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Overview

@ Administrivia

@ Matrix Multiplication

@ The Exponent of Linear Algebra
@ Matrix Inversion

@ Determinant and Matrix Inverse
@ Conclusion

@ Computing Partial Derivatives
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Rate this course!

Please log in to

https://evaluate.uwaterloo.ca/

@ This would really help me figuring out what worked and what didn't
for the course

@ And let the school know if | was a good boy this term!

@ Teaching this course is also a learning experience for me :)
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How can | learn more?

Consider taking more advanced courses next term!
See graduate course openings at:

@ Current graduate course offerings for next term!

https://cs.uwaterloo.ca/current-graduate-students/courses/
current-course-offerings/winter-2022-tentative

@ Or, try out some of the research opportunities at UW!

URA , URF) USRA
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Matrix Multiplication

@ Input: matrices A, B € F™*"
@ Output: product C = AB

a“ Qu bll b.t _ Cn Cix
du O bt b e Cn
C“ = ﬁ“ ‘3\\ + Q\Llh.]
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Matrix Multiplication

@ Input: matrices A, B € F™*"
@ Output: product C = AB

o Naive algorithm:

Compute n matrix vector multiplications.
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Matrix Multiplication

hwul, 72N wud»(“
/

Input: matrices A, B € F"™*"
Output: product C = AB

Naive algorithm:

Compute n matrix vector multiplications.
@ Running time: O(n%)

Can we do better?
lA)\'lG-"' in Ha Limit 0( bC‘HM-’

hor bx _(LCT\"') (be(,a,wx have fo yeaol
input 21 e
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Matrix Multiplication

Input: matrices A, B € F"*"
Output: product C = AB

Naive algorithm:

Compute n matrix vector multiplications.
@ Running time: O(n%)
Can we do better?
Strassen 1969: YES!

@ ldea: divide matrix into blocks, and reduce number of multiplications
needed!

Addi fm Ve chep

. ) W ini'm.
Mu‘hph‘mﬂm n e(pmn& & mu(,{,‘(j-;fm:f
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Strassen's Algorithm

@ Suppose that n = 2k
o Let A B, C € F™" such that C = AB. Divide them into blocks of

size n/2:

A— <\Ai1_1_l_’ﬁ2> B— <B11 Bu) C— <C11 l C12>
Al Axn)’ By [ Bxn)’ G| G

Cu =" ,41(“) < 8-Mwm) ¢ nt
Coshalihuts) )

we um <8 Mhphah‘m

1, e COM
6TW_A bg kagal’“’)bcﬂ dj" W .&l P"ﬂ h"" 9/102
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Strassen's Algorithm

@ Suppose that n = 2k

o Let A B, C € F™" such that C = AB. Divide them into blocks of
size n/2:

A1 A12> (Bn 312> <C11 C12>
A= . B= . C=
<A21 A2 Bx1 B 1

@ Define following matrices:
S1=An+Axn, S5=5 A1, S3=A11 A, Si=An -5

T1=Bio—B11, To=Bx—T1, T3 =Bxn— B, T4 = Tr— B
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Strassen's Algorithm

@ Suppose that n = 2k

o Let A B, C € F™" such that C = AB. Divide them into blocks of
size n/2:

A1 A12> (Bn B12> <C11 C12>
A= . B= . C=
<A21 A2 Bx1 B 1

@ Define following matrices:

(/\g'—!'._ S1=An+An, S2=5 A1, S3=A11—Axn, Sa=An -5
T
Ti =B — B, To=Bx—T1, T3 =Bx— Bz, T4 = T2 — Bx

@ Compute the following 7 products:
"yl P1 = A11B11, P> = A12Bo1, P3 = 54By, Py = ATy
)

Ps =51T1, Po = 5T, Pr=25T3
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Strassen's Algorithm
@ Define following matrices:
S51=Aon+ Axn, S2=5 — A1, S3=A11—An, Sa=An -5

Ty =B —B11, To=Bx—T1, T3 =Bxn— By, T4 =Tr— By

@ Compute the following 7 products:
P1 = A11B11, P> = A12Bo1, P3=54B22, Py = ATy

Ps =51T1, Po = 5T, Pr=53T3

12/102



Strassen's Algorithm
@ Define following matrices:
S1=An +Axn, S2=5 —Au, S3=An—Axn, Si=An -5
Ti=Bio— B, To=Bxp—T1, T3 =Bxn— B2, Ta=T2—Bxn
@ Compute the following 7 products:

