Lecture 17: Online Algorithms \& Paging

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

November 9, 2021

Overview

- Part I
- Why Study Online Algorithms?
- Competitive Analysis
- Examples
- Paging \& Caching
- Conclusion
- Acknowledgements

Why Study Online Algorithms?

- Online algorithms are important for many applications, when we need to make decisions right when we receive the information.

Why Study Online Algorithms?

- Online algorithms are important for many applications, when we need to make decisions right when we receive the information.
- Applications in
- Stock Market
- Dating
- Skiing
- Caching
- Machine Learning (regret minimization)
- many more...

Why Study Online Algorithms?

- Online algorithms are important for many applications, when we need to make decisions right when we receive the information.
- Applications in
- Stock Market
- Dating
- Skiing
- Caching
- Machine Learning (regret minimization)
- many more...
- Competitive Analysis: measures performance of our algorithm against best algorithm that could see into the future (that is, see the entire input beforehand) ${ }^{1}$
(1) Worst-case analysis

Different Online Models

We will see other online models in class:

Different Online Models

We will see other online models in class:

- Data Streaming (lecture 20): in this case, we not only receive the input in an online fashion, but we have also memory constraints
(1) Goal here was to get reasonable (approximate) answers while obeying memory constraints
(2) worst-case analysis

Different Online Models

We will see other online models in class:

- Data Streaming (lecture 20): in this case, we not only receive the input in an online fashion, but we have also memory constraints
(1) Goal here was to get reasonable (approximate) answers while obeying memory constraints
(2) worst-case analysis
- Today, we will only see algorithms which must deal with the input as it receives it, no constraints in memory.
(1) Goal here is to be competitive against any offline algorithm (that is, algorithms that could see the entire input beforehand)
(2) worst-case analysis

Competitive Analysis

- Input is given as a sequence $s=s_{1}, s_{2}, \ldots, s_{n}$ of events. $\uparrow \uparrow \uparrow$

Competitive Analysis

- Input is given as a sequence $s=s_{1}, s_{2}, \ldots, s_{n}$ of events.
- Let $C_{\text {opt }}(s)$ be the minimum cost that any algorithm (even one that could look at the entire input beforehand) could achieve for input s

Competitive Analysis

- Input is given as a sequence $s=s_{1}, s_{2}, \ldots, s_{n}$ of events.
- Let $C_{\text {opt }}(s)$ be the minimum cost that any algorithm (even one that could look at the entire input beforehand) could achieve for input s
- Let $C_{A}(s)$ be the cost of your online algorithm on input s

Competitive Analysis

- Input is given as a sequence $s=s_{1}, s_{2}, \ldots, s_{n}$ of events.
- Let $C_{\text {opt }}(s)$ be the minimum cost that any algorithm (even one that could look at the entire input beforehand) could achieve for input s
- Let $C_{A}(s)$ be the cost of your online algorithm on input s

Definition (Deterministic Competitive Ratio)

A deterministic online algorithm A has competitive ratio k (aka k-competitive) if for all inputs s, we have:

$$
C_{A}(s) \leq k \cdot C_{o p t}(s)+O(1)
$$

Competitive Analysis

- Input is given as a sequence $s=s_{1}, s_{2}, \ldots, s_{n}$ of events.
- Let $C_{\text {opt }}(s)$ be the minimum cost that any algorithm (even one that could look at the entire input beforehand) could achieve for input s
- Let $C_{A}(s)$ be the cost of your online algorithm on input s

Definition (Deterministic Competitive Ratio)

A deterministic online algorithm A has competitive ratio k (aka k-competitive) if for all inputs s, we have:

$$
C_{A}(s) \leq k \cdot C_{o p t}(s)+O(1)
$$

Definition (Randomized Competitive Ratio)

A randomized online algorithm A has competitive ratio k (aka k-competitive) if for all inputs s, we have:

$$
\mathbb{E}\left[C_{A}(s)\right] \leq k \cdot C_{o p t}(s)
$$

- Part I
- Why Study Online Algorithms?
- Competitive Analysis
- Examples
- Paging \& Caching
- Conclusion
- Acknowledgements

Ski Rental Problem

- In pandemic times, I am stuck in Canada.
${ }^{2}$ One can technically go, but if not Canadian or PR, not allowed to come back... And Brazil is not handling covid well... alas

Ski Rental Problem

- In pandemic times, I am stuck in Canada.
- U Waterloo gave us one extra week of vacation in January
${ }^{2}$ One can technically go, but if not Canadian or PR, not allowed to come back... And Brazil is not handling covid well... alas

Ski Rental Problem

- In pandemic times, I am stuck in Canada.
- U Waterloo gave us one extra week of vacation in January
- So we decided to go Skiing this past winter (since we could not go back to Brazil and enjoy the beach and the summer) $)^{2}$
${ }^{2}$ One can technically go, but if not Canadian or PR, not allowed to come back... And Brazil is not handling covid well... alas

Ski Rental Problem

- In pandemic times, I am stuck in Canada.
- U Waterloo gave us one extra week of vacation in January
- So we decided to go Skiing this past winter (since we could not go back to Brazil and enjoy the beach and the summer) $)^{2}$
- Winters in Canada are veeerrryy long... so we may go a bunch of times...

[^0] Brazil is not handling covid well... alas

Ski Rental Problem

- In pandemic times, I am stuck in Canada.
- U Waterloo gave us one extra week of vacation in January
- So we decided to go Skiing this past winter (since we could not go back to Brazil and enjoy the beach and the summer) $)^{2}$
- Winters in Canada are veeerrryy long... so we may go a bunch of times...
- Having never done this before, we have to decide whether to buy all the equipment or to rent it at the resort.

