
Lecture 22: Zero-Knowledge Proofs

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 25, 2021

1 / 86



Overview

Administrivia

Why Zero Knowledge?

Zero-Knowledge Proofs

Conclusion

Acknowledgements

2 / 86



Rate this course!

Please log in to

https://evaluate.uwaterloo.ca/

from November 24th until December 7th and provide us with your
evaluation and feedback on the course!

This would really help me figuring out what worked and what didn’t
for the course

3 / 86



Research Opportunities at UW!

Consider doing a URA, URF or USRA with a U Waterloo faculty!
See research openings at:

Undergraduate Research Assistanship (URA):

https://cs.uwaterloo.ca/computer-science/

current-undergraduate-students/research-opportunities/

undergraduate-research-assistantship-ura-program

Undergraduate Research Fellowship (URF):

https://grec.cs.uwaterloo.ca/

Undergraduate Research Internship (URI):

https://cs.uwaterloo.ca/current-undergraduate-students/

research-opportunities/

undergraduate-research-internship-uri-program

For Canadians, please check out NSERC’s USRA:

https://cs.uwaterloo.ca/usra

4 / 86



Administrivia

Why Zero Knowledge?

Zero-Knowledge Proofs

Conclusion

Acknowledgements

5 / 86



Cyptography

In cryptography, want to communicate with other people/entities
whom we may not trust.

6 / 86



Cyptography

In cryptography, want to communicate with other people/entities
whom we may not trust.

Or we may not trust the channel of communication

someone may eavesdrop our messages
messages could be corrupted
someone may try to impersonate us
it’s a wild world out there

7 / 86



Cyptography

In cryptography, want to communicate with other people/entities
whom we may not trust.

Or we may not trust the channel of communication

someone may eavesdrop our messages
messages could be corrupted
someone may try to impersonate us
it’s a wild world out there

Situation

Alice has all her files encrypted (in public database)
Bob requests from her the contents of one of her files

8 / 86



Cyptography

In cryptography, want to communicate with other people/entities
whom we may not trust.

Or we may not trust the channel of communication

someone may eavesdrop our messages
messages could be corrupted
someone may try to impersonate us
it’s a wild world out there

Situation

Alice has all her files encrypted (in public database)
Bob requests from her the contents of one of her files
She could simply send the decrypted file to Bob

9 / 86



Cyptography

In cryptography, want to communicate with other people/entities
whom we may not trust.

Or we may not trust the channel of communication

someone may eavesdrop our messages
messages could be corrupted
someone may try to impersonate us
it’s a wild world out there

Situation

Alice has all her files encrypted (in public database)
Bob requests from her the contents of one of her files
She could simply send the decrypted file to Bob
Bob has no way of knowing that this message comes from Alice (or
that this is indeed the right file)

10 / 86



Cyptography

In cryptography, want to communicate with other people/entities
whom we may not trust.

Or we may not trust the channel of communication

someone may eavesdrop our messages
messages could be corrupted
someone may try to impersonate us
it’s a wild world out there

Situation

Alice has all her files encrypted (in public database)
Bob requests from her the contents of one of her files
She could simply send the decrypted file to Bob
Bob has no way of knowing that this message comes from Alice (or
that this is indeed the right file)
Alice could prove to Bob this is the correct file by sending her
encryption key

11 / 86



Cyptography

In cryptography, want to communicate with other people/entities
whom we may not trust.

Or we may not trust the channel of communication

someone may eavesdrop our messages
messages could be corrupted
someone may try to impersonate us
it’s a wild world out there

Situation

Alice has all her files encrypted (in public database)
Bob requests from her the contents of one of her files
She could simply send the decrypted file to Bob
Bob has no way of knowing that this message comes from Alice (or
that this is indeed the right file)
Alice could prove to Bob this is the correct file by sending her
encryption key
But then Bob has access to her entire database!

12 / 86



Cyptography

In cryptography, want to communicate with other people/entities
whom we may not trust.