P1 = A11B11, P> = A12Bo1, P3 = 54By, Py = AxnT,

Ps =51T1, Po = 5T, Pr=53T3
e Ci1 = Au1Bi1 + A1xBoyy = P+ P
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Strassen's Algorithm
@ Define following matrices:
S1=An +Axn, S2=5 —Au, S3=An—Axn, Si=An -5
Ti=Bio— B, To=Bxp—T1, T3 =Bxn— B2, Ta=T2—Bxn
@ Compute the following 7 products:
@ AuBui, P2 = AwBo, P3= 5482, Pa=AxnTs
Ps = 51T1, Po = 52Tz, Pr=53T3

o Ci1 = AuBi1 +ApBu =P+ P
° C12=A11312 — P1+ P33+ Ps+ Pg

M*/ T Vet B ()
_A\.)(}( Baity) = o
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Strassen's Algorithm
@ Define following matrices:
S51=Aon+ Axn, S2=5 — A1, S3=A11—An, Sa=An -5

Ty =B —B11, To=Bx—T1, T3 =Bxn— By, T4 =Tr— By

Compute the following 7 products:
P1 = A11B11, P> = A12Bo1, P3=54B22, Py = ATy

Ps =51T1, Ps = 5T, Pr=5T;
Ci1 = AuBi1 + ApBar = P1 + P
Ci2 = A11Bi2 + A12Boy = P14+ P34+ Ps + P
Co1 = A21Bi1 + AnByi = P1 — Pa+ Ps + P
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Strassen's Algorithm
@ Define following matrices:
S51=An @Azz, Sy = Si(FA11, Sz = A DAn, S = A DS,
T = 312@511, To = 32297_1, T3 = Byf D Bra, To = To(DBn

Compute the following 7 products:

P1 = A11B11, P> = A12Bo1, P3 = 54By, Py = AxnT,

Ps =51T1, Po = 5T, Pr=53T3

Ci1 = A1 Bu + ABor = P19 P>
Ci2 = A11 B2 + A12Boo = Pl@ P3Q P5@ Ps

Co1 = Ao Bi1 + A Boy = PlgPQ ng7

Cop = A21Bio + ABox = P Ps@P P7
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Strassen's Algorithm

@ Define following matrices:
S1=An+An, S2=5 —An, S3=A1n—-Ax, S4=~An—-%

Ty =B —B11, To=Bx—T1, T3 =Bxn— By, T4 =Tr— By

Compute the following 7 products:
P1 = A11B11, P> = A12Bo1, P3=54B22, Py = ATy

Ps =51T1, Ps=5T,, Pr=5T;
Ci1 = AuBi1 + ApBar = P1 + P
Ci2 = A1 B2+ A12Bxx = P1 + P3 + Ps + Ps
Co1 = A1Bi1 + AxBo1 = Py — Py + Ps + P7
Co2 = A1B12 + AaBop = P1 + Ps + Ps + P7
Correctness follows from the computations
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Analysis of Strassen's Algorithm

@ To compute AB = C we used:

@ 8 additions — 5, Ti's
@ 7 multiplications P:'s
© 10 additions —= Cy's
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Analysis of Strassen's Algorithm

@ To compute AB = C we used:

@ 8 additions Si, Ti's
@ 7 multiplications P:'s
© 10 additions Gyj's
@ Recurrence:
MM(n) <7-MM(n/2)+18 - c - (n/2)?
W Y prodash } deke,
_ time |
=2 -i-s et

MM(2") < ¥ Hu(2<') + 182
z(H)
< ¥ HM(O)+135[ + 12, ‘]

O(q’k) O(n”b ) ' ¥ | 19/102
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Analysis of Strassen's Algorithm

@ To compute AB = C we used:

© 8 additions S;
@ 7 multiplications
© 10 additions

@ Recurrence:

H oA
nw on un

MM(n) <7-MM(n/2)+18 - c - (n/2)?

MM(2K) <7- MM(2571) 418 . ¢ - 2%k—2
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Analysis of Strassen's Algorithm

@ To compute AB = C we used:

© 8 additions S;
@ 7 multiplications
© 10 additions

@ Recurrence:

H oA
nw on un

MM(n) <7 MM(n/2)+ 18 c - (n/2)?
MM(2K) < 7- MM(2K"1) + 18 - ¢ - 22k~2

e Could also use Master theorem to get MM(n) = O(n'°&7) ~ O(n*8%7)
wch beth %3nff°“"u.l
Hom 1>
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Matrix Multiplication Exponent

e We can define w (or wmyit) as the matrix multiplication exponent.

