Lecture W Linear Programming and Duality Theorems

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

October 19, 2021

イロト 不得 トイヨト イヨト

3

1/83

Overview

• Part I

- Why Linear Programming?
- Structural Results on Linear Programming
- Duality Theory
- Conclusion
- Acknowledgements
- Proof of Fundamental Theorem of Linear Inequalities

Mathematical Programming deals with problems of the form

s

$$\begin{array}{ll} \text{minimize} & f(x)\\ \text{ubject to} & g_1(x) \leq 0\\ & \vdots\\ & g_m(x) \leq 0\\ & x \in \mathbb{R}^n \end{array}$$

Mathematical Programming deals with problems of the form

$$\begin{array}{ll} \text{minimize} & f(x)\\ \text{subject to} & g_1(x) \leq 0\\ & \vdots\\ & g_m(x) \leq 0\\ & x \in \mathbb{R}^n \end{array}$$

• Very general family of problems.

minimize
$$f(x)$$

subject to $g_1(x) \le 0$
 \vdots
 $g_m(x) \le 0$
 $x \in \mathbb{R}^n$

- Very general family of problems.
- Special case is when all functions f, g₁,..., g_m are *linear* functions (called *Linear Programming* - LP for short)

minimize
$$f(x)$$

subject to $g_1(x) \le 0$
 \vdots
 $g_m(x) \le 0$
 $x \in \mathbb{R}^n$

- Very general family of problems.
- Special case is when all functions f, g₁,..., g_m are *linear* functions (called *Linear Programming* - LP for short)
- Traces of idea of LP in works of Fourier [Fourier 1823, Fourier 1824]

minimize
$$f(x)$$

subject to $g_1(x) \le 0$
 \vdots
 $g_m(x) \le 0$
 $x \in \mathbb{R}^n$

- Very general family of problems.
- Special case is when all functions f, g₁,..., g_m are *linear* functions (called *Linear Programming* - LP for short)
- Traces of idea of LP in works of Fourier [Fourier 1823, Fourier 1824]
- Formally studied & importance of LP recognized in 1940's by Dantzig, Kantorovich, Koopmans and von Neumann.

A linear function $f : \mathbb{R}^n \to \mathbb{R}$ is given by

$$f(\mathbf{x}) = \underline{c_1} \cdot x_1 + \ldots + \underline{c_n} \cdot x_n = \underline{c}^T \mathbf{x} + \mathbf{b}$$

+ **b**
b \in \mathbf{R}

A linear function $f : \mathbb{R}^n \to \mathbb{R}$ is given by

$$f(\mathbf{x}) = c_1 \cdot x_1 + \ldots + c_n \cdot x_n = \underline{c}^T \mathbf{x} + \mathbf{b}$$

Linear Programming deals with problems of the form

10/83

A linear function $f : \mathbb{R}^n \to \mathbb{R}$ is given by

$$f(\mathbf{x}) = c_1 \cdot x_1 + \ldots + c_n \cdot x_n = c^T x$$

Linear Programming deals with problems of the form

A linear function $f : \mathbb{R}^n \to \mathbb{R}$ is given by

$$f(\mathbf{x}) = c_1 \cdot x_1 + \ldots + c_n \cdot x_n = c^T \mathbf{x}$$

Linear Programming deals with problems of the form

$$\begin{cases} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \\ & x \in \mathbb{R}^n \end{cases}$$

We can *always* represent LPs in *standard form*:

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$
 $Aii = bi$
 $Aii = bi$

• Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Stock portfolio optimization:

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Stock portfolio optimization:
 - *n* companies, stock of company *i* costs $c_i \in \mathbb{R}$
 - company i has expected profit $p_i \in \mathbb{R}$
 - our budget is $B \in \mathbb{R}$

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Stock portfolio optimization:
 - *n* companies, stock of company *i* costs $c_i \in \mathbb{R}$
 - company i has expected profit $p_i \in \mathbb{R}$

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Stock portfolio optimization:
 - *n* companies, stock of company *i* costs $c_i \in \mathbb{R}$
 - company i has expected profit $p_i \in \mathbb{R}$
 - our budget is $B \in \mathbb{R}$

maximize
$$p_1 \cdot x_1 + \dots + p_n \cdot x_n$$

subject to $c_1 \cdot x_1 + \dots + c_n \cdot x_n \le B$
 $x \ge 0$

• Other problems, such as *data fitting*, *linear classification* can be modelled as linear programs.