Or we may not trust the channel of communication

someone may eavesdrop our messages
messages could be corrupted
someone may try to impersonate us
it’s a wild world out there

Situation

Alice has all her files encrypted (in public database)
Bob requests from her the contents of one of her files
She could simply send the decrypted file to Bob
Bob has no way of knowing that this message comes from Alice (or
that this is indeed the right file)
Alice could prove to Bob this is the correct file by sending her
encryption key
But then Bob has access to her entire database!
Can Alice convince Bob that she gave right file without giving any
more knowledge beyond that she gave right file?

13 / 86



Zero-Knowledge Proofs

Proofs in which the verifier gains no knowledge beyond the validity of the
assertion.

14 / 86



Knowledge vs Information

What do you mean by knowledge?

What does it mean to “learn something/gain knowledge”?

What is difference between knowledge and information?

15 / 86



Knowledge vs Information

What do you mean by knowledge?

What does it mean to “learn something/gain knowledge”?

What is difference between knowledge and information?

First question is quite complex, so let’s only talk about the second
and third

16 / 86



Knowledge vs Information

What do you mean by knowledge?

What does it mean to “learn something/gain knowledge”?

What is difference between knowledge and information?

First question is quite complex, so let’s only talk about the second
and third

Knowledge has to do with your computational ability

If you could have found the answer (i.e. computed it) without help,
then you gained no knowledge

17 / 86



Knowledge vs Information

What do you mean by knowledge?

What does it mean to “learn something/gain knowledge”?

What is difference between knowledge and information?

First question is quite complex, so let’s only talk about the second
and third

Knowledge has to do with your computational ability

If you could have found the answer (i.e. computed it) without help,
then you gained no knowledge

Example:

Bob asks Alice whether a graph G is Eulerian

18 / 86



Knowledge vs Information

What do you mean by knowledge?

What does it mean to “learn something/gain knowledge”?

What is difference between knowledge and information?

First question is quite complex, so let’s only talk about the second
and third

Knowledge has to do with your computational ability

If you could have found the answer (i.e. computed it) without help,
then you gained no knowledge

Example:

Bob asks Alice whether a graph G is Eulerian
Bob gains no knowledge in this interaction, since he could have
computed it by himself (By Euler’s theorem: check that all vertices
have even degree)

19 / 86



Knowledge vs Information

What do you mean by knowledge?

What does it mean to “learn something/gain knowledge”?

What is difference between knowledge and information?

First question is quite complex, so let’s only talk about the second
and third

Knowledge has to do with your computational ability

If you could have found the answer (i.e. computed it) without help,
then you gained no knowledge

Example:

Bob asks Alice whether a graph G is Eulerian
Bob gains no knowledge in this interaction, since he could have
computed it by himself (By Euler’s theorem: check that all vertices
have even degree)
Bob asks Alice if graph G has Hamiltonian cycle

20 / 86



Knowledge vs Information

What do you mean by knowledge?

What does it mean to “learn something/gain knowledge”?

What is difference between knowledge and information?

First question is quite complex, so let’s only talk about the second
and third

Knowledge has to do with your computational ability

If you could have found the answer (i.e. computed it) without help,
then you gained no knowledge

Example:

Bob asks Alice whether a graph G is Eulerian
Bob gains no knowledge in this interaction, since he could have
computed it by himself (By Euler’s theorem: check that all vertices
have even degree)
Bob asks Alice if graph G has Hamiltonian cycle
Bob now gains knowledge (P ̸= NP ⇒ Bob could not compute it)

21 / 86



Knowledge vs Information

What do you mean by knowledge?

What does it mean to “learn something/gain knowledge”?

What is difference between knowledge and information?

First question is quite complex, so let’s only talk about the second
and third

Knowledge has to do with your computational ability

If you could have found the answer (i.e. computed it) without help,
then you gained no knowledge

Example:

Bob asks Alice whether a graph G is Eulerian
Bob gains no knowledge in this interaction, since he could have
computed it by himself (By Euler’s theorem: check that all vertices
have even degree)
Bob asks Alice if graph G has Hamiltonian cycle
Bob now gains knowledge (P ̸= NP ⇒ Bob could not compute it)

In both cases Alice conveyed information!