@ If an algorithm for n x n matrix multiplication has running time O(n®),
then w < a.

@ For any ¢ > 0, there is an algorithm for n x n matrix multiplication
running in time O(n“*¢)

nhitm W in Ha egmont of bt olprite-
for mtnix mlighoabm
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Matrix Multiplication Exponent

e We can define w (or wmyit) as the matrix multiplication exponent.
@ If an algorithm for n x n matrix multiplication has running time O(n®),
then w < a.
@ For any ¢ > 0, there is an algorithm for n x n matrix multiplication
running in time O(n“*¢)
o As we will see today, w is a fundamental constant in computer
sciencel!
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Matrix Multiplication Exponent

e We can define w (or wmyit) as the matrix multiplication exponent.

@ If an algorithm for n x n matrix multiplication has running time O(n®),
then w < a.

@ For any € > 0, there is an algorithm for n x n matrix multiplication
running in time O(n“*¢)

o As we will see today, w is a fundamental constant in computer
science!

o Currently we know 2 < w < mag b‘ ),e*HM 2

Open Question
What is the right value of w?
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Historical Remarks

@ Strassen's work is not only important because it gives a faster matrix
multiplication algorithm, but because it startled the community that
the trivial cubic algorithm could be improved!
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Historical Remarks

@ Strassen's work is not only important because it gives a faster matrix
multiplication algorithm, but because it startled the community that
the trivial cubic algorithm could be improved!

@ Motivated work on better algorithms for all other linear algebraic
problems
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Historical Remarks

@ Strassen’s work is not only important because it gives a faster matrix
multiplication algorithm, but because it startled the community that
the trivial cubic algorithm could be improved!

@ Motivated work on better algorithms for all other linear algebraic
problems

@ introduced complexity of computation of bilinear functions and the
study of complexity of tensor decompositions
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@ The Exponent of Linear Algebra
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The Exponent of Linear Algebra

@ We just saw how to multiply matrices faster than the naive algorithm
@ We also learned about wyy := w

@ How fundamental is the exponent of matrix multiplication?
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The Exponent of Linear Algebra

@ We just saw how to multiply matrices faster than the naive algorithm
@ We also learned about wyy := w
@ How fundamental is the exponent of matrix multiplication?

@ We can similarly define wp for a problem P

Wdeterminant; Winverse; Wilinear system; Wcharacteristic polynomial
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The Exponent of Linear Algebra

We just saw how to multiply matrices faster than the naive algorithm
We also learned about wyy := w

How fundamental is the exponent of matrix multiplication?

We can similarly define wp for a problem P

Wdeterminant; Winverse; Wilinear system; Wcharacteristic polynomial

As we will see today (and in homework):

W = Winverse = Wdeterminant
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The Exponent of Linear Algebra

We just saw how to multiply matrices faster than the naive algorithm
We also learned about wyy := w

How fundamental is the exponent of matrix multiplication?

We can similarly define wp for a problem P

Wdeterminant; Winverse; Wilinear system; Wcharacteristic polynomial

As we will see today (and in homework):

W = Winverse = Wdeterminant

@ More generally, all of these wp's are related to w!

Matrix multiplication exponent fundamental to linear algebra!
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@ Matrix Inversion
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Matrix inverse vs matrix multiplication

@ Matrix inverse is at least as hard as matrix multiplication
@ How to prove this? reductions!

If we can invert matrices quickly, then we can multiply two matrices
quickly.
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Matrix inverse vs matrix multiplication

Matrix inverse is at least as hard as matrix multiplication

How to prove this? reductions!

If we can invert matrices quickly, then we can multiply two matrices
quickly.

Suppose we had an algorithm for inverting matrices

Consider
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Matrix inverse vs matrix multiplication

@ Matrix inverse is at least as hard as matrix multiplication

@ How to prove this? reductions!
If we can invert matrices quickly, then we can multiply two matrices
quickly.
@ Suppose we had an algorithm for inverting matrices
o Consider
I A0
Ma=|0 | B
0 0 |/
@ Then
-1 I —A AB
M &F=|o I - )
0 O /
i A O l -A AD I 0 O
olD o I 06 ~-({0 & 0
Oor o © L 0 & =
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Matrix inverse vs matrix multiplication

@ Matrix inverse is at least as hard as matrix multiplication

@ How to prove this? reductions!
If we can invert matrices quickly, then we can multiply two matrices
quickly.
@ Suppose we had an algorithm for inverting matrices
o Consider
I A0
A=10 | B
0 0 |/
@ Then
I —A AB
Al=10 | -B
0 0 /