[^1] Brazil is not handling covid well... alas

Ski Rental Problem

- In pandemic times, I am stuck in Canada.
- U Waterloo gave us one extra week of vacation in January
- So we decided to go Skiing this past winter (since we could not go back to Brazil and enjoy the beach and the summer) $)^{2}$
- Winters in Canada are veeerrryy long... so we may go a bunch of times...
- Having never done this before, we have to decide whether to buy all the equipment or to rent it at the resort.
- Buying the equipment costs us 1 k CAD. Renting at the resort costs 100 CAD per day.

[^2]
Ski Rental Problem

- In pandemic times, I am stuck in Canada.
- U Waterloo gave us one extra week of vacation in January
- So we decided to go Skiing this past winter (since we could not go back to Brazil and enjoy the beach and the summer) $)^{2}$
- Winters in Canada are veeerrryy long... so we may go a bunch of times...
- Having never done this before, we have to decide whether to buy all the equipment or to rent it at the resort.
- Buying the equipment costs us 1 k CAD. Renting at the resort costs 100 CAD per day.
- Should we buy or rent?

[^3]
Ski Rental Problem

- In pandemic times, I am stuck in Canada.
- U Waterloo gave us one extra week of vacation in January
- So we decided to go Skiing this past winter (since we could not go back to Brazil and enjoy the beach and the summer) $)^{2}$
- Winters in Canada are veeerrryy long... so we may go a bunch of times...
- Having never done this before, we have to decide whether to buy all the equipment or to rent it at the resort.
- Buying the equipment costs us 1 k CAD. Renting at the resort costs 100 CAD per day.
- Should we buy or rent?
- Depends on how many times we will go skiing...

[^4]
Ski Rental Problem

- Buying the equipment costs us 1 k CAD. Renting at the resort costs 100 CAD per day.
- Should we buy or rent?
- Depends on how many times we will go skiing...

Ski Rental Problem

- Buying the equipment costs us 1 k CAD. Renting at the resort costs 100 CAD per day.
- Should we buy or rent?
- Depends on how many times we will go skiing...
(1) If we go skiing 9 times or less (and we see that we are made for beaches and tropical islands), then clearly better to rent

Ski Rental Problem

- Buying the equipment costs us 1 k CAD. Renting at the resort costs 100 CAD per day.
- Should we buy or rent?
- Depends on how many times we will go skiing...
(1) If we go skiing 9 times or less (and we see that we are made for beaches and tropical islands), then clearly better to rent
(2) If we go skiing at least 11 times (and surprise ourselves that we can withstand the cold) then clearly better to buy

Ski Rental Problem

- Buying the equipment costs us 1 k CAD. Renting at the resort costs 100 CAD per day.
- Should we buy or rent?
- Depends on how many times we will go skiing...
(1) If we go skiing 9 times or less (and we see that we are made for beaches and tropical islands), then clearly better to rent
(2) If we go skiing at least 11 times (and surprise ourselves that we can withstand the cold) then clearly better to buy
(3) If we go 10 times, it doesn't matter which way it goes...

Ski Rental Problem

- Buying the equipment costs us 1 k CAD. Renting at the resort costs 100 CAD per day.
- Should we buy or rent?
- Depends on how many times we will go skiing...
(1) If we go skiing 9 times or less (and we see that we are made for beaches and tropical islands), then clearly better to rent
(2) If we go skiing at least 11 times (and surprise ourselves that we can withstand the cold) then clearly better to buy
(3) If we go 10 times, it doesn't matter which way it goes...
- How is this an online algorithm?

Ski Rental Problem

- Buying the equipment costs us 1 k CAD. Renting at the resort costs 100 CAD per day.
- Should we buy or rent?
- Depends on how many times we will go skiing...
(1) If we go skiing 9 times or less (and we see that we are made for beaches and tropical islands), then clearly better to rent
(2) If we go skiing at least 11 times (and surprise ourselves that we can withstand the cold) then clearly better to buy
(3) If we go 10 times, it doesn't matter which way it goes...
- How is this an online algorithm?
- Each time we go skiing, we have to decide whether to buy or rent (unless we bought it beforehand)

Ski Rental Problem

- Buying the equipment costs us 1 k CAD. Renting at the resort costs 100 CAD per day.
- Should we buy or rent?
- Depends on how many times we will go skiing...
(1) If we go skiing 9 times or less (and we see that we are made for beaches and tropical islands), then clearly better to rent
(2) If we go skiing at least 11 times (and surprise ourselves that we can withstand the cold) then clearly better to buy
(3) If we go 10 times, it doesn't matter which way it goes...
- How is this an online algorithm?
- Each time we go skiing, we have to decide whether to buy or rent (unless we bought it beforehand)
- Algorithm has to decide when to buy, knowing only that we have gone skiing t times

Ski Rental Problem

- Buying the equipment costs us 1 k CAD. Renting at the resort costs 100 CAD per day.