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b\\ & x \ge 0 \end{array}$$

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b\\ & x \ge 0 \end{array}$$

• When is a Linear Program *feasible*?

• Is there a solution to the constraints at all?

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

- When is a Linear Program *feasible*?
 Is there a solution to the constraints at all?
 When is a Linear Program *bounded*?
 - Is there a minimum? Or is the minimum $-\infty$?

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

- When is a Linear Program *feasible*?
 - Is there a solution to the constraints at all?
- When is a Linear Program bounded?
 - Is there a minimum? Or is the minimum $-\infty$?
- On we characterize optimality?
 - How can we know that we found a minimum solution?
 - Do these solutions have nice description?
 - Do the solutions have *small bit complexity*?

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

- When is a Linear Program *feasible*?
 - Is there a solution to the constraints at all?
- When is a Linear Program bounded?
 - Is there a minimum? Or is the minimum $-\infty$?
- On we characterize optimality?
 - How can we know that we found a minimum solution?
 - Do these solutions have nice description?
 - Do the solutions have *small bit complexity*?
- How do we design *efficient algorithms* that find *optimal solutions* to Linear Programs?

• Part I

- Why Linear Programming?
- Structural Results on Linear Programming
- Duality Theory
- Conclusion
- Acknowledgements
- Proof of Fundamental Theorem of Linear Inequalities

Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))

Let $a_1, \ldots, a_m, b \in \mathbb{R}^n$, and $t := \operatorname{rank}\{a_1, \ldots, a_m, b\}$. Then either

- b is a non-negative linear combination of linearly independent vectors from a₁,..., a_m, or
- **2** there exists a hyperplane $H := \{x \mid c^T x = 0\}$ s.t.
 - $c^T b < 0$
 - $c^T a_i \geq 0$
 - *H* contains t 1 linearly independent vectors from a_1, \ldots, a_m

- 3

Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))

Let $a_1, \ldots, a_m, b \in \mathbb{R}^n$, and $t := \operatorname{rank}\{a_1, \ldots, a_m, b\}$. Then either

- b is a non-negative linear combination of linearly independent vectors from a₁,..., a_m, or
- **2** there exists a hyperplane $H := \{x \mid c^T x = 0\}$ s.t.
 - $c^T_{T}b < 0$
 - $c^T a_i \geq 0$
 - *H* contains t 1 linearly independent vectors from a_1, \ldots, a_m

Remark

The hyperplane H above is known as the *separating hyperplane*.

Lemma (Farkas Lemma)

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The following are equivalent:

- There exists $x \in \mathbb{R}^n$ such that $x \ge 0$ and Ax = b
- **2** $y^T b \ge 0$ for each $y \in \mathbb{R}^m$ such that $y^T A \ge 0$

Lemma (Farkas Lemma)

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The following are equivalent:

• There exists
$$x \in \mathbb{R}^n$$
 such that $x \ge 0$ and $Ax = b$

2 $y^T b \ge 0$ for each $y \in \mathbb{R}^m$ such that $y^T A \ge 0$

Equivalent formulation

Lemma (Farkas Lemma - variant 1)

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Then exactly one of the following statements hold:

- There exists $x \in \mathbb{R}^n$ such that $x \ge 0$ and Ax = b
- **2** There exists $y \in \mathbb{R}^m$ such that $y^T b > 0$ and $y^T A \le 0$

Equivalent formulation

Lemma (Farkas Lemma - variant 2)

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The following are equivalent:

• There exists $x \in \mathbb{R}^n$ such that $Ax \leq b$

2 $y^T b \ge 0$ for each $y \ge 0$ such that $y^T A = 0$

$$A_{\mathbf{x}} \leq \mathbf{b} \implies \mathbf{y}^{\mathsf{T}} \mathbf{A}^{\mathsf{x}} \leq \mathbf{y}^{\mathsf{T}} \mathbf{b}$$

$$g_{\mathbf{y}} \circ \qquad \mathbf{0}$$

$$(1)$$

$$\mathbf{0} \leq \mathbf{y}^{\mathsf{T}} \mathbf{b}$$

Equivalent formulation

$$b_i + [A(p-n)]_i = b_i$$

 $A(p-n) \le b \iff Ax \le b$
 $x = p-n$

Lemma (Farkas Lemma - variant 2)

