Lecture 19: Streaming

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 16, 2021

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1/115

Overview

Introduction

- Data Streaming
- Basic Examples

• Main Examples

- Heavy hitters
- Distinct Elements
- Weighted Heavy Hitters

• Acknowledgements

In today's world we have to deal with *big data*. But not all big data are created equal. Today we will study one way in which massive data can appear in our lives: *streaming*.

1 Data stream: *massive* sequence of data, too large to store in memory.

- **1** Data stream: *massive* sequence of data, too large to store in memory.
 - O Network traffic (source/destination)
 - Internet search logs
 - Oatabase transactions
 - sensor networks
 - satellite data feeds

- **1** Data stream: *massive* sequence of data, too large to store in memory.
 - O Network traffic (source/destination)
 - Internet search logs
 - Oatabase transactions
 - sensor networks
 - satellite data feeds
- Ones not come to us at once.

- **1** Data stream: *massive* sequence of data, too large to store in memory.
 - O Network traffic (source/destination)
 - Internet search logs
 - Oatabase transactions
 - ensor networks
 - satellite data feeds
- Ones not come to us at once.
- Sessentially can only look at each piece of data once (or constantly many times)

In today's world we have to deal with *big data*. But not all big data are created equal. Today we will study one way in which massive data can appear in our lives: *streaming*.

- **1** Data stream: *massive* sequence of data, too large to store in memory.
 - Network traffic (source/destination)
 - Internet search logs
 - Oatabase transactions
 - ensor networks
 - satellite data feeds
- Ones not come to us at once.
- Essentially can only look at each piece of data once (or constantly many times)

How can we deal with it/model it? What can we do if we cannot even see the whole input?

Definition (Basic Data Stream model)

Definition (Basic Data Stream model)

- receive a stream of elements a₁, a₂,... a_N each from a known alphabet Σ. Each element of Σ takes b bits to represent.
 - usually assume that N is known

Definition (Basic Data Stream model)

- receive a stream of elements $a_1, a_2, \ldots a_N$ each from a known alphabet Σ . Each element of Σ takes b bits to represent.
 - usually assume that N is known
- Basic operations (comparison, arithmetic, bitwise) take $\Theta(1)$ time

Definition (Basic Data Stream model)

- receive a stream of elements $a_1, a_2, \ldots a_N$ each from a known alphabet Σ . Each element of Σ takes b bits to represent.
 - usually assume that N is known
- Basic operations (comparison, arithmetic, bitwise) take $\Theta(1)$ time
- Single or small number of passes over data

Definition (Basic Data Stream model)

- receive a stream of elements a₁, a₂,... a_N each from a known alphabet Σ. Each element of Σ takes b bits to represent.
 - usually assume that N is known
- Basic operations (comparison, arithmetic, bitwise) take $\Theta(1)$ time
- Single or small number of passes over data
- Bounded storage
 - Typically $\log^{c}(N)$ for c = O(1) or N^{lpha} for some 0 < lpha < 1

Definition (Basic Data Stream model)

- receive a stream of elements a₁, a₂,... a_N each from a known alphabet Σ. Each element of Σ takes b bits to represent.
 - usually assume that N is known
- Basic operations (comparison, arithmetic, bitwise) take $\Theta(1)$ time
- Single or small number of passes over data
- Bounded storage
 - Typically $\log^{c}(N)$ for c = O(1) or N^{α} for some $0 < \alpha < 1$
- We are allowed to use randomness (almost always necessary)
 - Probabilistic model: our algorithm must succeed most of the time

Definition (Basic Data Stream model)

- receive a stream of elements a₁, a₂,... a_N each from a known alphabet Σ. Each element of Σ takes b bits to represent.
 - usually assume that N is known
- Basic operations (comparison, arithmetic, bitwise) take $\Theta(1)$ time
- Single or small number of passes over data
- Bounded storage
 - Typically $\log^{c}(N)$ for c = O(1) or N^{lpha} for some 0 < lpha < 1
- We are allowed to use randomness (almost always necessary)
 - Probabilistic model: our algorithm must succeed most of the time
- (usually) want *approximate answers* to the true answer

Definition (Basic Data Stream model)

In the data stream model:

- receive a stream of elements a₁, a₂,... a_N each from a known alphabet Σ. Each element of Σ takes b bits to represent.
 - usually assume that N is known
- Basic operations (comparison, arithmetic, bitwise) take $\Theta(1)$ time
- Single or small number of passes over data
- Bounded storage
 - Typically $\log^{c}(N)$ for c = O(1) or N^{lpha} for some 0 < lpha < 1
- We are allowed to use randomness (almost always necessary)
 - Probabilistic model: our algorithm must succeed most of the time
- (usually) want *approximate answers* to the true answer

Goal: minimize space complexity (in bits) and the processing time.

Example (Sum of elements)

- Input stream: a_1, \ldots, a_N be integers from the set $[-2^b + 1, 2^b 1]$
- Task: maintain the current sum of the elements we have seen so far

Example (Sum of elements)

- Input stream: a_1, \ldots, a_N be integers from the set $[-2^b + 1, 2^b 1]$
- Task: maintain the current sum of the elements we have seen so far

Example (Median)

- Input stream: a_1, \ldots, a_N be integers from the set $[-2^b + 1, 2^b 1]$
- Task: maintain the current median of elements we have seen so far

Example (Distinct elements)

- Input stream: a_1, \ldots, a_N be integers from the set $[-2^b + 1, 2^b 1]$
- \bullet Task: maintain current # of distinct elements we have seen so far

Example (Distinct elements)

- Input stream: a_1, \ldots, a_N be integers from the set $[-2^b + 1, 2^b 1]$
- Task: maintain current # of distinct elements we have seen so far

Example (Heavy hitters)

- Input stream: a_1, \ldots, a_N integers from $[-2^b + 1, 2^b 1]$, $\epsilon > 0$
- Task: maintain set of elements that contains elements that have appeared at least ε-fraction of the time (a.k.a. *heavy hitters*)
- **Constraint:** allowed to also output *false positives* (low hitters), but not allowed to miss any heavy hitter!