Ski Rental Problem

- Buying the equipment costs us 1 k CAD. Renting at the resort costs 100 CAD per day.
- A 1.9-competitive algorithm:
- If $t \leq 9$, then rent
- When $t=10$, buy
$t=\pi$ times we will go shining

Ski Rental Problem

- Buying the equipment costs us 1 k CAD. Renting at the resort costs 100 CAD per day.
- A 1.9-competitive algorithm:
- If $t \leq 9$, then rent
- When $t=10$, buy
- Analysis:
- If $t \leq 9$, then best strategy is to rent: so cost is:

$$
\frac{C_{A}}{C_{o p t}}=\frac{100 \cdot t}{100 \cdot t}=1
$$

Ski Rental Problem

- Buying the equipment costs us 1 k CAD. Renting at the resort costs 100 CAD per day.
- A 1.9-competitive algorithm:
- If $t \leq 9$, then rent
- When $t=10$, buy
- Analysis:
- If $t \leq 9$, then best strategy is to rent: so cost is:

$$
\frac{C_{A}}{C_{o p t}}=\frac{100 \cdot t}{100 \cdot t}=1
$$

- If $t \geq 10$, we buy at the $10^{\text {th }}$ time, so cost is:

$$
\frac{C_{A}}{C_{o p t}}=\frac{100 \cdot 9+1000}{\underline{1000}}=1.9
$$

\forall input secure $t=\#$ times we 9 sting in entire lives

Secretary Dating Problem

- In the high-tech life, you decide to join a dating site...

[^5]${ }^{5}$ Also assuming they will all want to date us...

Secretary Dating Problem

- In the high-tech life, you decide to join a dating site...
- There are n people that you are interested in dating, and you would like to date the best person ${ }^{3}$ out there. ${ }^{4}$

[^6]
Secretary Dating Problem

- In the high-tech life, you decide to join a dating site...
- There are n people that you are interested in dating, and you would like to date the best person ${ }^{3}$ out there. ${ }^{4}$
- But you don't know who is the best person in advance...

[^7]
Secretary Dating Problem

- In the high-tech life, you decide to join a dating site...
- There are n people that you are interested in dating, and you would like to date the best person ${ }^{3}$ out there. ${ }^{4}$
- But you don't know who is the best person in advance...
- One way to do it: go out with all of them at the same time, ${ }^{5}$ and figure out which one is the best!

[^8]
Secretary Dating Problem

- In the high-tech life, you decide to join a dating site...
- There are n people that you are interested in dating, and you would like to date the best person ${ }^{3}$ out there. ${ }^{4}$
- But you don't know who is the best person in advance...
- One way to do it: go out with all of them at the same time, ${ }^{5}$ and figure out which one is the best!
- Not possible, due to time constraints and society's value system

[^9]
Secretary Dating Problem

- In the high-tech life, you decide to join a dating site...
- There are n people that you are interested in dating, and you would like to date the best person ${ }^{3}$ out there. ${ }^{4}$
- But you don't know who is the best person in advance...
- One way to do it: go out with all of them at the same time, ${ }^{5}$ and figure out which one is the best!
- Not possible, due to time constraints and society's value system
- So we have to go out with one of them at a time, and decide whether we want to stay with them or date another person, in which case we must break up

[^10]
Secretary Dating Problem

- In the high-tech life, you decide to join a dating site...
- There are n people that you are interested in dating, and you would like to date the best person ${ }^{3}$ out there. ${ }^{4}$
- But you don't know who is the best person in advance...
- One way to do it: go out with all of them at the same time, ${ }^{5}$ and figure out which one is the best!
- Not possible, due to time constraints and society's value system
- So we have to go out with one of them at a time, and decide whether we want to stay with them or date another person, in which case we must break up
- Clearly online setting (pun intended)

[^11]
Secretary Dating Problem

- In the high-tech life, you decide to join a dating site...
- There are n people that you are interested in dating, and you would like to date the best person ${ }^{3}$ out there. ${ }^{4}$
- But you don't know who is the best person in advance...
- One way to do it: go out with all of them at the same time, ${ }^{5}$ and figure out which one is the best!
- Not possible, due to time constraints and society's value system
- So we have to go out with one of them at a time, and decide whether we want to stay with them or date another person, in which case we must break up
- Clearly online setting (pun intended)
- Goal: maximize probability of dating the best person

[^12]
Secretary Dating Problem

- Consider the following algorithm:

[^13]
Secretary Dating Problem

- Consider the following algorithm:
(1) Let's assume that all people you want to date are ranked and associate them with their rank: $1,2, \ldots, n$

[^14]
Secretary Dating Problem

- Consider the following algorithm:
(1) Let's assume that all people you want to date are ranked and associate them with their rank: $1,2, \ldots, n$
(2) Pick random order of the n people: call it π

[^15]
Secretary Dating Problem

- Consider the following algorithm:
(1) Let's assume that all people you want to date are ranked and associate them with their rank: $1,2, \ldots, n$
(2) Pick random order of the n people: call it π
(3) Go out with n / e of them and reject them ${ }^{6}$

[^16]
Secretary Dating Problem

- Consider the following algorithm:
(1) Let's assume that all people you want to date are ranked and associate them with their rank: $1,2, \ldots, n$
(2) Pick random order of the n people: call it π
(3) Go out with n / e of them and reject them ${ }^{6}$
(4) After first n / e dates, you will decide to settle if the person you found is better than anyone else you have dated before

[^17]
Secretary Dating Problem

- Consider the following algorithm:
(1) Let's assume that all people you want to date are ranked and associate them with their rank: $1,2, \ldots, n$
(2) Pick random order of the n people: call it π
(3) Go out with n / e of them and reject them ${ }^{6}$
(4) After first n / e dates, you will decide to settle if the person you found is better than anyone else you have dated before
- This algorithm picks the best person (i.e., the one ranked 1) with probability $\approx 1 / e$

[^18]
Secretary Dating Problem

- Consider the following algorithm:
(1) Let's assume that all people you want to date are ranked and associate them with their rank: $1,2, \ldots, n$
(2) Pick random order of the n people: call it π
(3) Go out with n / e of them and reject them ${ }^{6}$
(4) After first n / e dates, you will decide to settle if the person you found is better than anyone else you have dated before
- This algorithm picks the best person (i.e., the one ranked 1) with probability ≈ 1 /e
- More general algorithm: given a time t, go on t dates and from date $t+1$ onwards you decide to settle with a person who is better than the previous ones.