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The following are equivalent:

- **1** There exists $x \in \mathbb{R}^n$ such that $Ax \leq b$
- **2** $y^T b \ge 0$ for each $y \ge 0$ such that $y^T A = 0$
 - Let M = [I A − A]. Then Ax ≤ b has a solution iff Mz = b has a non-negative solution z ≥ 0

$$M = (I A - A) \qquad M \ge = b$$

$$Z = \begin{pmatrix} b \\ p \\ n \end{pmatrix} \qquad Is + A \cdot p - An = b$$

$$Z = \begin{pmatrix} b \\ p \\ n \end{pmatrix} \qquad Is + A \cdot p - An = b$$

Equivalent formulation

Lemma (Farkas Lemma - variant 2)

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The following are equivalent:

- **1** There exists $x \in \mathbb{R}^n$ such that $Ax \leq b$
- 2 $y^T b \ge 0$ for each $y \ge 0$ such that $y^T A = 0$
 - Let M = [I A − A]. Then Ax ≤ b has a solution iff Mz = b has a non-negative solution z ≥ 0
 - Now apply the original version of the lemma

• Part I

- Why Linear Programming?
- Structural Results on Linear Programming
- Duality Theory
- Conclusion
- Acknowledgements
- Proof of Fundamental Theorem of Linear Inequalities

Consider our linear program:

minimize
$$c^T x$$

subject to $Ax = b$
 $x > 0$

Consider our linear program:

minimize $c^T x$ subject to Ax = b $x \ge 0$

• From Farkas' lemma, we saw that Ax = b and $x \ge 0$ has a solution iff $y^T b \ge 0$ for each $y \in \mathbb{R}^m$ such that $y^T A \ge 0$.

Consider our linear program:

minimize $c^T x$ subject to Ax = bx > 0

- From Farkas' lemma, we saw that Ax = b and $x \ge 0$ has a solution iff $y^T b \ge 0$ for each $y \in \mathbb{R}^m$ such that $y^T A \ge 0$.
- If we look at what happens when we multiply $y^T A$, note the following:

$$y^{T}A \leq c^{T} \Rightarrow y^{T}Ax \leq c^{T}x$$

$$\Rightarrow y^{T}b \leq c^{T}x$$

Anondord from $Ax = b$

Consider our linear program:

minimize $c^T x$ subject to Ax = bx > 0

- From Farkas' lemma, we saw that Ax = b and $x \ge 0$ has a solution iff $y^T b \ge 0$ for each $y \in \mathbb{R}^m$ such that $y^T A \ge 0$.
- If we look at what happens when we multiply $y^T A$, note the following:

• Thus, if $y^T A \le c^T$, then we have that $y^T b$ is a *lower bound* on the solution to our linear program!

Consider the following linear programs:

Primal LP

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

Dual LP

Linear Programming Duality

Consider the following linear programs:

Primal LPDual LPminimize $c^T x$ maximize $y^T b$ subject toAx = bsubject to $y^T A \le c^T$ $x \ge 0$ $x \ge 0$ $x \ge 0$ $x \ge 0$

• From previous slide

 $y^{\mathsf{T}} A \leq c^{\mathsf{T}} \Rightarrow y^{\mathsf{T}} b$ is a lower bound on value of Primal

Linear Programming Duality

Consider the following linear programs:

Primal LPDual LPminimize $c^T x$ maximize $y^T b$ subject toAx = bsubject to $y^T A \le c^T$ $x \ge 0$ $x \ge 0$ $y^T A \le c^T$

From previous slide

 $y^{T}A \leq c^{T} \Rightarrow y^{T}b$ is a lower bound on value of Primal

• Thus, the optimal (maximum) value of *dual LP* lower bounds the optimal (minimum) value of the *Primal LP*!