Setup: heavy hitters with $\epsilon = 1/2$.

• At time t, we will maintain set S_t which contains the element that has appeared at least times, if any.

な

- At time t, we will maintain set S_t which contains the element that has appeared at least N/2 times, if any.
- $S_0 = \emptyset$, $c \leftarrow 0$ (c is a counter)

- At time t, we will maintain set S_t which contains the element that has appeared at least N/2 times, if any.
- $S_0 = \emptyset$, $c \leftarrow 0$ (*c* is a counter)
- when element *a_t* arrives:

- At time t, we will maintain set S_t which contains the element that has appeared at least N/2 times, if any.
- $S_0 = \emptyset$, $c \leftarrow 0$ (*c* is a counter)
- when element *a_t* arrives:

•
$$S_t = \{a_t\}$$
 and $c \leftarrow 1$

Setup: heavy hitters with $\epsilon = 1/2$.

- At time t, we will maintain set S_t which contains the element that has appeared at least N/2 times, if any.
- $S_0 = \emptyset$, $c \leftarrow 0$ (*c* is a counter)
- when element *a_t* arrives:

• If
$$c == 0$$

• $S_t = \{a_t\}$ and $c \leftarrow$
• Else

• if
$$a_t \in S_{t-1}$$
, set $c \leftarrow c+1$

• else $c \leftarrow c - 1$ and discard a_t

1

St = St.1 and increase

- At time t, we will maintain set S_t which contains the element that has appeared at least N/2 times, if any.
- $S_0 = \emptyset$, $c \leftarrow 0$ (*c* is a counter)
- when element *a_t* arrives:

• If
$$c == 0$$

• $S_t = \{a_t\}$ and $c \leftarrow 1$
• Else
• if $a_t \in S_{t-1}$, set $c \leftarrow c+1$

- else $c \leftarrow c 1$ and discard a_t
- At end of stream, return element in S_N

• If there is no majority element, we could still output a false positive (low hitter), which is fine.

- If there is no majority element, we could still output a false positive (low hitter), which is fine.
- What happens when there is a majority element?

- If there is no majority element, we could still output a false positive (low hitter), which is fine.
- What happens when there is a majority element?
 - Every time that we discard a copy of the majority element, we throw away a different element.

• Example: stream 3, 1, 2, 1, 1

1 ~ majority element

 $S_{1} = \{3\} \quad c_{1} = 1$ $S_{2} = \{3\} \quad C_{2} = 0 \quad \text{discard 1} \quad (\text{decreasing c+n (=) throwing away 3})$ $S_{3} = \{2\} \quad C_{3} = 1$ $S_{3} = \{2\} \quad C_{4} = 0 \quad \text{oliscard 1} \quad (\text{discarded 2})$ $S_{4} = \{1\} \quad c_{5} = 1$

- If there is no majority element, we could still output a false positive (low hitter), which is fine.
- What happens when there is a majority element?
 - Every time that we discard a copy of the majority element, we throw away a different element.
 - Example: stream 3, 1, 2, 1, 1
 - Majority element appears more than half the time, so we cannot throw away all the majority elements

3 2 1 1

- If there is no majority element, we could still output a false positive (low hitter), which is fine.
- What happens when there is a majority element?
 - Every time that we discard a copy of the majority element, we throw away a different element.
 - Example: stream 3, 1, 2, 1, 1
 - Majority element appears more than half the time, so we cannot throw away all the majority elements

• Space used: O(b) (stored set S_t which has at most one element and counter) + $O(\log N)$

counter sport

Introduction

- Data Streaming
- Basic Examples

• Main Examples

Heavy hitters

- Distinct Elements
- Weighted Heavy Hitters

• Acknowledgements

Heavy hitters Problem

Example (Heavy hitters)

- Input stream: a_1, \ldots, a_N integers from $[-2^b + 1, 2^b 1]$, $\epsilon > 0$
- **Task:** maintain set of elements that contains elements that have appeared at least ϵ -fraction of the time (a.k.a. *heavy hitters*)
- **Constraint:** allowed to also output *false positives* (low hitters), but not allowed to miss any heavy hitter!

Heavy Hitters Algorithm

• Set
$$k = \lceil 1/\epsilon \rceil - 1$$

Heavy Hitters Algorithm

• Set $k = \lceil 1/\epsilon \rceil - 1$ where bound on # e-heavy hitters

Set array T of length k where each entry T[i] can hold an element of Σ (= [-2^b + 1, 2^b - 1]).

Heavy Hitters Algorithm

• Set
$$k = \lceil 1/\epsilon \rceil - 1$$

- Set array T of length k where each entry T[i] can hold an element of Σ (= [-2^b + 1, 2^b 1]).
- Set array C of length k where each entry can hold non-negative integer

T ← element avoiay C ← counter avoiay

• Set
$$k = \lceil 1/\epsilon \rceil - 1$$

- Set array T of length k where each entry T[i] can hold an element of Σ (= [-2^b + 1, 2^b 1]).
- Set array C of length k where each entry can hold non-negative integer
- Initialize $T[i] \leftarrow NaN$ and $C[i] \leftarrow 0$ for $i \in [k]$.