[^19]
Secretary Dating Problem

- Consider the following algorithm:
(1) Let's assume that all people you want to date are ranked and associate them with their rank: $1,2, \ldots, n$
(2) Pick random order of the n people: call it π
(3) Go out with n / e of them and reject them ${ }^{6}$
(9) After first n / e dates, you will decide to settle if the person you found is better than anyone else you have dated before
- This algorithm picks the best person (i.e., the one ranked 1) with probability ≈ 1 /e
- More general algorithm: given a time t, go on t dates and from date $t+1$ onwards you decide to settle with a person who is better than the previous ones.
- What is the probability that we pick the number 1 in our list?

[^20]
Secretary Dating Problem

- More general algorithm: given a time t, go on t dates and from date $t+1$ onwards you decide to settle with a person who is better than the previous ones.
- What is the probability that we pick the number 1 in our list?

Secretary Dating Problem

- More general algorithm: given a time t, go on t dates and from date $t+1$ onwards you decide to settle with a person who is better than the previous ones.
- What is the probability that we pick the number 1 in our list?
- Suppose we pick a person at time k, then want to compute probability

Secretary Dating Problem

- More general algorithm: given a time t, go on t dates and from date $t+1$ onwards you decide to settle with a person who is better than the previous ones.
- What is the probability that we pick the number 1 in our list?
- Suppose we pick a person at time k, then want to compute probability

$$
P_{k}=\operatorname{Pr}[\pi(k)=1 \text { and we pick person at time } k]
$$

- Then our final success probability will be $P=\sum_{k>t}^{n} P_{k}$

Secretary Dating Problem

- More general algorithm: given a time t, go on t dates and from date $t+1$ onwards you decide to settle with a person who is better than the previous ones.
- What is the probability that we pick the number 1 in our list?
- Suppose we pick a person at time k, then want to compute probability

$$
P_{k}=\operatorname{Pr}[\pi(k)=1 \text { and we pick person at time } k]
$$

- Then our final success probability will be $P=\sum_{k>t}^{n} P_{k}$
- If $\pi(k)=1$, then $1-P_{k}$ is the probability that we picked a person between $[t+1, k-1]$, which means someone in this range better than the first t people. ramb of ele chates upto dete $k=1$

$$
P_{k}=\operatorname{Pr}[\underbrace{\pi(k)=1} \text { and } \underbrace{\min \pi(1), \ldots, \pi(k-1)}_{\text {we did not pich ary one before date } h} \text { is in }\{\pi(1), \ldots, \pi(t)\}]
$$

Secretary Dating Problem

- Final success probability will be $P=\sum_{k>t}^{n} P_{k}$

Secretary Dating Problem

- Final success probability will be $P=\sum_{k>t}^{n} P_{k}$
- From previous slide

$$
\begin{aligned}
& P_{k}=\operatorname{Pr}[\pi(k)=1 \text { and } \underline{\min \pi(1), \ldots, \pi(k-1) \text { is in }\{\pi(1), \ldots, \pi(t)\}]} \\
& =\frac{1}{n} \cdot \frac{t}{k-1} \\
& \uparrow \\
& \text { picking a permutation of } a_{1}<a_{2}<\cdots<q_{k 1} \\
& \text { n.1. 2, apes within } \\
& \text { first } t \text { places } \\
& \frac{t}{k-1}
\end{aligned}
$$

Secretary Dating Problem

- Final success probability will be $P=\sum_{k>t}^{n} P_{k}$
- From previous slide

$$
\begin{aligned}
P_{k} & =\operatorname{Pr}[\pi(k)=1 \text { and } \min \pi(1), \ldots, \pi(k-1) \text { is in }\{\pi(1), \ldots, \pi(t)\}] \\
& =\frac{1}{n} \cdot \frac{t}{k-1}
\end{aligned}
$$

- We get

$$
P=\sum_{k>t}^{n} 1 \frac{t}{k-1}=\frac{t}{n} \cdot \sum_{k>t}^{n} \frac{1}{k-1} \approx \frac{t}{n} \cdot(\ln n-\ln t)=\frac{t}{n} \cdot \ln (n / t)
$$

Secretary Dating Problem

- Final success probability will be $P=\sum_{k>t}^{n} P_{k}$
- From previous slide

$$
\begin{aligned}
P_{k} & =\operatorname{Pr}[\pi(k)=1 \text { and } \min \pi(1), \ldots, \pi(k-1) \text { is in }\{\pi(1), \ldots, \pi(t)\}] \\
& =\frac{1}{n} \cdot \frac{t}{k-1}
\end{aligned}
$$

- We get

$$
P=\sum_{k>t}^{n} \frac{1}{n} \cdot \frac{t}{k-1}=\frac{t}{n} \cdot \sum_{k>t}^{n} \frac{1}{k-1} \approx \frac{t}{n} \cdot(\ln n-\ln t)=\frac{t}{n} \cdot \ln (n / t)
$$

- Optimizing we get that we should set $t=n / e$, which gives us $1 / e$ probability.