@ So if we could invert in time T, then we can multiply two matrices in

e e 0 (n®) = waalhely v O(x")
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Matrix Multiplication vs Matrix Inversion

@ Matrix multiplication is at least as hard as matrix inversion

“If we can multiply two matrices fast, we can also invert them fast.”
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Matrix Multiplication vs Matrix Inversion
@ Matrix multiplication is at least as hard as matrix inversion
“If we can multiply two matrices fast, we can also invert them fast.”
@ Suppose we have an algorithm that performs matrix multiplication.
@ Let n = 2k, divide matrix M into blocks of size n/2

- (2 )
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Matrix Multiplication vs Matrix Inversion

@ Matrix multiplication is at least as hard as matrix inversion

“If we can multiply two matrices fast, we can also invert them fast.”
@ Suppose we have an algorithm that performs matrix multiplication.
@ Let n = 2k, divide matrix M into blocks of size n/2

A B
v=(¢ o)
@ The inverse of M in block form is given by:
M-l | —A'BS™! ‘ Al 0
0 st —CA™L |

Assuming A and S := D — CA™!B are invertible
"¥\

Gchurt Camplcmw+
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Matrix Multiplication vs Matrix Inversion
@ Matrix multiplication is at least as hard as matrix inversion
“If we can multiply two matrices fast, we can also invert them fast.”
@ Suppose we have an algorithm that performs matrix multiplication.
@ Let n = 2k, divide matrix M into blocks of size n/2

A B
v=(¢ o)
@ The inverse of M in block form is given by:

M-l | —A'BS™! ‘ Al 0
0 st —CA™L |
Assuming A and S := D — CA™!B are invertible

@ How do we compute this? Schur Complement

Similar to how we would invert regular matrices! Just pay attention
to non-commutativity.
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Computing Inverse of Block Matrices
I 0 A B\ _ (A B
Az )/l c D O S

-'CA-"A 4 IL-¢c= C-¢+0
Q&W

2) ) (A 1>
(

(e

Q >

(6
(2 %7) (s

p)
S

o>
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Runtime Analysis

@ The inverse of M in block form is given by:

pn— —A-1ps-1 Al 0
—\o st \—cAal |

Assuming A and S := D — CA™!B are invertible.
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Runtime Analysis

@ The inverse of M in block form is given by:

-l | —A1BS™! _ Al
0 s-1 —CA1
Assuming A and S := D — CA™!B are invertible.

@ To invert M, we needed to:
o Invert A

0
/

)
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Runtime Analysis

@ The inverse of M in block form is given by:

-l | —A1BS™! _ Al 0
0 s-1 —CA Y |
Assuming A and S := D — CA™!B are invertible.

@ To invert M, we needed to:
o Invert A

o Compute S:=D — CA™'B 4;( g_ wiainix M{-.'F'fufl'h

o.de (o)
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Runtime Analysis

@ The inverse of M in block form is given by:

-l | —A1BS™! _ Al 0
0 s-1 —CA Y |
Assuming A and S := D — CA™!B are invertible.

@ To invert M, we needed to:

o Invert A
e Compute S:=D — CA™'B
o Invert S
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Runtime Analysis
@ The inverse of M in block form is given by:

Assuming A and S := D — CA™!B are invertible.
@ To invert M, we needed to:

e Invert A

e Compute S:=D — CA™'B

e Invert S

e perform constant number of multiplications above
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Runtime Analysis
@ The inverse of M in block form is given by:
-l | —A1BS! . Al 0
0 s-1 —CA Y |

Assuming A and S := D — CA™!B are invertible.
@ To invert M, we needed to:

e Invert A
e Compute S:=D — CA™'B
e Invert S
e perform constant number of multiplications above
on: fﬂm*
e Recurrence relation: AiS con font

PR S
I(n)<2-1(n/2)+ C-(n/2)~

#(;,‘h iawut nxn watnx
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Solving Recurrence
@ Recurrence relation:
I(n) <2-1(n/2)+ C-(n/2)~

@ We know that 2 < w < 3 w is a constant
\
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Solving Recurrence
@ Recurrence relation:
I(n) <2-1(n/2)+ C-(n/2)~

@ We know that 2 < w < 3
@ Recurrence relation:

1(2K) <212k 1) 4 ¢ . 2w(k=D)

w is a constant
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Solving Recurrence
@ Recurrence relation:
I(n) <2-1(n/2)+ C-(n/2)~