• Set
$$k = \lceil 1/\epsilon \rceil - 1$$

- Set array T of length k where each entry T[i] can hold an element of Σ (= [-2^b + 1, 2^b 1]).
- Set array C of length k where each entry can hold non-negative integer
- Initialize $T[i] \leftarrow NaN$ and $C[i] \leftarrow 0$ for $i \in [k]$.
- When receive element a_t :

• Set
$$k = \lceil 1/\epsilon \rceil - 1$$

- Set array T of length k where each entry T[i] can hold an element of Σ (= [-2^b + 1, 2^b 1]).
- Set array C of length k where each entry can hold non-negative integer
- Initialize $T[i] \leftarrow NaN$ and $C[i] \leftarrow 0$ for $i \in [k]$.
- When receive element a_t :
 - If there is $j \in [k]$ such that $a_t = T[j]$, then $C[j] \leftarrow C[j] + 1$

• Set
$$k = \lceil 1/\epsilon \rceil - 1$$

- Set array T of length k where each entry T[i] can hold an element of Σ (= [-2^b + 1, 2^b 1]).
- Set array C of length k where each entry can hold non-negative integer
- **③** Initialize $T[i] \leftarrow NaN$ and $C[i] \leftarrow 0$ for $i \in [k]$.

When receive element a_t:

- **1** If there is $j \in [k]$ such that $a_t = T[j]$, then $C[j] \leftarrow C[j] + 1$
- **2** Else, if there is $j \in [k]$ such that C[j] = 0, then $T[j] \leftarrow a_t$ and $C[j] \leftarrow 1$

• Set
$$k = \lceil 1/\epsilon \rceil - 1$$

- Set array T of length k where each entry T[i] can hold an element of Σ (= [-2^b + 1, 2^b 1]).
- Set array C of length k where each entry can hold non-negative integer
- Initialize $T[i] \leftarrow NaN$ and $C[i] \leftarrow 0$ for $i \in [k]$.

When receive element a_t:

- If there is $j \in [k]$ such that $a_t = T[j]$, then $C[j] \leftarrow C[j] + 1$
- **2** Else, if there is $j \in [k]$ such that C[j] = 0, then $T[j] \leftarrow a_t$ and $C[j] \leftarrow 1$
- So Else make all $C[j] \leftarrow C[j] 1$ and discard a_t

decreen all counters

• Set
$$k = \lceil 1/\epsilon \rceil - 1$$

- Set array T of length k where each entry T[i] can hold an element of Σ (= [-2^b + 1, 2^b 1]).
- Set array C of length k where each entry can hold non-negative integer
- Initialize $T[i] \leftarrow NaN$ and $C[i] \leftarrow 0$ for $i \in [k]$.

When receive element a_t:

- If there is $j \in [k]$ such that $a_t = T[j]$, then $C[j] \leftarrow C[j] + 1$
- **2** Else, if there is $j \in [k]$ such that C[j] = 0, then $T[j] \leftarrow a_t$ and $C[j] \leftarrow 1$
- Solution Else make all $C[j] \leftarrow C[j] 1$ and discard a_t
- Return the array T with the counter array C

• For element
$$e \in \Sigma$$
, let $est(e) = \begin{cases} C[j], & \text{if } e = T[j] \leftarrow f e \in T \\ 0, & \text{otherwise.} \end{cases}$

For element
$$e \in \Sigma$$
, let $est(e) = egin{cases} C[j], & ext{if } e = \mathcal{T}[j] \\ 0, & ext{otherwise.} \end{cases}$

Lemma

0

Let count(e) be the number of occurrences of e in stream up to time N.

$$0 \leq count(e) - est(e) \leq \frac{N}{k+1} \leq \epsilon N$$
by our choice of k

For element
$$e \in \Sigma$$
, let $est(e) = egin{cases} C[j], & ext{if } e = \mathcal{T}[j] \\ 0, & ext{otherwise.} \end{cases}$

Lemma

Let count(e) be the number of occurrences of e in stream up to time N.

$$0 \leq count(e) - est(e) \leq \frac{N}{k+1} \leq \epsilon N$$

• $count(e) \ge est(e)$ because never increase C[j] for e unless we see e

For element
$$e \in \Sigma$$
, let $est(e) = egin{cases} C[j], & ext{if } e = \mathcal{T}[j] \\ 0, & ext{otherwise.} \end{cases}$

Lemma

Let count(e) be the number of occurrences of e in stream up to time N.

$$0 \leq count(e) - est(e) \leq \frac{N}{k+1} \leq \epsilon N$$

count(e) ≥ est(e) because never increase C[j] for e unless we see e
 If we don't increase est(e) by 1 when we see an update to e then we decrement k counters and discard current update to e

For element
$$e \in \Sigma$$
, let $est(e) = egin{cases} C[j], & ext{if } e = \mathcal{T}[j] \\ 0, & ext{otherwise.} \end{cases}$

Lemma

Let count(e) be the number of occurrences of e in stream up to time N. $0 \le count(e) - est(e) \Biggl[\le \frac{N}{k+1} \le \epsilon N$

- $count(e) \ge est(e)$ because never increase C[j] for e unless we see e
- If we don't increase *est*(*e*) by 1 when we see an update to *e* then we decrement *k* counters and discard current update to *e*
- So we drop k+1 distinct stream updates, but there are N updates, so we won't increase est(e) by 1 (when we should) at most $\frac{N}{k+1} \le \epsilon N$ times.