Secretary Dating Problem

- Final success probability will be $P=\sum_{k>t}^{n} P_{k}$
- From previous slide

$$
\begin{aligned}
P_{k} & =\operatorname{Pr}[\pi(k)=1 \text { and } \min \pi(1), \ldots, \pi(k-1) \text { is in }\{\pi(1), \ldots, \pi(t)\}] \\
& =\frac{1}{n} \cdot \frac{t}{k-1}
\end{aligned}
$$

- We get

$$
P=\sum_{k>t}^{n} \frac{1}{n} \cdot \frac{t}{k-1}=\frac{t}{n} \cdot \sum_{k>t}^{n} \frac{1}{k-1} \approx \frac{t}{n} \cdot(\ln n-\ln t)=\frac{t}{n} \cdot \ln (n / t)
$$

- Optimizing we get that we should set $t=n / e$, which gives us $1 / e$ probability.
- Wait a second, where is the competitive analysis?

Making Dating Competitive

- To make the dating problem competitive, we would have to modify it a little bit.
- We can simply minimize the rank.

Making Dating Competitive

- To make the dating problem competitive, we would have to modify it a little bit.
- We can simply minimize the rank.
- Say we always want to end up with someone (loneliness has a cost of $-\infty$, after all nobody wants to be alone)

Making Dating Competitive

- To make the dating problem competitive, we would have to modify it a little bit.
- We can simply minimize the rank.
- Say we always want to end up with someone (loneliness has a cost of $-\infty$, after all nobody wants to be alone)
- Previous algorithm would then either pick the best person, or the last person in the order.
input: sequence of people

$$
\begin{aligned}
& p_{1} p_{2} \cdots p_{n} \\
& r\left(p_{1}\right) n\left(p_{2}\right) \cdots r\left(p_{n}\right)
\end{aligned}
$$

$r:[n] \rightarrow[n]$ this exists but don't know all we can do is $\operatorname{comp}\left(p_{i}, p_{j}\right) \rightarrow \operatorname{argmin}\left(\lambda\left(p_{i}\right), \pi\left(p_{j}\right)\right)$

Making Dating Competitive

- To make the dating problem competitive, we would have to modify it a little bit.
- We can simply minimize the rank.
- Say we always want to end up with someone (loneliness has a cost of $-\infty$, after all nobody wants to be alone)
- Previous algorithm would then either pick the best person, or the last person in the order.
- With constant probability, rank of the last person is $\Omega(n)$, so we either date the best, or we date someone in the "bottom percentile" of our list

$$
\begin{aligned}
& \mathbb{E}\left[C_{A}(s)\right]=\Omega(n) \\
& \geqslant \underbrace{P_{r}[\text { end up est posse] }}_{\text {Constant }} \cdot \underbrace{\substack{\text { rank of lost } \\
\text { prover }}}_{-R(n)})
\end{aligned}
$$

Making Dating Competitive

- To make the dating problem competitive, we would have to modify it a little bit.
- We can simply minimize the rank.
- Say we always want to end up with someone (loneliness has a cost of $-\infty$, after all nobody wants to be alone)
- Previous algorithm would then either pick the best person, or the last person in the order.
- With constant probability, rank of the last person is $\Omega(n)$, so we either date the best, or we date someone in the "bottom percentile" of our list
- Expected rank of our life-long partner is $\Omega(n)$
- Whet is $\operatorname{Copt}(1)=1$
opt can olways see
in the future

Making Dating Competitive

- To make the dating problem competitive, we would have to modify it a little bit.
- We can simply minimize the rank.
- Say we always want to end up with someone (loneliness has a cost of $-\infty$, after all nobody wants to be alone)
- Previous algorithm would then either pick the best person, or the last person in the order.
- With constant probability, rank of the last person is $\Omega(n)$, so we either date the best, or we date someone in the "bottom percentile" of our list
- Expected rank of our life-long partner is $\Omega(n)$
- Can we do better?

Making Dating Competitive

- To make the dating problem competitive, we would have to modify it a little bit.
- We can simply minimize the rank.
- Say we always want to end up with someone (loneliness has a cost of $-\infty$, after all nobody wants to be alone)
- Previous algorithm would then either pick the best person, or the last person in the order.
- With constant probability, rank of the last person is $\Omega(n)$, so we either date the best, or we date someone in the "bottom percentile" of our list
- Expected rank of our life-long partner is $\Omega(n)$
- Can we do better?
- Yes! There is an algorithm that picks person of average rank $O(1)$, which is therefore $O(1)$-competitive.

Making Dating Competitive

- To make the dating problem competitive, we would have to modify it a little bit.
- We can simply minimize the rank.
- Say we always want to end up with someone (loneliness has a cost of $-\infty$, after all nobody wants to be alone)
- Previous algorithm would then either pick the best person, or the last person in the order.
- With constant probability, rank of the last person is $\Omega(n)$, so we either date the best, or we date someone in the "bottom percentile" of our list
- Expected rank of our life-long partner is $\Omega(n)$
- Can we do better?
- Yes! There is an algorithm that picks person of average rank $O(1)$, which is therefore $O(1)$-competitive.
- Complicated algorithm, based on computing time steps $t_{0} \leq t_{1} \leq \ldots$ and between timesteps t_{k} and t_{k+1} we are willing to pick person who is $\leq k+1$ best from our current list.