Weak duality of LP

Linear Programming Duality

Consider the following linear programs:

Primal LPDual LPminimize $c^T x$ maximize $y^T b$ subject toAx = bsubject to $y^T A \le c^T$ $x \ge 0$ $x \ge 0$ $y^T A \le c^T$

From previous slide

 $y^T A \leq c^T \Rightarrow y^T b$ is a lower bound on value of Primal

• Thus, the optimal (maximum) value of *dual LP* lower bounds the optimal (minimum) value of the *Primal LP*!

Theorem (Weak Duality)

Let x be a feasible solution of the primal LP and y be a feasible solution of the dual LP. Then

$$y^T b \leq c^T x.$$

Primal LPDual LPminimize $c^T x$ maximize $y^T b$ subject toAx = bsubject to $y^T A \le c^T$ $x \ge 0$ $x \ge 0$ $x \ge 0$ $x \ge 0$

• Optimal (maximum) value of *dual LP* lower bounds the optimal (minimum) value of the *Primal LP*!

- Optimal (maximum) value of *dual LP* lower bounds the optimal (minimum) value of the *Primal LP*!
- If $\alpha^*, \beta^* \in \mathbb{R}$ are the optimal values for primal and dual, respectively.

- Optimal (maximum) value of *dual LP* lower bounds the optimal (minimum) value of the *Primal LP*!
- If $\alpha^*,\beta^*\in\mathbb{R}$ are the optimal values for primal and dual, respectively.
 - We showed that when both primal and dual are feasible, we have

$$\max dual = \beta^* \le \alpha^* = \min of primal$$

• Optimal (maximum) value of *dual LP* lower bounds the optimal (minimum) value of the *Primal LP*!

• If $\alpha^*,\beta^*\in\mathbb{R}$ are the optimal values for primal and dual, respectively.

• We showed that when both primal and dual are feasible, we have

max dual $= \beta^* \le \alpha^* = \min$ of primal

• if primal *unbounded* $(\alpha^* = -\infty)$ then dual *infeasible* $(\beta^* = -\infty)$

• Optimal (maximum) value of *dual LP* lower bounds the optimal (minimum) value of the *Primal LP*!

• If $\alpha^*,\beta^*\in\mathbb{R}$ are the optimal values for primal and dual, respectively.

• We showed that when both primal and dual are feasible, we have

 $\max \, \mathrm{dual} \ = \beta^* \leq \alpha^* = \ \min \, \mathrm{of} \, \mathrm{primal}$

- if primal unbounded ($\alpha^* = -\infty$) then dual infeasible ($\beta^* = -\infty$)
- if dual *unbounded* $(\beta^* = \infty)$ then primal *infeasible* $(\alpha^* = \infty)$

• Optimal (maximum) value of *dual LP* lower bounds the optimal (minimum) value of the *Primal LP*!

• If $\alpha^*,\beta^*\in\mathbb{R}$ are the optimal values for primal and dual, respectively.

• We showed that when both primal and dual are feasible, we have

 $\max \, \mathrm{dual} \ = \beta^* \leq \alpha^* = \ \min \, \mathrm{of} \, \mathrm{primal}$

- if primal *unbounded* ($\alpha^* = -\infty$) then dual *infeasible* ($\beta^* = -\infty$)
- if dual *unbounded* $(\beta^* = \infty)$ then primal *infeasible* $(\alpha^* = \infty)$

• Practice problem: show that dual of the dual LP is the primal LP!

• Optimal (maximum) value of *dual LP* lower bounds the optimal (minimum) value of the *Primal LP*!

• If $\alpha^*,\beta^*\in\mathbb{R}$ are the optimal values for primal and dual, respectively.

• We showed that when both primal and dual are feasible, we have

 $\max \, \mathrm{dual} \ = \beta^* \leq \alpha^* = \ \min \, \mathrm{of} \, \mathrm{primal}$

- if primal *unbounded* ($\alpha^* = -\infty$) then dual *infeasible* ($\beta^* = -\infty$)
- if dual *unbounded* $(\beta^* = \infty)$ then primal *infeasible* $(\alpha^* = \infty)$

• Practice problem: show that dual of the dual LP is the primal LP!

• When is the above inequality tight?

Strong Duality

• let $\alpha^*, \beta^* \in \mathbb{R}$ be optimal values for primal and dual, respectively.

Strong Duality

• let $\alpha^*, \beta^* \in \mathbb{R}$ be optimal values for primal and dual, respectively.