• At any time N, all heavy hitters e are in T

- At any time N, all heavy hitters e are in T
 - For an ϵ -heavy hitter e, we have $count(e) > \epsilon \cdot N$

definition

- At any time N, all heavy hitters e are in T
 - For an ϵ -heavy hitter e, we have $count(e) > \epsilon \cdot N$

•
$$est(e) \ge count(e) - \epsilon \cdot N > 0$$

 $count(e) - est(e) \le \frac{N}{hn} \le eN$

- At any time N, all heavy hitters e are in T
 - For an ϵ -heavy hitter e, we have $count(e) > \epsilon \cdot N$
 - $est(e) \ge count(e) \epsilon \cdot N > 0$

•
$$est(e) > 0 \Rightarrow e$$
 is in T

- At any time N, all heavy hitters e are in T
 - For an ϵ -heavy hitter e, we have $count(e) > \epsilon \cdot N$
 - $est(e) \ge count(e) \epsilon \cdot N > 0$

•
$$est(e) > 0 \Rightarrow e$$
 is in T

• Space used is $O(k \cdot (\log(\Sigma) + \log N)) = O((1/\epsilon) \cdot (b + \log N))$ bits

Introduction

- Data Streaming
- Basic Examples

• Main Examples

- Heavy hitters
- Distinct Elements
- Weighted Heavy Hitters

• Acknowledgements

Example (Distinct elements)

- Input stream: a_1, \ldots, a_N be integers from $[0, 2^b 1]$. $m := 2^b$
- \bullet Task: maintain current # of distinct elements D we have seen so far

what we will achieve is:
output
$$\widetilde{D}$$
 s.d.
 $(1-\varepsilon) D \leq \widetilde{D} \leq ((1+\varepsilon))D$
 $\omega \cdot h \cdot p$.
Ab we will
also have

Example (Distinct elements)

- Input stream: a_1, \ldots, a_N be integers from $[0, 2^b 1]$. $\underline{m} := 2^b$
- Task: maintain current # of distinct elements D we have seen so far

Example (Distinct elements)

- Input stream: a_1, \ldots, a_N be integers from $[0, 2^b 1]$. $m := 2^b$
- **Task:** maintain current # of distinct elements **D** we have seen so far

Use strongly 2-universal hash function!

• Take strongly 2-universal hash function $h: [0, m-1] \rightarrow [0, m^3]$.

Example (Distinct elements)

- Input stream: a_1, \ldots, a_N be integers from $[0, 2^b 1]$. $m := 2^b$
- **Task:** maintain current # of distinct elements *D* we have seen so far

- Take strongly 2-universal hash function $h: [0, m-1] \rightarrow [0, m^3]$.
- From hashing lecture, w.h.p. no collisions!

Example (Distinct elements)

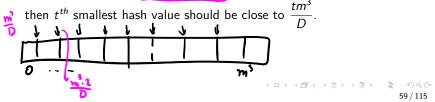
- Input stream: a_1, \ldots, a_N be integers from $[0, 2^b 1]$. $m := 2^b$
- **Task:** maintain current # of distinct elements *D* we have seen so far

- Take strongly 2-universal hash function $h: [0, m-1] \rightarrow [0, m^3]$.
- From hashing lecture, w.h.p. no collisions!
- Suppose there are D distinct elements b_1, \ldots, b_D

Example (Distinct elements)

- Input stream: a_1, \ldots, a_N be integers from $[0, 2^b 1]$. $m := 2^b$
- **Task:** maintain current # of distinct elements *D* we have seen so far

- Take strongly 2-universal hash function $h: [0, m-1] \rightarrow [0, m^3]$.
- From hashing lecture, w.h.p. no collisions!
- Suppose there are D distinct elements b_1, \ldots, b_D
 - If the D hash values $h(b_1), \ldots, h(b_D)$ are evenly distributed in $[0, m^3]$,



Example (Distinct elements)

- Input stream: a_1, \ldots, a_N be integers from $[0, 2^b 1]$. $m := 2^b$
- Task: maintain current # of distinct elements D we have seen so far

- Take strongly 2-universal hash function $h: [0, m-1] \rightarrow [0, m^3]$.
- From hashing lecture, w.h.p. no collisions!
- Suppose there are D distinct elements b_1, \ldots, b_D
 - If the *D* hash values $h(b_1), \ldots, h(b_D)$ are evenly distributed in $[0, m^3]$, then t^{th} smallest hash value should be close to $\frac{tm^3}{D}$.
 - If we know that t^{th} smallest value is T, then $T \approx \frac{tm^3}{D} \Rightarrow D \approx \frac{tm^3}{T}$

Distinct Elements - algorithm

- Choose a random hash function *h* from strongly 2-universal hash family
- For each item *a_i* in the stream:
 - Compute $h(a_i)$
 - update list that stores the *t* smallest hash values ℓ
 - After all data has read, let T be tth smallest hash value in data stream.

Return
$$Y = \frac{tm^3}{T}$$

includ to prove $Y \approx D$

list of nike t

• What are our space requirements?

• What are our space requirements?

• Not going to store the whole hash table, only store hash function *h* and *t* numbers (the *t* smallest values we have seen)

t numbers in [0, m3] O(6) bits oind hash function strogg 2-universal h: [0, m] -> [0, m³] ()(b) bits total space neq. : O(t5) bits 63/115

- What are our space requirements?
 - Not going to store the whole hash table, only store hash function *h* and *t* numbers (the *t* smallest values we have seen)
 - Need to find good value of t for have high probability of success

• What are our space requirements?

- Not going to store the whole hash table, only store hash function *h* and *t* numbers (the *t* smallest values we have seen)
- Need to find good value of t for have high probability of success

Theorem

Setting $t = O(1/\epsilon^2)$ we have that

$$(1-\epsilon) \cdot D \leq Y \leq (1+\epsilon) \cdot D$$

with constant probability.

Theorem

Setting
$$t = O(1/\epsilon^2)$$
 we have that $Y = \frac{tm^3}{T}$ satisfies:
 $(1 - \epsilon) \cdot D \le Y \le (1 + \epsilon) \cdot D$

with constant probability.

Theorem

Setting
$$t = O(1/\epsilon^2)$$
 we have that $Y = \frac{tm^3}{T}$ satisfies:
 $(1 - \epsilon) \cdot D \le Y \le (1 + \epsilon) \cdot D$

with constant probability.

Upper Bound: $\Pr[Y > (1 + \epsilon) \cdot D]$ Y too large

Theorem

Setting
$$t = O(1/\epsilon^2)$$
 we have that $\boxed{Y = \frac{tm^3}{T}}$ satisfies:
 $(1 - \epsilon) \cdot D \leq Y \leq (1 + \epsilon) \cdot D$

with constant probability.