Making Dating Competitive

- To make the dating problem competitive, we would have to modify it a little bit.
- We can simply minimize the rank.
- Say we always want to end up with someone (loneliness has a cost of $-\infty$, after all nobody wants to be alone)
- Previous algorithm would then either pick the best person, or the last person in the order.
- With constant probability, rank of the last person is $\Omega(n)$, so we either date the best, or we date someone in the "bottom percentile" of our list
- Expected rank of our life-long partner is $\Omega(n)$
- Can we do better?
- Yes! There is an algorithm that picks person of average rank $O(1)$, which is therefore $O(1)$-competitive.
- Complicated algorithm, based on computing time steps $t_{0} \leq t_{1} \leq \ldots$ and between timesteps t_{k} and t_{k+1} we are willing to pick person who is $\leq k+1$ best from our current list.
- That is, as we get older, we become more desperate to find someone and lower our expectations...
- Part I
- Why Study Online Algorithms?
- Competitive Analysis
- Examples
- Paging \& Caching
- Conclusion
- Acknowledgements

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory
- Memory can be modelled in the following way:
- Each layer of memory is an array with certain number of pages (hence the name)

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory
- Memory can be modelled in the following way:
- Each layer of memory is an array with certain number of pages (hence the name)
- Page stores the content of the item and its location in main memory

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory
- Memory can be modelled in the following way:
- Each layer of memory is an array with certain number of pages (hence the name)
- Page stores the content of the item and its location in main memory
- When we get a request (\Leftrightarrow event in online jargon), we first look up in cache, then L1, then L2, then main memory

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory
- Memory can be modelled in the following way:
- Each layer of memory is an array with certain number of pages (hence the name)
- Page stores the content of the item and its location in main memory
- When we get a request (\Leftrightarrow event in online jargon), we first look up in cache, then L1, then L2, then main memory
- If request is in cache, we have a hit \leftrightarrow request takes negligible time

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory
- Memory can be modelled in the following way:
- Each layer of memory is an array with certain number of pages (hence the name)
- Page stores the content of the item and its location in main memory
- When we get a request (\Leftrightarrow event in online jargon), we first look up in cache, then L1, then L2, then main memory
- If request is in cache, we have a hit \leftrightarrow request takes negligible time
- Otherwise we have miss \leftrightarrow need to fetch data from slower memory
- In negligible extra time, can also copy new data \& location to cache

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory
- Memory can be modelled in the following way:
- Each layer of memory is an array with certain number of pages (hence the name)
- Page stores the content of the item and its location in main memory
- When we get a request (\Leftrightarrow event in online jargon), we first look up in cache, then L1, then L2, then main memory
- If request is in cache, we have a hit \leftrightarrow request takes negligible time
- Otherwise we have miss \leftrightarrow need to fetch data from slower memory
- In negligible extra time, can also copy new data \& location to cache
- If cache full, must delete an old entry before copying new data

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory
- Memory can be modelled in the following way:
- Each layer of memory is an array with certain number of pages (hence the name)
- Page stores the content of the item and its location in main memory
- When we get a request (\Leftrightarrow event in online jargon), we first look up in cache, then L1, then L2, then main memory
- If request is in cache, we have a hit \leftrightarrow request takes negligible time
- Otherwise we have miss \leftrightarrow need to fetch data from slower memory
- In negligible extra time, can also copy new data \& location to cache
- If cache full, must delete an old entry before copying new data
- Main question: which entry of the cache to delete?

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory
- Memory can be modelled in the following way:
- Each layer of memory is an array with certain number of pages (hence the name)
- Page stores the content of the item and its location in main memory
- When we get a request (\Leftrightarrow event in online jargon), we first look up in cache, then L1, then L2, then main memory
- If request is in cache, we have a hit \leftrightarrow request takes negligible time
- Otherwise we have miss \leftrightarrow need to fetch data from slower memory
- In negligible extra time, can also copy new data \& location to cache
- If cache full, must delete an old entry before copying new data
- Main question: which entry of the cache to delete?
- Cost function: number of cache misses

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory
- Memory can be modelled in the following way:
- Each layer of memory is an array with certain number of pages (hence the name)
- Page stores the content of the item and its location in main memory
- When we get a request (\Leftrightarrow event in online jargon), we first look up in cache, then L1, then L2, then main memory
- If request is in cache, we have a hit \leftrightarrow request takes negligible time
- Otherwise we have miss \leftrightarrow need to fetch data from slower memory
- In negligible extra time, can also copy new data \& location to cache
- If cache full, must delete an old entry before copying new data
- Main question: which entry of the cache to delete?
- Cost function: number of cache misses
- Simplification: assume we only have cache and main memory.

Common Heuristics

(1) Least Recently Used (LRU): delete page in cache whose most recent request happened furthest in the past

Common Heuristics

(1) Least Recently Used (LRU): delete page in cache whose most recent request happened furthest in the past
(2) Random: delete random page.

Common Heuristics

(1) Least Recently Used (LRU): delete page in cache whose most recent request happened furthest in the past
(2) Random: delete random page.
(3) First-in, First-out (FIFO): delete page that has been in cache the longest

Common Heuristics

(1) Least Recently Used (LRU): delete page in cache whose most recent request happened furthest in the past
(2) Random: delete random page.
(3) First-in, First-out (FIFO): delete page that has been in cache the longest
(4) Least Frequently Used (LFU): delete page in cache which has been requested least often

Common Heuristics

(1) Least Recently Used (LRU): delete page in cache whose most recent request happened furthest in the past
(2) Random: delete random page.
(3) First-in, First-out (FIFO): delete page that has been in cache the longest
(9) Least Frequently Used (LFU): delete page in cache which has been requested least often

Today, we will analyze the Least Recently Used heuristic. We will assume that the size of our cache is k pages.