22 / 86



Knowledge vs Information

Knowledge:

related to computational difficulty
about publicly known objects

One gains knowledge when one obtains something one could not
compute before!

23 / 86



Knowledge vs Information

Knowledge:

related to computational difficulty
about publicly known objects

One gains knowledge when one obtains something one could not
compute before!

Information:

unrelated to computational difficulty
about partially known objects

One gains information when one obtains something one could not
access before!

24 / 86



Classical Proofs

Our usual notion of proof:

A claim C is given

25 / 86



Classical Proofs

Our usual notion of proof:

A claim C is given
A prover P writes down a proof that C is correct

26 / 86



Classical Proofs

Our usual notion of proof:

A claim C is given
A prover P writes down a proof that C is correct
Prover P sends this proof to a verifier V

27 / 86



Classical Proofs

Our usual notion of proof:

A claim C is given
A prover P writes down a proof that C is correct
Prover P sends this proof to a verifier V
Verifier has procedure (axioms and derivation rules) to check validity of
proof

28 / 86



Classical Proofs

Our usual notion of proof:

A claim C is given
A prover P writes down a proof that C is correct
Prover P sends this proof to a verifier V
Verifier has procedure (axioms and derivation rules) to check validity of
proof
Verifier accepts or rejects based on these rules

29 / 86



Classical Proofs

Our usual notion of proof:

A claim C is given
A prover P writes down a proof that C is correct
Prover P sends this proof to a verifier V
Verifier has procedure (axioms and derivation rules) to check validity of
proof
Verifier accepts or rejects based on these rules

One-way communication (or, in other words, very little interaction!)

30 / 86



Classical Proofs

Our usual notion of proof:

A claim C is given
A prover P writes down a proof that C is correct
Prover P sends this proof to a verifier V
Verifier has procedure (axioms and derivation rules) to check validity of
proof
Verifier accepts or rejects based on these rules

One-way communication (or, in other words, very little interaction!)

Verifier does not trust prover. Otherwise no need to verify proof!

31 / 86



Example: NP (Efficient Verifiable Proofs)

Setup:

A claim C := x ∈ L is given

32 / 86



Example: NP (Efficient Verifiable Proofs)

Setup:

A claim C := x ∈ L is given
A prover P writes down a proof (witness) w that x ∈ L

33 / 86



Example: NP (Efficient Verifiable Proofs)

Setup:

A claim C := x ∈ L is given
A prover P writes down a proof (witness) w that x ∈ L
Prover P sends w to a verifier V

34 / 86



Example: NP (Efficient Verifiable Proofs)

Setup:

A claim C := x ∈ L is given
A prover P writes down a proof (witness) w that x ∈ L
Prover P sends w to a verifier V
Verifier has procedure (axioms and derivation rules) to check validity of
proof (deterministic, polynomial time algorithm)

35 / 86



Example: NP (Efficient Verifiable Proofs)

Setup:

A claim C := x ∈ L is given
A prover P writes down a proof (witness) w that x ∈ L
Prover P sends w to a verifier V
Verifier has procedure (axioms and derivation rules) to check validity of
proof (deterministic, polynomial time algorithm)
Verifier accepts iff V (x ,w) = 1

36 / 86



Example: NP (Efficient Verifiable Proofs)

Setup:

A claim C := x ∈ L is given
A prover P writes down a proof (witness) w that x ∈ L
Prover P sends w to a verifier V
Verifier has procedure (axioms and derivation rules) to check validity of
proof (deterministic, polynomial time algorithm)
Verifier accepts iff V (x ,w) = 1

In this setting, verifier learns the proof!