Upper Bound: $\Pr[Y > (1 + \epsilon) \cdot D]$ • $Y > (1 + \epsilon) \cdot D \Rightarrow T < \frac{tm^3}{(1 + \epsilon) \cdot D} \le \frac{(1 - \epsilon/2) \cdot tm^3}{D}$ $\frac{1}{1+6} \leq (-\epsilon/2)$ means that from our D elements our bach function heshed > t elements in the interval [0, (-4)th³] 68 / 115

Theorem

Setting
$$t = O(1/\epsilon^2)$$
 we have that $Y = \frac{tm^3}{T}$ satisfies:
 $(1 - \epsilon) \cdot D \le Y \le (1 + \epsilon) \cdot D$

with constant probability.

Jpper Bound:
$$\Pr[Y > (1 + \epsilon) \cdot D]$$

• $Y > (1 + \epsilon) \cdot D \Rightarrow T < \frac{tm^3}{(1 + \epsilon) \cdot D} \le \frac{(1 - \epsilon/2) \cdot tm^3}{D}$
• At least t hash values smaller than $\frac{(1 - \epsilon/2) \cdot tm^3}{D}$

Theorem

Setting
$$t = O(1/\epsilon^2)$$
 we have that $Y = \frac{tm^3}{T}$ satisfies:
 $(1 - \epsilon) \cdot D \le Y \le (1 + \epsilon) \cdot D$

with constant probability.

Upper Bound: $\Pr[Y > (1 + \epsilon) \cdot D]$ • $Y > (1 + \epsilon) \cdot D \Rightarrow T < \frac{tm^3}{(1 + \epsilon) \cdot D} \le \frac{(1 - \epsilon/2) \cdot tm^3}{D}$ • At least t hash values smaller than $\frac{(1 - \epsilon/2) \cdot tm^3}{D}$ • Random variable $X_i = \begin{cases} 1, & \text{if } h(a_i) \le \frac{(1 - \epsilon/2) \cdot tm^3}{D} & \text{hash value} \\ 0, & \text{otherwise} \end{cases}$

70/115

Upper Bound: $\Pr[Y > (1 + \epsilon) \cdot D]$ • Random variable $X_i = \begin{cases} 1, & \text{if } h(a_i) \leq \frac{(1 - \epsilon/2) \cdot tm^3}{D} \\ 0, & \text{otherwise} \end{cases}$

Upper Bound: $\Pr[Y > (1 + \epsilon) \cdot D]$ • Random variable $X_i = \begin{cases} 1, & \text{if } h(a_i) \leq \frac{(1 - \epsilon/2) \cdot tm^3}{D} \\ 0, & \text{otherwise} \end{cases}$ • $\mathbb{E}[X_i] = \Pr\left[h(a_i) \leq \frac{(1 - \epsilon/2) \cdot tm^3}{D}\right] = \frac{(1 - \epsilon/2) \cdot t}{D}$ Each $h(a_i)$ uniformly random in $[0, m^3]$.

Upper Bound: $\Pr[Y > (1 + \epsilon) \cdot D]$ • Random variable $X_i = \begin{cases} 1, & \text{if } h(a_i) \leq \frac{(1 - \epsilon/2) \cdot tm^3}{D} \\ 0, & \text{otherwise} \end{cases}$ • $\mathbb{E}[X_i] = \Pr\left[h(a_i) \leq \frac{(1 - \epsilon/2) \cdot tm^3}{D}\right] = \frac{(1 - \epsilon/2) \cdot t}{D}$ Each $h(a_i)$ uniformly random in $[0, m^3]$.

• If there are D distinct elements,

$$\mathbb{E}\left[\# \text{ elements with hash value } \leq \frac{(1-\epsilon/2)\cdot tm^3}{D}\right] \leq t(1-\epsilon/2)$$

Jpper Bound:
$$\Pr[Y > (1 + \epsilon) \cdot D]$$

• Random variable $X_i = \begin{cases} 1, & \text{if } h(a_i) \leq \frac{(1 - \epsilon/2) \cdot tm^3}{D} \\ 0, & \text{otherwise} \end{cases}$
• $\mathbb{E}[X_i] = \Pr\left[h(a_i) \leq \frac{(1 - \epsilon/2) \cdot tm^3}{D}\right] = \frac{(1 - \epsilon/2) \cdot t}{D}$
Each $h(a_i)$ uniformly random in $[0, m^3]$.

• If there are *D* distinct elements,

$$\mathbb{E}\left[\ \# \text{ elements with hash value} \ \leq \frac{(1-\epsilon/2)\cdot tm^3}{D} \right] \leq t(1-\epsilon/2)$$

• but we assumed we have at least t such elements! Now need to show that this cannot happen with high probability

Upper Bound: $\Pr[Y > (1 + \epsilon) \cdot D]$

• If there are D distinct elements, let $X = \sum_{i=1}^{D} X_i$

 $\mathbb{E}[X] \leq t(1-\epsilon/2)$

Upper Bound: $\Pr[Y > (1 + \epsilon) \cdot D]$ • If there are D distinct elements, let $X = \sum_{i=1}^{D} X_i$ $\mathbb{E}[X] \leq t(1-\epsilon/2)$ tempted to use Change Cannot use Chernoff (only pairwise independent) Chebyster works

Upper Bound: $\Pr[Y > (1 + \epsilon) \cdot D]$

• If there are D distinct elements, let $X = \sum_{i=1}^{D} X_i$

$$\mathbb{E}[X] \leq t(1-\epsilon/2)$$

• Probability we will see $\geq t$ elements smaller than $\frac{(1-\epsilon/2)\cdot tm^3}{D}$