Theorem (Strong Duality)

If primal LP and dual LP are feasible, then

 $max \ dual = \beta^* = \alpha^* = min \ of \ primal.$

i.e. : both programs have the same value!

49 / 83

Theorem (Strong Duality)

If primal LP and dual LP are feasible, then

 $max \ dual = \beta^* = \alpha^* = min \ of \ primal.$

Theorem (Strong Duality)

If primal LP and dual LP are feasible, then

max dual
$$= \beta^* = \alpha^* = \min of primal.$$

Since we have proved weak duality, suffices to show that the following (> X19 femille then yTb & CTX LP has a solution: don't core about () maximize subject to $y^T A \leq c^T$ dual $c^T x - y^T b \leq 0$ Juel Prince $\begin{pmatrix} Ax = b \\ x \ge 0 \end{pmatrix}$ primed x sol . to mex yTb mia CTX oit STAEC At Ax=5 * >0 CX = yTb (=> x y or ephinum 51/83

Theorem (Strong Duality)

If primal LP and dual LP are feasible, then

max dual
$$= \beta^* = \alpha^* = \min$$
 of primal.

Since we have proved weak duality, suffices to show that the following LP has a solution:

maximize 0
subject to
$$y^T A \le c^T$$

 $c^T x - y^T b \le 0$
 $Ax = b$
 $x \ge 0$

Apply variant 2 of Farkas' lemma on the system above.

1 LP from previous page encoded by:

$$B\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} A & 0\\ -A & 0\\ c^{\mathsf{T}} & -b^{\mathsf{T}}\\ 0 & A^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} \le \begin{pmatrix} b\\ -b\\ 0\\ c \end{pmatrix}$$

1

$$Ax \le b$$

$$-Ax \le -b \iff Ax \ge b$$

$$c^{T}x - b^{T}y \le 0 \iff c^{T}x \le y^{T}b$$

$$A^{T}y \le c \iff y^{T}A \le c^{T}$$

IP from previous page encoded by:

$$B\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} A & 0\\ -A & 0\\ c^{T} & -b^{T}\\ 0 & A^{T} \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} \le \begin{pmatrix} b\\ -b\\ 0\\ c \end{pmatrix}$$

Variant 2 of Farkas' lemma gives that the system has solution iff for each $z = (u^T v^T \lambda w^T) \ge 0$ such that zB = 0 then we have $u^T b - v^T b + w^T c > 0$ $2B = 0 = 2 \begin{pmatrix} 5 \\ -5 \\ 0 \end{pmatrix} > 0$ (vaniant 2 d) $2 \ge 0 \quad For bas lemma$) $\left(\boldsymbol{\boldsymbol{\omega}}^{\mathsf{T}} \quad \boldsymbol{\boldsymbol{\upsilon}}^{\mathsf{T}} \quad \boldsymbol{\boldsymbol{\lambda}} \quad \boldsymbol{\boldsymbol{\omega}}^{\mathsf{T}} \right) \begin{pmatrix} \boldsymbol{\boldsymbol{\omega}} \\ \boldsymbol{\boldsymbol{\varepsilon}} \\ \boldsymbol{\boldsymbol{\varepsilon}} \\ \boldsymbol{\boldsymbol{\varepsilon}} \end{pmatrix} = \boldsymbol{\boldsymbol{\omega}}^{\mathsf{T}} \boldsymbol{\boldsymbol{\varepsilon}} - \boldsymbol{\boldsymbol{\upsilon}}^{\mathsf{T}} \boldsymbol{\boldsymbol{\varepsilon}} + \boldsymbol{\boldsymbol{\omega}}^{\mathsf{T}} \boldsymbol{\boldsymbol{\varepsilon}} \succeq \boldsymbol{\boldsymbol{\vartheta}}$

LP from previous page encoded by:

$$B\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} A & 0\\ -A & 0\\ c^{\mathsf{T}} & -b^{\mathsf{T}}\\ 0 & A^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} \le \begin{pmatrix} b\\ -b\\ 0\\ c \end{pmatrix}$$

