xj − µi‖22,

where the norm is the Euclidean norm and µi =
1

|Ci|
·
∑

j∈Ci
xj is the mean of the points in cluster Ci.

1. Prove that:

Cost(x1, . . . , xn, C1, . . . , Ck) =

k∑
i=1

1

|Ci|
·
∑

j,`∈Ci
j<`

‖xj − x`‖22

2. Suppose we embed x1, . . . , xn intoO(log n/ε2) dimensional vectors y1, . . . , yn using the Johnson-Lindenstrauss

construction. Show that for all clusterings simultaneously :

(1− ε) ·Cost(x1, . . . , xn, C1, . . . , Ck) ≤ Cost(y1, . . . , yn, C1, . . . , Ck) ≤ (1+ ε) ·Cost(x1, . . . , xn, C1, . . . , Ck)

with high probability.

3. Suppose we find a set of clusters Γ1, . . . ,Γk such that:

Cost(y1, . . . , yn,Γ1, . . . ,Γk) ≤ γ · Cost(y1, . . . , yn, C∗1 , . . . , C∗k)

where C∗1 , . . . , C
∗
k is the optimal clustering for the points y1, . . . , yn. That is, we found a γ-approximation

to the optimal clustering for the low-dimensional points. Show that for ε ≤ 1/2, we have

Cost(x1, . . . , xn,Γ1, . . . ,Γk) ≤ (1 +O(ε)) · γ · Cost(x1, . . . , xn, Copt
1 , . . . , Copt

k),

where Copt
1 , . . . , Copt

k is the optimal cluster for x1, . . . , xn.

In other words, we can compute an approximate clustering for our original points using the low dimensional

data. This speeds up algorithms for k-means whenever log n/ε2 < d.

4