@ We know that 2 < w < 3 w is a constant
@ Recurrence relation:

1(2%) g@/(zk DR T (-
@ Thus C Z‘

t
| ). 2
1L
1l —

, I(n) + 1(2%) < 2% 1(1) + C-ZZWD

2wk —1
<2k
<o+ 57

< C// . 2wk — //nw

’ . We
:) Wjagv = w cn ¥ prvisy ruanlt Wy W @Y
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Determinant vs Matrix Multiplication

@ One can similarly prove that wgeterminant < W

@ This is your homework! :)
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@ Determinant and Matrix Inverse
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Determinant of a Matrix

@ Given matrix M € F"*", the determinant is
n

det(M)>y _ (-1)7 - [ Mio()

o€S, i=1

Al'\slh(O')
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Determinant of a Matrix
o Given matrix M € F™" the determinant is

det( Z H /\/I,O( )

O'GSn

e Given matrix M € F™", and (i,j) € [n]2, the (/,/)-minor of M,

denoted M(J) is given by

Remove t"

row and j* column of M

C}‘ 1) - mian

| 2
(5 e) (%)
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Determinant of a Matrix
o Given matrix M € F™" the determinant is

det( Z H /\/I,O( )

o€E€Sy
e Given matrix M € F™", and (i,j) € [n]2, the (/,/)-minor of M,
denoted M(J) is given by
Remove it" row and j* column of M
@ Determinant has a very special decomposition by minors: given any
row i/, we have

th

n
det(M) = Z(_l)i+jMi,j - det(M()

known as Laplace Expansion T
p P e Hne

depend ov amy
"M
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Determinant of a Matrix
o Given matrix M € F™" the determinant is

det( Z H /\/I,O( )
O'GSn
e Given matrix M € F™", and (i,j) € [n]2, the (/,/)-minor of M,
denoted M(J) is given by

Remove t"

row and j* column of M
@ Determinant has a very special decomposition by minors: given any
row i/, we have

(det Z( 1'+JM - det(M" M)

known as Laplace ExpanSIon
@ Determinants of minors are very much related to derivatives of the
determinant of M

~—
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Determinant and Inverse

@ The determinant is intrinsically related to the inverse of a matrix.
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Determinant and Inverse

@ The determinant is intrinsically related to the inverse of a matrix.

@ In particular, let N € F"™*" be the adjugate matrix

N;; = (—1)™ det(MU)

—_—

/ T
(“}) Q,l) min”nt
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Determinant and Inverse

@ The determinant is intrinsically related to the inverse of a matrix.

@ In particular, let N € F"*" be the adjugate matrix
N;; = (—1)™ det(MU)
@ Note that

MN = det(M) - |

—S—

L Invens ‘_I ~ -1[-. . /Ku)
M= 1M
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Determinant and Inverse

@ The determinant is intrinsically related to the inverse of a matrix.

@ In particular, let N € F"*" be the adjugate matrix
N;; = (—1)™ det(MU)

@ Note that
MN = det(M) - |

@ Entries of the adjugate (determinants of minors) are very much
related to derivatives of the determinant of M

det(M("J)) 1) 9; ; det(M \

‘/Uij = 9'i d“L(M)
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Determinant and Inverse

@ The determinant is intrinsically related to the inverse of a matrix.

@ In particular, let N € F"*" be the adjugate matrix
N;; = (—1)™ det(MU)

@ Note that
MN = det(M) - |

@ Entries of the adjugate (determinants of minors) are very much
related to derivatives of the determinant of M

det(MUD) = (=1)§; ; det(M)

So, if we knew how to compute the determinant AND ALL its partial
derivatives, we could:
@ Compute the adjugate ’< w m‘mk det 1
@ Compute the inverse \V"( Y[ ‘7Y"s d‘ti_("\,) A
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Computing the Determinant

@ Suppose we have an algorithm which computes the determinant in
O(n™) operations
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Computing the Determinant

@ Suppose we have an algorithm which computes the determinant in
O(n™) operations

o Can compute the determinant and all its partial derivatives in O(n®)
operations!
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Computing the Determinant

wd‘_.(- a- Wiav

@ Suppose we have an algorithm which computes the determinant in
O(n™) operations
o Can compute the determinant and all its partial derivatives in O(n®)

operations!
o Compute the inverse by simply dividing det(M())/ det(M)

Ny = (i ki)

we Con computc dub in hme O(n*)
Hum  con Compuk AN )
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Conclusion