Variant 2 of Farkas' lemma gives that the system has solution iff for each $z = (u^T \quad v^T \quad \lambda \quad w^T) \ge 0$ such that zB = 0 then we have $u^Tb - v^Tb + w^Tc \ge 0$ If $\lambda > 0$, then $\lambda c^T \ge (v^T - u^T)A \Rightarrow \lambda c^Tw \ge (v^T - u^T)Aw$ and so $\lambda (u^T - v^T)b + \lambda w^Tc \ge \lambda (u^T - v^T)b - (u^T - v^T)Aw$ $= (u^T - v^T)[\lambda b - Aw] = 0$

IP from previous page encoded by:

$$B\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} A & 0\\ -A & 0\\ c^{T} & -b^{T}\\ 0 & A^{T} \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} \le \begin{pmatrix} b\\ -b\\ 0\\ c \end{pmatrix}$$

- Variant 2 of Farkas' lemma gives that the system has solution iff for each z = (u^T v^T λ w^T) ≥ 0 such that zB = 0 then we have
 u^Tb v^Tb + w^Tc ≥ 0
 If λ > 0, then λc^T = (v^T u^T)A ⇒ λc^Tw = (v^T u^T)Aw and so λ(u^T v^T)b + λw^Tc = λ(u^T v^T)b (u^T v^T)Aw
 - If $\lambda = 0$, let x, y be feasible solutions (which we assumed to exist). Then $x \ge 0$, Ax = b and $y^T A \le c^T$. Thus

$$c^{T}w \ge y^{T}Aw = 0 = (v^{T} - u^{T})Ax = (v^{T} - u^{T})b$$

Proof Strong Duality:
$$\lambda > 0$$

 $z B = (u^{T} v^{T} \lambda \omega^{T}) \begin{pmatrix} A & 0 \\ -A & 0 \\ e^{T} & -b^{T} \\ 0 & A^{T} \end{pmatrix} = ((u^{T} - v^{T})A + \lambda c^{T}, \omega^{T}A^{T} - \lambda b^{T})$
 $= ((u^{T} - v^{T})A + \lambda c^{T}, \omega^{T}A^{T} - \lambda b^{T})$
 $\downarrow = \lambda c^{T} \ge (v^{T} - u^{T})A$ and $\lambda b^{T} = \omega^{T}A^{T}$
 $\lambda b^{T} = A\omega$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof of Strong Duality: $\lambda = 0$

rearranging

(v^T- u^T)A≤0 λ = 0 (m) and $w^{T}A^{T} = 0 \iff Aw = 0$ and 2B=0 $C^{\mathsf{T}}\omega \geq y^{\mathsf{T}}A\omega = 0 \geq (v^{\mathsf{T}} \cdot u^{\mathsf{T}})Ax = (v^{\mathsf{T}} - u^{\mathsf{T}})b$ y TAEC (x feasible solution of) primal 0 < W

 $C^{\mathsf{T}}\omega + (u^{\mathsf{T}} - v^{\mathsf{T}})b \ge 0$

Affine form of Farkas' Lemma

A consequence of LP duality is the following lemma:

Lemma (Affine Farkas' Lemma)

Let the system

 $Ax \leq b$

have at least one solution, and suppose that inequality

 $c^T x \leq \delta$

holds whenever x satisfies $Ax \le b$. Then, for some $\delta' \le \delta$ the linear inequality $c^T x \le \delta'$

is a non-negative linear combination of the inequalities of $Ax \leq b$.

Affine form of Farkas' Lemma

A consequence of LP duality is the following lemma:

Lemma (Affine Farkas' Lemma)

Let the system

 $Ax \leq b$

have at least one solution, and suppose that inequality

 $c^T x \leq \delta$

holds whenever x satisfies $Ax \leq b$. Then, for some $\delta' \leq \delta$ the linear inequality

$$c^T x \leq \delta'$$

is a non-negative linear combination of the inequalities of $Ax \leq b$.

Practice problem: use LP duality and Farkas' lemma to prove this lemma!