Upper Bound: $\Pr[Y > (1 + \epsilon) \cdot D]$

• If there are D distinct elements, let $X = \sum_{i=1}^{D} X_i$

$$\mathbb{E}[X] \leq t(1-\epsilon/2)$$

Probability we will see ≥ t elements smaller than (1 - ε/2) ⋅ tm³/D
 Var[X] = ∑_{i=1}^D Var[X_i] (pairwise independence)

Upper Bound: $\Pr[Y > (1 + \epsilon) \cdot D]$

• If there are D distinct elements, let $X = \sum_{i=1}^{D} X_i$

$$\mathbb{E}\left[X\right] \leq t(1-\epsilon/2)$$

• Probability we will see $\geq t$ elements smaller than $\frac{(1-\epsilon/2)\cdot tm^3}{D}$

•
$$Var[X] = \sum_{i=1}^{D} Var[X_i]$$
 (pairwise independence)

• $\operatorname{Var}[X_i] = \mathbb{E}[(X_i - \mathbb{E}[X_i])^2] = \mathbb{E}[X_i^2] - \mathbb{E}[X_i]^2 \le \mathbb{E}[X_i]$ (indicator variable)

Upper Bound: $\Pr[Y > (1 + \epsilon) \cdot D]$

• If there are D distinct elements, let $X = \sum_{i=1}^{D} X_i$

$$\mathbb{E}\left[X\right] \leq t(1-\epsilon/2)$$

• Probability we will see $\geq t$ elements smaller than $\frac{(1-\epsilon/2)\cdot tm^3}{D}$

•
$$Var[X] = \sum_{i=1}^{D} Var[X_i]$$
 (pairwise independence)

- $\operatorname{Var}[X_i] = \mathbb{E}[(X_i \mathbb{E}[X_i])^2] = \mathbb{E}[X_i^2] \mathbb{E}[X_i]^2 \le \mathbb{E}[X_i]$ (indicator variable)
- Chebyshev's inequality: $\Pr[X > t] = \Pr[X > t \cdot (1 - \epsilon/2) + \epsilon \cdot t/2]$ $\leq \Pr[|X - \mathbb{E}[X]| > \epsilon \cdot t/2] \leq \frac{4 \cdot \operatorname{Var}[X]}{\epsilon^2 t^2} \leq \frac{4}{\epsilon^2 t}$ $\operatorname{Var}[X] = \mathbf{D} \cdot \operatorname{Var}[X_i] \leq \mathbf{D} \cdot \mathbb{E}[X_i] = \mathbb{E}[X] \leq \frac{t(1 - \epsilon/2)}{\epsilon^2 t^2} \leq \frac{4}{\epsilon^2 t}$ $\operatorname{Var}[X] = \mathbb{E}[X_i] = \mathbb{E}[X] \leq \frac{t(1 - \epsilon/2)}{\epsilon^2 t^2} \leq \frac{4}{\epsilon^2 t}$

Lower Bound: $\Pr[Y < (1 - \epsilon) \cdot D]$.

Similar calculation as previous slide.¹ Practice problem: do this part of the proof.

¹replacing $1 - \epsilon$ by $1 + \epsilon$ and using Chebyshev

Lower Bound: $\Pr[Y < (1 - \epsilon) \cdot D]$.

Similar calculation as previous slide.¹ Practice problem: do this part of the proof.

•
$$\Pr[Y > (1 + \epsilon) \cdot D] \le \frac{4}{\epsilon^2 t}$$
 Y too longe compared to D
• $\Pr[Y < (1 - \epsilon) \cdot D] \le \frac{4}{\epsilon^2 t}$ Y too small

¹replacing $1 - \epsilon$ by $1 + \epsilon$ and using Chebyshev

Lower Bound: $\Pr[Y < (1 - \epsilon) \cdot D]$.

Similar calculation as previous slide.¹ Practice problem: do this part of the proof.

•
$$\Pr[Y > (1 + \epsilon) \cdot D] \le \frac{4}{\epsilon^2 t}$$

• $\Pr[Y < (1 - \epsilon) \cdot D] \le \frac{4}{\epsilon^2 t}$
• Setting $t = 24/\epsilon^2$ gives us

$$\Pr[(1-\epsilon) \cdot D \le Y \le (1+\epsilon) \cdot D] \ge 1 - \frac{8}{\epsilon^2 t} = 2/3$$

¹replacing $1 - \epsilon$ by $1 + \epsilon$ and using Chebyshev

• Total space used:
$$O\left(\frac{1}{\epsilon^2}\log m\right)$$
 bits

• Total space used:
$$O\left(\frac{1}{\epsilon^2}\log m\right)$$
 bits

- we stored $O(1/\epsilon^2)$ hash values each of log(m) bits
- hash function only requires $O(\log m)$ bits to store.

• Total space used:
$$O\left(\frac{1}{\epsilon^2}\log m\right)$$
 bits

• we stored $O(1/\epsilon^2)$ hash values each of log(m) bits

- hash function only requires $O(\log m)$ bits to store.
- Running time per operation: $O(\log(m) + 1/\epsilon^2)$ steps

• Total space used:
$$O\left(\frac{1}{\epsilon^2}\log m\right)$$
 bits

• we stored $O(1/\epsilon^2)$ hash values each of log(m) bits

- hash function only requires $O(\log m)$ bits to store.
- Running time per operation: $O(\log(m) + 1/\epsilon^2)$ steps
 - compute hash in $O(\log m)$ time
 - Since we keep track of $O(1/\epsilon^2)$ elements, and need to update the list, this takes $O(1/\epsilon^2)$ time (though there are smarter ways)

Introduction

- Data Streaming
- Basic Examples

• Main Examples

- Heavy hitters
- Distinct Elements
- Weighted Heavy Hitters

• Acknowledgements

Example (Weighted heavy hitters)