@ Today we learned how fundamental matrix multiplication is in
symbolic computation and linear algebra

@ Used fast computation of partial derivatives to compute the inverse
from the determinant
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@ Computing Partial Derivatives
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Algebraic Circuits - base ring R

@ Models the amount of operations needed to compute polynomial
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Algebraic Circuits - base ring R

@ Models the amount of operations needed to compute polynomial
o Algebraic Circuit: directed acyclic graph ® with
e input gates labelled by variables x, ..., x, or elements of R
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Algebraic Circuits - base ring R

@ Models the amount of operations needed to compute polynomial
o Algebraic Circuit: directed acyclic graph ® with

e input gates labelled by variables x, ..., x, or elements of R
o other gates labelled +, x, +
e = gate takes two inputs, which are labelled numerator/denominator
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Algebraic Circuits - base ring R

@ Models the amount of operations needed to compute polynomial
o Algebraic Circuit: directed acyclic graph ® with

input gates labelled by variables xi, ..., x, or elements of R

o other gates labelled +, x, +

e = gate takes two inputs, which are labelled numerator/denominator
o gates compute polynomial (rational function) in natural way
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Algebraic Circuits - base ring R

@ Models the amount of operations needed to compute polynomial
o Algebraic Circuit: directed acyclic graph ® with

input gates labelled by variables xi, ..., x, or elements of R

o other gates labelled +, x, +

e = gate takes two inputs, which are labelled numerator/denominator
o gates compute polynomial (rational function) in natural way

@ circuit size: number of edges in the circuit, denoted by S(®)
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Partial Derivatives

o if f(x1,...,xn) € Flxi1,...,x,] the partial derivatives
Or1f, Oof ..., Onf

are such that

d—1 ¢ : __ -
a,-xf: dx; 7, If‘l—_]
0, otherwise

and
o;if

is computed as above considering all other variables “constant”

4= %A
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Partial Derivatives

o if f(x1,...,xn) € Flxi1,...,x,] the partial derivatives
Or1f, Oof ..., Onf

are such that

B dx? if i = j
4 —
' 0, otherwise

and
o;if

is computed as above considering all other variables “constant”

e Example: f(x1,x2) = xfo — x1x23

O f = 2x1x0 — xg’ Obf = x12 — 3x1x22
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Partial Derivatives

o if f(x1,...,xn) € Flxi1,...,x,] the partial derivatives
Or1f, Oof ..., Onf

are such that
d—1 ¢ : __ -
ixd — dx; 7, ifi=j
/ 0, otherwise

and
o;if

is computed as above considering all other variables “constant”

e Example: f(x1,x2) = x12xz — x1X23

O f = 2x1x0 — xg’ Obf = x12 — 3x1x22
. L. tawr
@ How fast can we compute partial derivatives?

_ an w ‘ kot 1n 2 hwj
J“’ h&\& Cinen't of/\ﬂ't A m‘ukﬂ‘ “ of (ﬁi'a;:(;?m/m


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira



Computing Partial Derivatives

@ If f can be computed using L operations 4+, —, X, then we can
compute ALL partial derivatives simultaneously

Orif,...,0nf

performing 4L operations!
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Computing Partial Derivatives

@ If f can be computed using L operations 4+, —, X, then we can
compute ALL partial derivatives simultaneously

Orif,...,0nf

performing 4L operations!

@ This is very remarkable, since partial derivatives ubiquitous in
computational tasks!

@ gradient descent methods
@ Newton iteration
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Computing Partial Derivatives

@ If f can be computed using L operations 4+, —, X, then we can
compute ALL partial derivatives simultaneously

Orif,...,0nf

performing 4L operations!

@ This is very remarkable, since partial derivatives ubiquitous in
computational tasks!

@ gradient descent methods
@ Newton iteration

@ Algorithm we will see today discovered independently in Machine
Learning - known as backpropagation
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Computing Partial Derivatives

@ We are going to use the chain rule:

m

0if (g1, gm) = Y _(0f)(&1,8, - ,&m) - ¥1g
S A Y, —
J
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Computing Partial Derivatives

@ We are going to use the chain rule:

m

aif(gl’g% s 7gm) = Z(ajf)(gl7g2v cee 7gm) : 8Igj
j=1

@ But wait, doesn't the chain rule makes us compute 2m partial
derivatives?
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Computing Partial Derivatives