Complementary Slackness

- If the optima in both primal and dual is finite, and x, y are feasible solutions, the following are equivalent:
- $\mathbf{0}$ x, y are optimal solutions to the primal and dual $c^T x = y^T b$ **③** if $x_i > 0$ then the corresponding inequality $y^T A_i \le c_i$ is an equality: that is, we must have $y^T A_i = c_i$. trong duality (3) for every x;>0 ⇒ y'A;=C; 3 equivalent to saying ry are both optime

Complementary Slackness

- If the optima in both primal and dual is finite, and x, y are feasible solutions, the following are equivalent:
 - (x, y are optimal solutions to the primal and dual

$$c^T x = y^T b$$

- 3 if $x_i > 0$ then the corresponding inequality $y^T A_i \le c_i$ is an equality: that is, we must have $y^T A_i = c_i$.
- 1 and 2 are equivalent due to strong duality

Complementary Slackness

- If the optima in both primal and dual is finite, and x, y are feasible solutions, the following are equivalent:
 - (x, y are optimal solutions to the primal and dual

$$c^T x = y^T b$$

- 3 if $x_i > 0$ then the corresponding inequality $y^T A_i \le c_i$ is an equality: that is, we must have $y^T A_i = c_i$.
- 1 and 2 are equivalent due to strong duality
- 2 and 3 are equivalent as we can write

$$c^{T}x - y^{T}b = c^{T}x - y^{T}Ax = (c^{T} - y^{T}A)x = \sum_{i=1}^{n} (c_{i} - y^{T}A_{i})x_{i}$$

$$x \text{ feosible}$$

$$Ax = b$$

$$x_{i} \ge 0 \quad \text{Condition 3 (S)} \quad \sum_{i=1}^{n} x_{i} \left(c_{i} - y^{T}A_{i} \right) = 0 \quad (c_{i} - y^{T}A_{i}) = 0 \quad (c_$$

• Mathematical programming - very general, and pervasive in Algorithmic life

- Mathematical programming very general, and pervasive in Algorithmic life
- General mathematical programming very hard (how hard do you think it is?)

- Mathematical programming very general, and pervasive in Algorithmic life
- General mathematical programming very hard (how hard do you think it is?)
- Special cases have very striking applications!

Today: Linear Programming

- Mathematical programming very general, and pervasive in Algorithmic life
- General mathematical programming very hard (how hard do you think it is?)
- Special cases have very striking applications!

Today: Linear Programming

• Linear Programming and Duality - fundamental concepts, lots of applications!

- Mathematical programming very general, and pervasive in Algorithmic life
- General mathematical programming very hard (how hard do you think it is?)
- Special cases have very striking applications!

Today: Linear Programming

- Linear Programming and Duality fundamental concepts, lots of applications!
 - Applications in Combinatorial Optimization (a lot of it happened here at UW!)
 - Applications in Game Theory (minimax theorem)
 - Applications in Learning Theory (boosting)
 - many more

Acknowledgement

- Lecture based largely on:
 - [Schrijver 1986, Chapter 7]

Proof of Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))

Let $a_1, \ldots, a_m, b \in \mathbb{R}^n$, and $t := \operatorname{rank}\{a_1, \ldots, a_m, b\}$. Then either

 b is a non-negative linear combination of linearly independent vectors from a₁,..., a_m, or

• there exists a hyperplane $H := \{x \mid c^T x = 0\}$ s.t.

- $c_{\tau}^{T}b < 0$
- $c^T a_i \geq 0$
- *H* contains t 1 linearly independent vectors from a_1, \ldots, a_m

Proof of Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))

Let $a_1, \ldots, a_m, b \in \mathbb{R}^n$, and $t := \operatorname{rank}\{a_1, \ldots, a_m, b\}$. Then either

 b is a non-negative linear combination of linearly independent vectors from a₁,..., a_m, or

2 there exists a hyperplane $H := \{x \mid c^T x = 0\}$ s.t.

•
$$c' b < 0$$

• $c^T a > 0$

- H contains t 1 linearly independent vectors from a_1, \ldots, a_m
- We can assume that a₁,..., a_m span ℝⁿ, otherwise work on the spanning subspace after appropriate linear transformation
Theorem (Farkas (1894, 1898), Minkowski (1896))

Let $a_1, \ldots, a_m, b \in \mathbb{R}^n$, and $t := \operatorname{rank}\{a_1, \ldots, a_m, b\}$. Then either

 b is a non-negative linear combination of linearly independent vectors from a₁,..., a_m, or

2 there exists a hyperplane $H := \{x \mid c^T x = 0\}$ s.t.