• Input stream: $(a_1, w_1), \ldots, (a_N, w_N)$ tuples of integers from $\Sigma = [-2^b + 1, 2^b - 1]$, parameter $q \in \mathbb{N}$

Example (Weighted heavy hitters)

• Input stream: $(a_1, w_1), \ldots, (a_N, w_N)$ tuples of integers from $\Sigma = [-2^b + 1, 2^b - 1]$, parameter $q \in \mathbb{N}$

Total weight

$$Q = \sum_{t=1}^{N} w_t$$

Example (Weighted heavy hitters)

- Input stream: $(a_1, w_1), \ldots, (a_N, w_N)$ tuples of integers from $\Sigma = [-2^b + 1, 2^b 1]$, parameter $q \in \mathbb{N}$
 - Total weight

$$Q = \sum_{t=1}^{N} w_t$$

• Total weight of $e \in \Sigma$:

$$Q(e) = \sum_{t:\underline{a_t}=e} w_t$$

Example (Weighted heavy hitters)

- Input stream: $(a_1, w_1), \ldots, (a_N, w_N)$ tuples of integers from $\Sigma = [-2^b + 1, 2^b 1]$, parameter $q \in \mathbb{N}$
 - Total weight

$$Q = \sum_{t=1}^{N} w_t$$

$$Q(e) = \sum_{t:a_t=e} w_t$$

• Task: find all elements e such that $Q(e) \ge q$

Example (Weighted heavy hitters)

- Input stream: $(a_1, w_1), \ldots, (a_N, w_N)$ tuples of integers from $\Sigma = [-2^b + 1, 2^b 1]$, parameter $q \in \mathbb{N}$
 - Total weight

$$Q = \sum_{t=1}^{N} w_t$$

• Total weight of
$$e \in \Sigma$$
:

$$Q(e) = \sum_{t:a_t=e} w_t$$

- Task: find all elements e such that $Q(e) \ge q$
- **Constraint:** allowed to also output *false positives* (low hitters), but not allowed to miss any heavy hitter!

We will see an algorithm that gives us the following guarantees:

We will see an algorithm that gives us the following guarantees:

All heavy hitters are reported

We will see an algorithm that gives us the following guarantees:

- All heavy hitters are reported
- 2 if $Q(e) \leq q \epsilon \cdot Q$, then *e* is reported with probability at most δ
 - That is, have low probability of reporting a really low hitter

We will see an algorithm that gives us the following guarantees:

- All heavy hitters are reported
- 2 if $Q(e) \leq q \epsilon \cdot Q$, then *e* is reported with probability at most δ
 - That is, have low probability of reporting a really low hitter

Use 2-universal hash functions!

We will see an algorithm that gives us the following guarantees:

- All heavy hitters are reported
- 2) if $Q(e) \leq q \epsilon \cdot Q$, then *e* is reported with probability at most δ
 - That is, have low probability of reporting a really low hitter

Use 2-universal hash functions!

• k, ℓ are parameters to be chosen later

We will see an algorithm that gives us the following guarantees:

- All heavy hitters are reported
- 2 if $Q(e) \leq q \epsilon \cdot Q$, then e is reported with probability at most δ
 - That is, have low probability of reporting a really low hitter

Use 2-universal hash functions!

- k, ℓ are parameters to be chosen later
- Pick k hash functions h_1, \ldots, h_k where $h_i : \Sigma \rightarrow [0, \ell 1]$

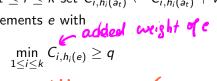
We will see an algorithm that gives us the following guarantees:

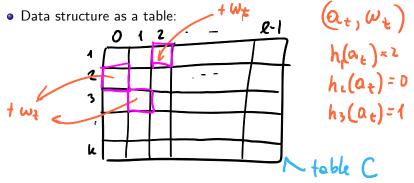
- All heavy hitters are reported
- 2) if $Q(e) \leq q \epsilon \cdot Q$, then e is reported with probability at most δ
 - That is, have low probability of reporting a really low hitter

Use 2-universal hash functions!

- k, ℓ are parameters to be chosen later
- Pick k hash functions h_1, \ldots, h_k where $h_i : \Sigma \rightarrow [0, \ell 1]$
- Let's maintain k · l counters C_{i,j}, where each C_{i,j} adds the weight of items that are mapped to jth entry by the ith hash function. Start with C_{i,j} = 0 for all 1 ≤ i ≤ k and 1 ≤ j ≤ l.

- Given (a_t, w_t) , for each $1 \le i \le k$ set $C_{i,h_i(a_t)} \leftarrow C_{i,h_i(a_t)} + w_t$.
- At the end,² report all elements e with





²In this version need to do second pass over data. But this can be fixed. Practice problem: fix this so that we can report on the fly. = nar

• Heavy hitter always reported, as all their counters are large

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter $C_{i,h_i(e)} < q$.

gap to q

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter $C_{i,h_i(e)} < q$.
- If $Q(e) \leq q \epsilon \cdot Q$, what is prob. *e* will be reported as heavy hitter?

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter $C_{i,h_i(e)} < q$.
- If $Q(e) \leq q \epsilon \cdot Q$, what is prob. *e* will be reported as heavy hitter?
 - Look at counter $C_{i,h_i(e)}$. Since *e* is reported, must have $C_{i,h_i(e)} \ge q$

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter $C_{i,h_i(e)} < q$.
- If $Q(e) \leq q \epsilon \cdot Q$, what is prob. *e* will be reported as heavy hitter?
 - Look at counter $C_{i,h_i(e)}$. Since *e* is reported, must have $C_{i,h_i(e)} \ge q$
 - Contribution from e is Q(e) ≤ q − ε · Q. So other elements that map to h_i(e) must have contributed ≥ ε · Q.