37 / 86



Example: Factoring

Setup:

A claim C := N is a product of two primes is given

38 / 86



Example: Factoring

Setup:

A claim C := N is a product of two primes is given
A prover P writes down a proof: two primes p, q that N = p · q

39 / 86



Example: Factoring

Setup:

A claim C := N is a product of two primes is given
A prover P writes down a proof: two primes p, q that N = p · q
Prover P sends (p, q) to a verifier V

40 / 86



Example: Factoring

Setup:

A claim C := N is a product of two primes is given
A prover P writes down a proof: two primes p, q that N = p · q
Prover P sends (p, q) to a verifier V
Verifier computes p · q and checks that p, q are prime.
Checking validity of proof (deterministic, polynomial time algorithm)

41 / 86



Example: Factoring

Setup:

A claim C := N is a product of two primes is given
A prover P writes down a proof: two primes p, q that N = p · q
Prover P sends (p, q) to a verifier V
Verifier computes p · q and checks that p, q are prime.
Checking validity of proof (deterministic, polynomial time algorithm)
Verifier accepts iff p, q prime, and N = pq

42 / 86



Example: Factoring

Setup:

A claim C := N is a product of two primes is given
A prover P writes down a proof: two primes p, q that N = p · q
Prover P sends (p, q) to a verifier V
Verifier computes p · q and checks that p, q are prime.
Checking validity of proof (deterministic, polynomial time algorithm)
Verifier accepts iff p, q prime, and N = pq

In this setting, verifier learns the proof (in this case factorization)!

43 / 86



Example: Graph Isomorphism

Setup:

A claim C := graphs G0,G1 are isomorphic

44 / 86



Example: Graph Isomorphism

Setup:

A claim C := graphs G0,G1 are isomorphic
A prover P writes down an isomorphism ρ such that ρ(G0) = G1

45 / 86



Example: Graph Isomorphism

Setup:

A claim C := graphs G0,G1 are isomorphic
A prover P writes down an isomorphism ρ such that ρ(G0) = G1

Prover P sends ρ to a verifier V

46 / 86



Example: Graph Isomorphism

Setup:

A claim C := graphs G0,G1 are isomorphic
A prover P writes down an isomorphism ρ such that ρ(G0) = G1

Prover P sends ρ to a verifier V
Verifier checks that ρ is a permutation of vertices, and that
ρ(G0) = G1 (deterministic, polynomial time algorithm)

47 / 86



Example: Graph Isomorphism

Setup:

A claim C := graphs G0,G1 are isomorphic
A prover P writes down an isomorphism ρ such that ρ(G0) = G1

Prover P sends ρ to a verifier V
Verifier checks that ρ is a permutation of vertices, and that
ρ(G0) = G1 (deterministic, polynomial time algorithm)
Verifier accepts iff the above is correct.

48 / 86



Example: Graph Isomorphism

Setup:

A claim C := graphs G0,G1 are isomorphic
A prover P writes down an isomorphism ρ such that ρ(G0) = G1

Prover P sends ρ to a verifier V
Verifier checks that ρ is a permutation of vertices, and that
ρ(G0) = G1 (deterministic, polynomial time algorithm)
Verifier accepts iff the above is correct.

In this setting, verifier learns the isomorphism (i.e., the proof)!

49 / 86



Can we convince people differently?

Yes! But we need to modify the way proofs are checked.

50 / 86



Can we convince people differently?

Yes! But we need to modify the way proofs are checked.

Make proofs interactive, instead of only one-way

51 / 86



Can we convince people differently?

Yes! But we need to modify the way proofs are checked.

Make proofs interactive, instead of only one-way
Verifier is allowed private randomness

52 / 86



Can we convince people differently?

Yes! But we need to modify the way proofs are checked.

Make proofs interactive, instead of only one-way
Verifier is allowed private randomness

In the end, we will see a (zero-knowledge) proof for graph
isomorphism as follows:

Alice: I will not give you an isomorphism, but I will prove that I could
give you one, if I wanted to.

53 / 86



Administrivia

Why Zero Knowledge?