Common Heuristics

(1) Least Recently Used (LRU): delete page in cache whose most recent request happened furthest in the past
(2) Random: delete random page.
(3) First-in, First-out (FIFO): delete page that has been in cache the longest
(9) Least Frequently Used (LFU): delete page in cache which has been requested least often

Today, we will analyze the Least Recently Used heuristic. We will assume that the size of our cache is k pages.
(1) Least Recently Used (LRU): k-competitive
(2) Random: k-competitive
(3) First-in, First-out (FIFO): k-competitive
(9) Least Frequently Used (LFU): NOT competitive

LRU Analysis

Theorem

For cache of size $k, L R U$ is k-competitive.

LRU Analysis

Theorem

For cache of size $k, L R U$ is k-competitive.
(1) Upper bound: divide input sequence into phases.

- First phase starts immediately after our algorithm first faults, ends right after the algorithm faults k more times
- Second phase starts at end of first phase, ends when algorithm faults for additional k times
- and so on...

LRU Analysis

Theorem

For cache of size $k, L R U$ is k-competitive.
(1) Upper bound: divide input sequence into phases.

- First phase starts immediately after our algorithm first faults, ends right after the algorithm faults k more times
- Second phase starts at end of first phase, ends when algorithm faults for additional k times
- and so on...
(2) We will prove that OPT algorithm faults at least once per phase
in each phase: OPT faults $\geqslant 1$
fouls $=k$ $\frac{C_{A}(1)}{C_{\operatorname{cir}(1)}} \leqslant \frac{k}{1}$

$$
\text { A fouls }=k
$$

LRU Analysis

Theorem

For cache of size $k, L R U$ is k-competitive.
(1) Upper bound: divide input sequence into phases.

- First phase starts immediately after our algorithm first faults, ends right after the algorithm faults k more times
- Second phase starts at end of first phase, ends when algorithm faults for additional k times
- and so on...
(2) We will prove that OPT algorithm faults at least once per phase
(3) This gives us that $C_{A} \leq k \cdot C_{o p t}$, which is what we want.

LRU Analysis

Theorem

For cache of size $k, L R U$ is k-competitive.
(1) Upper bound: divide input sequence into phases.

- First phase starts immediately after our algorithm first faults, ends right after the algorithm faults k more times
- Second phase starts at end of first phase, ends when algorithm faults for additional k times
- and so on...
(2) We will prove that OPT algorithm faults at least once per phase
(3) This gives us that $C_{A} \leq k \cdot C_{o p t}$, which is what we want.
(9) Examples of phases, for $k=3$:
requyt $1,1,2$,
requera fa page

LRU Analysis

assumption: we start with empty cache (any alposithn)

Theorem

For cache of size $k, L R U$ is k-competitive.
(1) Upper bound: divide input sequence into phases.

- First phase starts immediately after our algorithm first faults, ends right after the algorithm faults k more times
- Second phase starts at end of first phase, ends when algorithm faults for additional k times
- and so on...
(2) We will prove that OPT algorithm faults at least once per phase
(3) This gives us that $C_{A} \leq k \cdot C_{o p t}$, which is what we want.
(9) Examples of phases, for $k=3$:

$$
1,1,2,2,1,3,4,3,2,4,5,6,15,4,4,2,3,5,6,4,5
$$

LRU Analysis - Example

Examples of phases, for $k=3$:

LRU Analysis - Upper Bound

- Need to prove that OPT will fault at least once per phase.
- If the same page faulted twice in one phase:

LRU Analysis - Upper Bound

- If each page faulted once in a phase.

LRU Analysis - Upper Bound

- If each page faulted once in a phase.
- Claim: in the beginning of each phase, content of OPT and content of our algorithm A intersect in at least one page.
- Proof: Look at last fault page in previous phase.

A faulted ot P so in current phone cooke of 1 has page P.
if OPT did not fault at P OPT already had P in its cock faulted atP then P will now be in Opt's coom

LRU Analysis - Upper Bound
If each page faulted once in a phase.

- Claim: in the beginning of each phase, content of OPT and content of our algorithm A intersect in at least one page.
- Since $O P T$ and A had a common page, then OPT must have faulted as well (since each page faulted in this phase)
\Rightarrow have k distinct page fouls
\Rightarrow we will have k distinct page requests

OPT could only have already had $k-1$ out of the k pages that were regushed $P_{1}, \ldots P_{n}$ on the fancy request $\quad P_{i} \neq P_{j} \quad i \neq j$ $O P T \leftrightarrow\left(P_{1} P_{2} \ldots P_{h}\right)$ but we know thin down't hamm becouns $P E^{\text {cocci }}$ on in bus. P mex

Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least k-competitive!

- Proof by trolling. ${ }^{7}$ Let's use $k+1$ pages, and let A be our paging algorithm.
${ }^{7}$ Common lower bound technique for online algorithms, also commonly used online as well :)

Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least k-competitive!

- Proof by trolling. ${ }^{7}$ Let's use $k+1$ pages, and let A be our paging algorithm.
- Input sequence: at each step, request page that A doesn't have.