@ We are going to use the chain rule:

m

aif(g17g2a s 7gm) = Z(ajf)(gl7g2v cee 7gm) : 818}
j=1

@ But wait, doesn't the chain rule makes us compute 2m partial
derivatives?
@ Main intuitions:

@ if each function we have has m being constant (depend on constant #
of variables), then chain rule is cheap!
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Computing Partial Derivatives

@ We are going to use the chain rule:

m

aif(g17g2a s 7gm) = Z(ajf)(gl7g2v cee 7gm) : 818}
j=1

@ But wait, doesn't the chain rule makes us compute 2m partial
derivatives?
@ Main intuitions:
@ if each function we have has m being constant (depend on constant #
of variables), then chain rule is cheap!
@ many of the partial derivatives along the computation will either be
zero or have already been computed!

83/102



Computing Partial Derivatives

@ We are going to use the chain rule:

m

aif(g17g2a s 7gm) = Z(ajf)(gl7g2v cee 7gm) : 818}

— —

j=1

@ But wait, doesn't the chain rule makes us compute 2m partial
derivatives?

@ Main intuitions:
@ if each function we have has m being constant (depend on constant #
of variables), then chain rule is cheap!
@ many of the partial derivatives along the computation will either be
zero or have already been computed!
© Have to compute partial derivatives “in reverse’
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Example

@ Consider the following computation:

Pr=x1+x, P=x1+x3, P3=P1-P, Po=x " Ps

Py
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Example

@ Consider the following computation:
Pir=x1+x2, Po=x1+x3, P3=P1-Pa, Pr=x4-P3

@ Doing the direct method - i.e. computing all partial derivatives per

operation:
Computation | 0 | 0 | 0 | O
Pi=x1+x 1 1 0 0
P2 = X1 + X3 1 0 1 0
7 Py=P1Py T P2 O1PI@DPy - O1P2 | PP | Pi(D3P2 | 0
P4 :X4P3 X4-61P3 X4-82P3 X4-83P3 P3

Ootr { new %a,h'm neegleof
|.<6 boffM’Ur
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Example

@ Consider the following computation:
Pr=xi+x, Po=x1+x3, P3=P1- P2, P4=x4-Ps

@ Doing the direct method - i.e. computing all partial derivatives per

operation:
Computation H o1 15)) 03 O
Pi=x1+x 1 1 0 0
P> = x1 +x3 1 0 1 0
P3 = PPy Py -01P1+P1-01P> | Po-0P1 | Pr-03P> | O
P4 :X4P3 X4-a]_P3 X4-82P3 X4-83P3 P3

@ Now let's see how to “do it in reverse”
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Example - reverse mode

@ Consider the computation:

Pi=x1+x, Po=x1+x3, P3=P1-P>, P =x4-P3
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Example - reverse mode

o Consider the computation:

el
{"‘f’g‘ P2=X1+X3, P3 =Py Py, Py=x4-P3
3

@ Replacing first computation with a new variable y, we get:

Q=xi+x, =y & Qu=xi &
%
2 "

Q=

4 X Xa X X
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Example - reverse mode

o Consider the computation:
Pr=x1+x, P=x1+x3, P3=P1-P2, Pp=x4-P;3
@ Replacing first computation with a new variable y, we get:
Q=x1+x3, B3=y P2, Qa=x4-P3

@ Suppose we had an algebraic circuit computing all the partial
derivatives of this circuit (including the extra variable y)

vj’fﬁhf ,,, 4(t-1)
\ax, T %y

90 /102


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira



Example - reverse mode

@ Consider the computation:

Pi=xi1+x, Po=x1+x3, P3=P1- P, ZP4:X4'P3 )

@ Replacing first computation with a new variable y, we get:
QL=x1+x3, 3=y P2, Q4 =x4-P3

@ Suppose we had an algebraic circuit computing all the partial
derivatives of this circuit (including the extra variable y)

@ Can transform the circuit above into one that computes all partial
derivatives of P by using the chain rule!

91/102


Rafael Oliveira


Rafael Oliveira



Example - reverse mode

@ Consider the computation:

4 l P1—X1+X2,}P2—X1+X3, P3=P1- P2, Py =x4-P3

Replacing first computation with a new variable y, we get:

QL=x1+x3, 3=y P>, Qo =x4-P3

@ Suppose we had an algebraic circuit computing all the partial
derivatives of this circuit (including the extra variable y)

Can transform the circuit above into one that computes all partial
derivatives of P by using the chain rule!