Zero-Knowledge Proofs

Conclusion

Acknowledgements

54 / 86



Example: Graph Isomorphism
Setup:

A claim C := graphs G0,G1 are isomorphic

55 / 86



Example: Graph Isomorphism
Setup:

A claim C := graphs G0,G1 are isomorphic
A prover P produces a random graph H for which:

56 / 86



Example: Graph Isomorphism
Setup:

A claim C := graphs G0,G1 are isomorphic
A prover P produces a random graph H for which:

It can give isomorphism ρ0 from G0 to H
It can give isomorphism ρ1 from G1 to H

57 / 86



Example: Graph Isomorphism
Setup:

A claim C := graphs G0,G1 are isomorphic
A prover P produces a random graph H for which:

It can give isomorphism ρ0 from G0 to H
It can give isomorphism ρ1 from G1 to H

Above possible iff G0 and G1 isomorphic!

58 / 86



Example: Graph Isomorphism
Setup:

A claim C := graphs G0,G1 are isomorphic
A prover P produces a random graph H for which:

It can give isomorphism ρ0 from G0 to H
It can give isomorphism ρ1 from G1 to H

Above possible iff G0 and G1 isomorphic!
Verifier picks random bit b ∈ {0, 1}

59 / 86



Example: Graph Isomorphism
Setup:

A claim C := graphs G0,G1 are isomorphic
A prover P produces a random graph H for which:

It can give isomorphism ρ0 from G0 to H
It can give isomorphism ρ1 from G1 to H

Above possible iff G0 and G1 isomorphic!
Verifier picks random bit b ∈ {0, 1}
Prover gives isomorphism ρb

60 / 86



Example: Graph Isomorphism
Setup:

A claim C := graphs G0,G1 are isomorphic
A prover P produces a random graph H for which:

It can give isomorphism ρ0 from G0 to H
It can give isomorphism ρ1 from G1 to H

Above possible iff G0 and G1 isomorphic!
Verifier picks random bit b ∈ {0, 1}
Prover gives isomorphism ρb
Verifier checks that ρb(H) = Gb

61 / 86



Example: Graph Isomorphism
Setup:

A claim C := graphs G0,G1 are isomorphic
A prover P produces a random graph H for which:

It can give isomorphism ρ0 from G0 to H
It can give isomorphism ρ1 from G1 to H

Above possible iff G0 and G1 isomorphic!
Verifier picks random bit b ∈ {0, 1}
Prover gives isomorphism ρb
Verifier checks that ρb(H) = Gb

Note that verifier will not learn isomorphism between G0 and G1!

62 / 86



Example: Graph Isomorphism
Setup:

A claim C := graphs G0,G1 are isomorphic
A prover P produces a random graph H for which:

It can give isomorphism ρ0 from G0 to H
It can give isomorphism ρ1 from G1 to H

Above possible iff G0 and G1 isomorphic!
Verifier picks random bit b ∈ {0, 1}
Prover gives isomorphism ρb
Verifier checks that ρb(H) = Gb

Note that verifier will not learn isomorphism between G0 and G1!

Note that:

Claim is true ⇒ prover can always give isomorphism!
Claim is false ⇒ can catch bad proof with probability = 1/2

63 / 86



Example: Graph Isomorphism
Setup:

A claim C := graphs G0,G1 are isomorphic
A prover P produces a random graph H for which:

It can give isomorphism ρ0 from G0 to H
It can give isomorphism ρ1 from G1 to H

Above possible iff G0 and G1 isomorphic!
Verifier picks random bit b ∈ {0, 1}
Prover gives isomorphism ρb
Verifier checks that ρb(H) = Gb

Note that verifier will not learn isomorphism between G0 and G1!

Note that:

Claim is true ⇒ prover can always give isomorphism!
Claim is false ⇒ can catch bad proof with probability = 1/2
Can amplify probability of catching bad proof by repeating protocol
above!

64 / 86



Example: Graph Isomorphism
Setup:

A claim C := graphs G0,G1 are isomorphic
A prover P produces a random graph H for which:

It can give isomorphism ρ0 from G0 to H
It can give isomorphism ρ1 from G1 to H

Above possible iff G0 and G1 isomorphic!
Verifier picks random bit b ∈ {0, 1}
Prover gives isomorphism ρb
Verifier checks that ρb(H) = Gb

Note that verifier will not learn isomorphism between G0 and G1!