[^21] well :)

Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least k-competitive!

- Proof by trolling. ${ }^{7}$ Let's use $k+1$ pages, and let A be our paging algorithm.
- Input sequence: at each step, request page that A doesn't have.
- A faults every single time.

[^22] well :)

Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least k-competitive!

- Proof by trolling. ${ }^{7}$ Let's use $k+1$ pages, and let A be our paging algorithm.
- Input sequence: at each step, request page that A doesn't have.
- A faults every single time.
- Offline Algorithm: on cache miss, delete page which is requested furthest in the future.

[^23] well :)

Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least k-competitive!

- Proof by trolling. ${ }^{7}$ Let's use $k+1$ pages, and let A be our paging algorithm.
- Input sequence: at each step, request page that A doesn't have.
- A faults every single time.
- Offline Algorithm: on cache miss, delete page which is requested furthest in the future.
- When offline algorithm deletes a page, it's next delete happens after at least k steps.

[^24] well :)

Conclusion

- Online algorithms are important for many applications, when we need to make decisions right when we receive the information.
- Applications in
- Stock Market
- Dating
- Skiing
- Caching
- Machine Learning (regret minimization)
- many more...
- Competitive Analysis: measures performance of our algorithm against best algorithm that could see into the future

Acknowledgement

- Lecture based largely on:
- Lecture 17 of Luca's Optimization class
- Lectures 19 and 20 of Karger's 6.854 Fall 2004 algorithms course
- [Motwani \& Raghavan 2007, Chapter 13]
- See Luca's Lecture 17 notes at
https://lucatrevisan.github.io/teaching/cs261-11/lecture17.pdf
- See Karger's Lecture 19 notes at
http://courses.csail.mit.edu/6.854/06/scribe/s22-online.pdf
- See Karger's Lecture 20 notes at
http://courses.csail.mit.edu/6.854/06/scribe/s24-paging.pdf

References I

P- Motwani, Rajeev and Raghavan, Prabhakar (2007) Randomized Algorithms

[^0]: ${ }^{2}$ One can technically go, but if not Canadian or PR, not allowed to come back... And

[^1]: ${ }^{2}$ One can technically go, but if not Canadian or PR, not allowed to come back... And

[^2]: ${ }^{2}$ One can technically go, but if not Canadian or PR, not allowed to come back... And Brazil is not handling covid well... alas

[^3]: ${ }^{2}$ One can technically go, but if not Canadian or PR, not allowed to come back... And Brazil is not handling covid well... alas

[^4]: ${ }^{2}$ One can technically go, but if not Canadian or PR, not allowed to come back... And Brazil is not handling covid well... alas

[^5]: ${ }^{3}$ Assumptions: people are comparable AND we know how to do it ${ }^{4}$ Go big or go home lonely!

[^6]: ${ }^{3}$ Assumptions: people are comparable AND we know how to do it
 ${ }^{4}$ Go big or go home lonely!
 ${ }^{5}$ Also assuming they will all want to date us...

[^7]: ${ }^{3}$ Assumptions: people are comparable AND we know how to do it
 ${ }^{4}$ Go big or go home lonely!
 ${ }^{5}$ Also assuming they will all want to date us...

[^8]: ${ }^{3}$ Assumptions: people are comparable AND we know how to do it
 ${ }^{4}$ Go big or go home lonely!
 ${ }^{5}$ Also assuming they will all want to date us...

[^9]: ${ }^{3}$ Assumptions: people are comparable AND we know how to do it
 ${ }^{4}$ Go big or go home lonely!
 ${ }^{5}$ Also assuming they will all want to date us...

[^10]: ${ }^{3}$ Assumptions: people are comparable AND we know how to do it
 ${ }^{4}$ Go big or go home lonely!
 ${ }^{5}$ Also assuming they will all want to date us...

[^11]: ${ }^{3}$ Assumptions: people are comparable AND we know how to do it
 ${ }^{4}$ Go big or go home lonely!
 ${ }^{5}$ Also assuming they will all want to date us...

[^12]: ${ }^{3}$ Assumptions: people are comparable AND we know how to do it
 ${ }^{4}$ Go big or go home lonely!
 ${ }^{5}$ Also assuming they will all want to date us...

[^13]: ${ }^{6}$ It's not about them, it's about you... you haven't seen enough, too young to commit, etc.

[^14]: ${ }^{6}$ It's not about them, it's about you... you haven't seen enough, too young to commit, etc.

[^15]: ${ }^{6}$ It's not about them, it's about you... you haven't seen enough, too young to commit, etc.

[^16]: ${ }^{6}$ It's not about them, it's about you... you haven't seen enough, too young to commit, etc.

[^17]: ${ }^{6}$ It's not about them, it's about you... you haven't seen enough, too young to commit, etc.

[^18]: ${ }^{6}$ It's not about them, it's about you... you haven't seen enough, too young to commit, etc.

[^19]: ${ }^{6}$ It's not about them, it's about you... you haven't seen enough, too young to commit, etc.

[^20]: ${ }^{6}$ It's not about them, it's about you... you haven't seen enough, too young to commit, etc.

[^21]: ${ }^{7}$ Common lower bound technique for online algorithms, also commonly used online as

[^22]: ${ }^{7}$ Common lower bound technique for online algorithms, also commonly used online as

[^23]: ${ }^{7}$ Common lower bound technique for online algorithms, also commonly used online as

[^24]: ${ }^{7}$ Common lower bound technique for online algorithms, also commonly used online as

