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Overview

Course Overview and Recap
What have we learned?
High-Level Principles
Interconnectedness

Where do we go from here?
Next steps
“Real” Life
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What was this course about?

In your previous algorithms/optimization/data structures course, you
learned some of the following:

combinatorial techniques (divide-and-conquer, greedy algorithms,
dynamic programming, local search, etc.)

data structures (heaps, balanced trees, etc.)

The techniques above emphasized two computational models
(sequential & deterministic computation, query model).
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What was this course about?

In this course we used the algorithmic lens to:

explore several models of computation:
1 deterministic sequential
2 randomized sequential
3 randomized parallel
4 sublinear-time
5 memory constrained (streaming)
6 distributed
7 online (competitive analysis)
8 algebraic
9 interactive

expand your algorithmic toolkit
1 amortized analysis
2 use of randomness
3 concentration inequalities
4 dealing with NP-complete problems (approximation algorithms)
5 exploring the limits of approximation algorithms
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High-level principles in algorithms

When encountering a problem, follow template:
1 what model of computation is most suitable?

That is: what are the most important resources and constraints that
we need to respect?

2 What guarantees are possible in the model of computation? Can we
hope to get an optimal answer to the problem?
That is: are there any impossibility results which are known in the
computational model?

3 what is the simplest/most natural algorithm to solve it, and what is its
complexity?

4 Can we do better?
5 Is the problem hard? If so, can we hope to relax the guarantees?
6 Can we do better?
7 Can we show that our algorithm is the best?

That is, we could try to reduce it to another problem which is known
to be optimum (perhaps under certain complexity assumptions)
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Example: Amortized Analysis

In data structures, oftentimes one cares about worst-case per query

internet’s client-server model

sometimes, we don’t care about worst-case per query, but worst-case
overall

use of data structures in sequential algorithms
minimum spanning tree

Learned how to use amortized analysis to provide better overall
guarantees

vanilla amortization count all costs
charging scheme assign charges to operations
potential function assign charges and potential to data structure
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Similar input setting - different models

When input comes to you “online” (as a stream of events)

YOLO: you only look once

we may have different computational models/goals

We learned:

data streaming: memory is our main constraint. Content with
approximation of best answer
Examples: median, heavy hitters, distinct elements
online algorithms: want fast updates, need to decide on the spot.
Want to do as best as we can compared to best in hindsight
(algorithms that can see entire input beforehand)
competitive analysis
Examples: multiplicative weights update, paging, k-server
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Randomness gives us power

We learned how to use randomness in algorithms

To use randomness, tradeoff between an algorithm which works all
the time (deterministic) to one that works most of the time

Usually faster (or the only option)

Quite useful in many settings:

when we don’t know what to do
when problem has some adversarial input format

when we have to make decisions before seeing the whole input
(streaming)
when problem can be encoded in algebraic format (polynomial identity
testing)
when we need to construct objects which are abundant, but “hard” to
construct (hash functions, graph sparsification, dimension reduction,
expanders)
when we need to estimate number of objects which are hard to count
(random walks)
approximation algorithms (randomized rounding)
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Dealing with NP-hard problems

when faced with an NP-hard (optimization) problems, still want to
solve them (as best as we can)

to that task, important to relax the guarantees

instead of trying to get best solution, get a solution which is
guaranteed to be close to best

formulate problems as integer programs or quadratic programs and
relax them to problems we can solve: linear programs or semidefinite
programs

when we have enough structure, deterministic methods are good

when integer programs have nice vertex solutions, easy to obtain
deterministic rounding

when the above does not happen, randomness to the rescue
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Interaction gives us power and limitations

We learned about complexity of proofs, and how we can use
interaction to give different characterization of complexity classes

PCP theorem: NP can be characterized as problems that have proofs
which can be verified by making 3 random queries to the proof!

Also saw how we can use interactive proofs (PCPs) to construct
reductions which preserve a gap between YES and NO instances

Interaction not only good for hardness of approximation - saw how to
use interaction to give zero knowledge proofs

How to convince someone that you know something without revealing
any knowledge on how you do it.
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Algebraic/Arithmetic Algorithms

Also learned about algebraic/arithmetic models of computation

when your problem is algebraic in nature, this is the most natural model

widely used for some of the most used algorithms in real life: matrix
multiplication, discrete Fourier transform

Used widely for design of parallel algorithms, since “linear algebra can
be done in parallel”

More generally: “any polynomial you can compute is a determinant”
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Distributed Computation
Algorithms which run on a network, or multiprocessors within a
computer which share memory

Problems they solve:
Resource Management
Data Management and Transmission
Synchronization
Consensus
many more

Challenges in this setting:
Concurrent Activity
Uncertainty of order of events
Failure and recovery of processors or channels

Many models
Memory & Communication: shared memory, message-passing
Timing: synchronous (rounds), asynchronous, partially synchronous
(bounds on message delay, processor speeds, clock rates)
Failures: processor (stop, Byzantine), communication (message
loss/altered), system state corruption
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Interconnectedness in Algorithms and Complexity

We saw many different settings for algorithms, important problems
and techniques

Is this just a bunch of tricks though?

Certainly not

we saw how randomness is applied in many different settings, and
common techniques such as hashing, fingerprinting, polynomial
identity testing

interactive proofs, from proof complexity, used to prove that certain
algorithms cannot be approximated up to a certain point

hashing and fingerprinting highly used in interactive proofs

Algorithms used to prove lower bounds (recent trend - highly
recommended!)

Algorithms in forms of reductions, used to prove that even easy
problems cannot be improved! (fine-grained complexity)
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Course Overview and Recap
What have we learned?
High-Level Principles
Interconnectedness

Where do we go from here?
Next steps
“Real” Life
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How can I learn more?

Consider taking more advanced courses next term!
See graduate course openings at:

Current graduate course offerings for next term!

https://cs.uwaterloo.ca/current-graduate-students/courses/

current-course-offerings

Or, try out some of the research opportunities at UW!
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Research

Consider doing a URA, URF or USRA with a U Waterloo faculty!
See research openings at:

Undergraduate Research Assistanship (URA):

https://cs.uwaterloo.ca/computer-science/

current-undergraduate-students/research-opportunities/

undergraduate-research-assistantship-ura-program

Undergraduate Research Fellowship (URF):

https://grec.cs.uwaterloo.ca/

Undergraduate Research Internship (URI):

https://cs.uwaterloo.ca/current-undergraduate-students/

research-opportunities/

undergraduate-research-internship-uri-program

For Canadians, please check out NSERC’s USRA:

https://cs.uwaterloo.ca/usra
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But is this theory stuff useful?

Certainly so - and lately the gap between theory and practice has
been quite short

intense use of theoretical cryptography and distributed computing in
cryptocurrencies

cryptography highly used in e-commerce

several algorithms used in computational biology

Markov chains used in page rank, simulations of physical systems

many more applications
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Questions

Questions?
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