Note that:

Claim is true ⇒ prover can always give isomorphism!
Claim is false ⇒ can catch bad proof with probability = 1/2
Can amplify probability of catching bad proof by repeating protocol
above!

How can we model the fact that verifier does not gain knowledge?!

Simulation!

65 / 86



Simulation of Protocol

Key idea: if claim is indeed true, then verifier’s view of proof could
have been simulated by the verifier alone!

66 / 86



Simulation of Protocol

Key idea: if claim is indeed true, then verifier’s view of proof could
have been simulated by the verifier alone!

Simulated protocol:

The verifier (privately) produces a random permutation ρ and a bit b
and outputs H = ρ(Gb).

67 / 86



Simulation of Protocol

Key idea: if claim is indeed true, then verifier’s view of proof could
have been simulated by the verifier alone!

Simulated protocol:

The verifier (privately) produces a random permutation ρ and a bit b
and outputs H = ρ(Gb).

Verifier then picks bit b from previous step

68 / 86



Simulation of Protocol

Key idea: if claim is indeed true, then verifier’s view of proof could
have been simulated by the verifier alone!

Simulated protocol:

The verifier (privately) produces a random permutation ρ and a bit b
and outputs H = ρ(Gb).

Verifier then picks bit b from previous step

Verifier gives isomorphism ρ−1

69 / 86



Simulation of Protocol

Key idea: if claim is indeed true, then verifier’s view of proof could
have been simulated by the verifier alone!

Simulated protocol:

The verifier (privately) produces a random permutation ρ and a bit b
and outputs H = ρ(Gb).

Verifier then picks bit b from previous step

Verifier gives isomorphism ρ−1

Verifier checks that ρ−1(H) = Gb

70 / 86



Simulation of Protocol

Key idea: if claim is indeed true, then verifier’s view of proof could
have been simulated by the verifier alone!

Simulated protocol:

The verifier (privately) produces a random permutation ρ and a bit b
and outputs H = ρ(Gb).

Verifier then picks bit b from previous step

Verifier gives isomorphism ρ−1

Verifier checks that ρ−1(H) = Gb

Simulation ⇒ V gained no new information!

71 / 86



Perfect Zero Knowledge Proof

Note that we usually talked about not trusting provers so far, but for
Zero-Knowledge, we will not trust verifiers (as they may try to obtain
information about the proof!)

72 / 86



Perfect Zero Knowledge Proof

Note that we usually talked about not trusting provers so far, but for
Zero-Knowledge, we will not trust verifiers (as they may try to obtain
information about the proof!)

Definition (Perfect Zero Knowledge)

A prover P is perfect zero-knowledge for language L if for every
polynomial time, randomized verifier V ∗, there is a randomized algorithm
M∗ such that for every x ∈ L the following random variables are identically
distributed:

⟨P ,V ∗⟩(x), that is, output of interaction between prover P and
verifier V ∗ on input x

M∗(x), that is, output of algorithm M∗ (simulation) on input x

73 / 86



Perfect Zero Knowledge Proof

Note that we usually talked about not trusting provers so far, but for
Zero-Knowledge, we will not trust verifiers (as they may try to obtain
information about the proof!)

Definition (Perfect Zero Knowledge)

A prover P is perfect zero-knowledge for language L if for every
polynomial time, randomized verifier V ∗, there is a randomized algorithm
M∗ such that for every x ∈ L the following random variables are identically
distributed:

⟨P ,V ∗⟩(x), that is, output of interaction between prover P and
verifier V ∗ on input x

M∗(x), that is, output of algorithm M∗ (simulation) on input x

The above captures the idea that V ∗ is not gaining any extra
computational power by interacting with P, since same output could
have been generated by M∗

74 / 86



Perfect Zero Knowledge Proof2

Previous definition is a bit too strict to be useful, so we relax it.1

We will allow simulator to fail with small probability (denoted by
outputting ⊥)