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter $C_{i,h_i(e)} < q$.
- If $Q(e) \leq q \epsilon \cdot Q$, what is prob. *e* will be reported as heavy hitter?
 - Look at counter $C_{i,h_i(e)}$. Since *e* is reported, must have $C_{i,h_i(e)} \ge q$
 - Contribution from e is Q(e) ≤ q − ε · Q. So other elements that map to h_i(e) must have contributed ≥ ε · Q.
 - Let Z_i be the value of $C_{i,h_i(e)}$ that was added by other elements

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter $C_{i,h_i(e)} < q$.
- If $Q(e) \leq q \epsilon \cdot Q$, what is prob. *e* will be reported as heavy hitter?
 - Look at counter $C_{i,h_i(e)}$. Since *e* is reported, must have $C_{i,h_i(e)} \ge q$
 - Contribution from e is Q(e) ≤ q − ε · Q. So other elements that map to h_i(e) must have contributed ≥ ε · Q.
 - Let Z_i be the value of $C_{i,h_i(e)}$ that was added by other elements
 - h_i chosen from 2-universal hash family then probability that another element f is mapped to $h_i(e)$ is $\leq 1/\ell$.

 $h_i: \Sigma \rightarrow (o_1 R \cdot i)$

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter $C_{i,h_i(e)} < q$.
- If $Q(e) \leq q \epsilon \cdot Q$, what is prob. *e* will be reported as heavy hitter?
 - Look at counter $C_{i,h_i(e)}$. Since *e* is reported, must have $C_{i,h_i(e)} \ge q$
 - Contribution from e is Q(e) ≤ q − ε · Q. So other elements that map to h_i(e) must have contributed ≥ ε · Q.
 - Let Z_i be the value of $C_{i,h_i(e)}$ that was added by other elements
 - *h_i* chosen from 2-universal hash family then probability that another element *f* is mapped to *h_i(e)* is ≤ 1/ℓ.

• Thus $\mathbb{E}[Z_i] \leq Q/\ell$. By Markov:

$$\Pr[Z_{i} \geq \epsilon \cdot Q] \leq \frac{\mathbb{E}[Z_{i}]}{\epsilon \cdot Q} \leq \frac{1}{\epsilon \ell}$$

$$\mathbb{E}[Z_{i}] \leq \sum_{f \text{ oppend}} Q(f) \cdot \Pr[h(f) = h_{i}(e)] \leq \frac{1}{\epsilon} \cdot \sum_{f \in Q} Q(f)$$

$$\leq \frac{1}{\epsilon} \cdot \sum_{g \in Q} Q(f) \leq \frac{1}{\epsilon} \cdot \sum_{g \in Q} Q(f)$$

$$\leq \frac{1}{\epsilon} \cdot \sum_{g \in Q} Q(f) = \frac{1}{\epsilon} \cdot \sum_{g \in Q} Q(f)$$

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter $C_{i,h_i(e)} < q$.
- If $Q(e) \leq q \epsilon \cdot Q$, what is prob. *e* will be reported as heavy hitter?
 - Look at counter $C_{i,h_i(e)}$. Since *e* is reported, must have $C_{i,h_i(e)} \ge q$
 - Contribution from e is Q(e) ≤ q − ε · Q. So other elements that map to h_i(e) must have contributed ≥ ε · Q.
 - Let Z_i be the value of $C_{i,h_i(e)}$ that was added by other elements
 - *h_i* chosen from 2-universal hash family then probability that another element *f* is mapped to *h_i(e)* is ≤ 1/ℓ.
 - Thus $\mathbb{E}[Z_i] \leq Q/\ell$. By Markov:

$$\Pr[Z_i \geq \epsilon \cdot Q] \leq \frac{\mathbb{E}[Z]}{\epsilon \cdot Q} \leq \frac{1}{\epsilon \ell}$$

• Hash functions h_i chosen independently \Rightarrow

$$\Pr\left[\min_{1\leq i\leq k} Z_i \geq \epsilon \cdot Q\right] \leq \left(\frac{1}{\epsilon\ell}\right)^k$$

110/115

イロト 不得 トイヨト イヨト ヨー ろくで

We have

$$\Pr\left[\min_{1\leq i\leq k} Z_i \geq \epsilon \cdot Q\right] \leq \left(\frac{1}{\epsilon\ell}\right)^k$$

We have

$$\Pr\left[\min_{1\leq i\leq k} Z_i \geq \epsilon \cdot Q\right] \leq \left(\frac{1}{\epsilon\ell}\right)^k \leq \delta$$

• Setting $\ell = 2/\epsilon$ and $k = \log(\delta)$ we get that probability above $\leq \delta$.

We have

 $\Pr\left[\min_{1 \le i \le k} Z_i \ge \epsilon \cdot Q\right] \le \left(\frac{1}{\epsilon \ell}\right)^k$ • Setting $\ell = 2/\epsilon$ and $k = \log(\delta)$ we get that probability above $\le \delta$. • Space requirement for counters $O(1/\epsilon \cdot \log(1/\delta))$ • $\ell \approx (\mathcal{N})$

We have

$$\Pr\left[\min_{1\leq i\leq k} Z_i \geq \epsilon \cdot Q\right] \leq \left(\frac{1}{\epsilon\ell}\right)^k$$

• Setting $\ell = 2/\epsilon$ and $k = \log(\delta)$ we get that probability above $\leq \delta$.

- Space requirement for counters O(1/ε ⋅ log(1/δ))
 Space required to store all hash functions and evaluation time O(k ⋅ ℓ)

O(k.l. log(N)) total spoureq.

Acknowledgement

- Lecture based largely on Lap Chi's notes and David Woodruff's notes.
- See Lap Chi's notes at https://cs.uwaterloo.ca/~lapchi/cs466/notes/L05.pdf
- See David's notes at https://www.cs.cmu.edu/~15451-s20/lectures/lec6.pdf