Note that

Q4(X17X2,X37X4ay = Pl) = P4
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Computing Partial Derivatives - Proof

@ Note that
Q4(X17X27X37X47y = Pl) - P4

@ By chain rule, we have 1<i<4

4
= (0jQa)(x1, %2, X3, Xa, P1)
j=1

+ (0, Qa)(x1, x2, X3, Xa, P1) - (0; P1)
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Computing Partial Derivatives - Proof

@ Note that —
)Q4(X17X27X37X47y =P)="F )

@ By chain rule, we have 1<i<4

4
?iﬂ‘ i:’@’ = Z(8JQ4)(X17X27X35X45 Pl) : (81XJ)
j=1

+ (0y Qa)(x1, x2, X3, Xa, P1) - (0 P1)

9' P" m :(8iQ4)(X17X27X37X47 Pl) -1
@8)/04)()(17)(27)(37)(47 P1) - (0iP1)
’\\ nw arM(Lh\T"
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Computing Partial Derivatives - Proof

o Note that
Q4(X17X27X37X47.y = P]-) = P4
@ By chain rule, we have 1<i<4
4
0iQa = (9;Qa)(x1, %2, %3, xa, P1) - (9%)
j=1

+ (8yQ4)(X1aX2aX37X47 Pl) : (aIPI)

el
0i Qa :(aiQ4)(X1,X2,X3,X4, Pl) -1 = Wn"
+ (9y Qa)(x1, %2, X3, X4, P1) ’ z V;{"‘?
]

@ Crucial remark: ‘1ote that P; depends on at most 2 variables!!

mm——
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Computing Partial Derivatives - Proof

@ By chain rule, we have 1<i<4

aI'Q4 :(8io4)(X17X27X3aX4a Pl) -1
+ (0y Qa)(x1, x2,x3, X4, P1) - (0; P1)
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Computing Partial Derivatives - Proof

@ By chain rule, we have 1<i<4

0@ =(0Qu)(x1, 30, 3, 30, P1) - 1
+ (8yQ4)(X17X2aX3aX47 Pl) : (a,P]_)

@ Crucial remark: note that P; depends on at most 2 variables!

? o‘l.(l'w""’" X, X2
DBP% (x,?) N pore Hxeady
%M * aq@q(k If’\) Compma et !
P Qu(%19) O(mmhw) L+

o-ut AP ond Iy

&P | o = = = = 9ae
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Computing Partial Derivatives - Proof

@ By chain rule, we have 1<i<4

5;@4 =(0i Qa)(x1, x2,x3, X4, P1) - 1
+ (0y Qa)(x1, X2, x3, X4, P1) - (0i P1)

@ Crucial remark: note that P; depends on at most 2 variables!

@ By induction, we know a circuif,aof size gﬁ(L — 1) which computes
ALL the 8; Qs F

‘Bl'?" 2 [2

i

98 /102


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira



Computing Partial Derivatives - Proof
@ By chain rule, we have 1<i<4

8I'Q4 :(aiQ4)(X17X27X3aX4a Pl) -1
+ (0y Qa)(x1, X2, x3, X4, P1) - (0i P1)

@ Crucial remark: note that P; depends on at most 2 variables!

@ By induction, we know a circuit of size < 4(L — 1) which computes
ALL the 0; Q4

@ Pj is of the form
ax; + /BX_/7 XiXj, QX + ﬁ
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Computing Partial Derivatives - Proof

@ By chain rule, we have 1<i<4

8I'Q4 :(8iQ4)(X17X27X3aX45 Pl) -1
+ (0y Qa)(x1, X2, x3, X4, P1) - (0i P1)

Crucial remark: note that P; depends on at most 2 variables!

By induction, we know a circuit of size < 4(L — 1) which computes
ALL the 0; Q4

Py is of the form

axXj +/BX_/7 XiXj, QX +ﬂ

@ So we can compute P; and ALL its derivatives with < 4 operations
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Computing Partial Derivatives - Proof

@ By chain rule, we have 1<i<4

8I'Q4 :(8iQ4)(X17X27X3aX45 Pl) -1
+ (0y Qa)(x1, X2, x3, X4, P1) - (0i P1)

@ Crucial remark: note that P; depends on at most 2 variables!

@ By induction, we know a circuit of size < 4(L — 1) which computes
ALL the 0; Q4

@ Pj is of the form
ax; + /BX_/7 XiXj, QX + 6

@ So we can compute P; and ALL its derivatives with < 4 operations

@ So circuit computing ALL 0; P, derivatives has size

<4(L—1)+4=4L
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