1Very common phenomenon in crypto, that statistical indistinguishability too strict.
2For applications in cryptography, one can even relax this definition further, to

include computational zero-knowledge
75 / 86



Perfect Zero Knowledge Proof2

Previous definition is a bit too strict to be useful, so we relax it.1

We will allow simulator to fail with small probability (denoted by
outputting ⊥)

Definition (Perfect Zero Knowledge)

A prover P is perfect zero-knowledge for language L if for every
polynomial time, randomized verifier V ∗, there is a randomized algorithm
M∗ such that for every x ∈ L the following holds:

1 With probability ≤ 1/2, M∗(x) = ⊥
2 Conditioned on M∗(x) ̸= ⊥, the following variables are identially

distributed:

⟨P ,V ∗⟩(x), that is, output of interaction between prover P and
verifier V ∗ on input x
M∗(x), that is, output of algorithm M∗ (simulation) on input x

1Very common phenomenon in crypto, that statistical indistinguishability too strict.
2For applications in cryptography, one can even relax this definition further, to

include computational zero-knowledge
76 / 86



Simulation of Protocol
Key idea: if claim is indeed true, then verifier’s view of proof could
have been simulated by the verifier alone!

77 / 86



Simulation of Protocol
Key idea: if claim is indeed true, then verifier’s view of proof could
have been simulated by the verifier alone!

Simulated protocol:

The simulator produces a random permutation ρ and outputs
H = ρ(G0).

78 / 86



Simulation of Protocol
Key idea: if claim is indeed true, then verifier’s view of proof could
have been simulated by the verifier alone!

Simulated protocol:

The simulator produces a random permutation ρ and outputs
H = ρ(G0).

Simulator then picks random bit b

79 / 86



Simulation of Protocol
Key idea: if claim is indeed true, then verifier’s view of proof could
have been simulated by the verifier alone!

Simulated protocol:

The simulator produces a random permutation ρ and outputs
H = ρ(G0).

Simulator then picks random bit b

If b ̸= 0 then output ⊥

80 / 86



Simulation of Protocol
Key idea: if claim is indeed true, then verifier’s view of proof could
have been simulated by the verifier alone!

Simulated protocol:

The simulator produces a random permutation ρ and outputs
H = ρ(G0).

Simulator then picks random bit b

If b ̸= 0 then output ⊥
Otherwise simulator gives isomorphism ρ−1

Simulator checks that ρ−1(H) = G0

81 / 86



Simulation of Protocol
Key idea: if claim is indeed true, then verifier’s view of proof could
have been simulated by the verifier alone!

Simulated protocol:

The simulator produces a random permutation ρ and outputs
H = ρ(G0).

Simulator then picks random bit b

If b ̸= 0 then output ⊥
Otherwise simulator gives isomorphism ρ−1

Simulator checks that ρ−1(H) = G0

Simulation ⇒ perfect zero knowledge for our prover P!

82 / 86



Simulation of Protocol
Key idea: if claim is indeed true, then verifier’s view of proof could
have been simulated by the verifier alone!

Simulated protocol:

The simulator produces a random permutation ρ and outputs
H = ρ(G0).

Simulator then picks random bit b

If b ̸= 0 then output ⊥
Otherwise simulator gives isomorphism ρ−1

Simulator checks that ρ−1(H) = G0

Simulation ⇒ perfect zero knowledge for our prover P!

Note that whenever we don’t fail, we output same distribution as the
original protocol!

83 / 86



Conclusion

We saw today how the power of interaction can be used to verify
validity of “proofs” without conveying information about it

84 / 86



Conclusion

We saw today how the power of interaction can be used to verify
validity of “proofs” without conveying information about it

Has applications in

Modern cryptography
Credit Cards
Passwords
Complexity Theory (can use zero-knowledge to construct complexity
classes)
Used in cryptocurrencies (validate transactions without giving details
about transactions)

85 / 86



Acknowledgement

Lecture based largely on:

Oded Goldreich’s Foundations of Cryptography book, Chapter 6
Berkeley & MIT’s 6.875 Lecture 14

https://inst.eecs.berkeley.edu/~cs276/fa20/slides/lec14.pdf

86 / 86