•
$$c' b < 0$$

• $c^T a > 0$

- H contains t 1 linearly independent vectors from a_1, \ldots, a_m
- We can assume that a₁,..., a_m span ℝⁿ, otherwise work on the spanning subspace after appropriate linear transformation
- Since 1 and 2 mutually exclusive, choose linearly independent $\mathcal{L}_0 := \{a_{i_1}, \dots, a_{i_n}\}$

Theorem (Farkas (1894, 1898), Minkowski (1896))

Let $a_1, \ldots, a_m, b \in \mathbb{R}^n$, and $t := \operatorname{rank}\{a_1, \ldots, a_m, b\}$. Then either

 b is a non-negative linear combination of linearly independent vectors from a₁,..., a_m, or

2 there exists a hyperplane $H := \{x \mid c^T x = 0\}$ s.t.

•
$$c' b < 0$$

• $c^T a > 0$

- H contains t-1 linearly independent vectors from a_1, \ldots, a_m
- We can assume that a₁,..., a_m span ℝⁿ, otherwise work on the spanning subspace after appropriate linear transformation
- Since 1 and 2 mutually exclusive, choose linearly independent $\mathcal{L}_0 := \{a_{i_1}, \dots, a_{i_n}\}$
- We will perform an iterative procedure:

Iterative procedure, starting with \mathcal{L}_0 :

• Write $b = \lambda_{i_1}a_{i_1} + \ldots + \lambda_{i_n}a_{i_n}$. If $\lambda_i \ge 0$ we are done

- Write $b = \lambda_{i_1}a_{i_1} + \ldots + \lambda_{i_n}a_{i_n}$. If $\lambda_i \ge 0$ we are done
- If not, let *h* be smallest index from *i*₁,..., *i_n* such that $\lambda_h < 0$. Let $H_0 = \{x \in \mathbb{R}^n \mid c_0^T x = 0\}$ be the hyperplane spanned by $\mathcal{L}_0 \setminus \{a_h\}$. Normalize it so that $c_0^T a_h = 1$.

- Write $b = \lambda_{i_1}a_{i_1} + \ldots + \lambda_{i_n}a_{i_n}$. If $\lambda_i \ge 0$ we are done
- ② If not, let *h* be smallest index from $i_1, ..., i_n$ such that $\lambda_h < 0$. Let $H_0 = \{x \in \mathbb{R}^n \mid c_0^T x = 0\}$ be the hyperplane spanned by $\mathcal{L}_0 \setminus \{a_h\}$. Normalize it so that $c_0^T a_h = 1$.
- If $c_0^T a_i \ge 0$ for all $i \in [m]$ we are done (case 2)

- Write $b = \lambda_{i_1}a_{i_1} + \ldots + \lambda_{i_n}a_{i_n}$. If $\lambda_i \ge 0$ we are done
- ② If not, let *h* be smallest index from $i_1, ..., i_n$ such that $\lambda_h < 0$. Let $H_0 = \{x \in \mathbb{R}^n \mid c_0^T x = 0\}$ be the hyperplane spanned by $\mathcal{L}_0 \setminus \{a_h\}$. Normalize it so that $c_0^T a_h = 1$.
- **3** If $c_0^T a_i \ge 0$ for all $i \in [m]$ we are done (case 2)
- Otherwise, choose smallest $s \in [m]$ such that $c_0^T a_s < 0$, and let $\mathcal{L}_1 = \mathcal{L} \cup \{a_s\} \setminus \{a_h\}$. Go back to step 1.

- Write $b = \lambda_{i_1}a_{i_1} + \ldots + \lambda_{i_n}a_{i_n}$. If $\lambda_i \ge 0$ we are done
- ② If not, let *h* be smallest index from $i_1, ..., i_n$ such that $\lambda_h < 0$. Let $H_0 = \{x \in \mathbb{R}^n \mid c_0^T x = 0\}$ be the hyperplane spanned by $\mathcal{L}_0 \setminus \{a_h\}$. Normalize it so that $c_0^T a_h = 1$.
- **3** If $c_0^T a_i \ge 0$ for all $i \in [m]$ we are done (case 2)
- Otherwise, choose smallest $s \in [m]$ such that $c_0^T a_s < 0$, and let $\mathcal{L}_1 = \mathcal{L} \cup \{a_s\} \setminus \{a_h\}$. Go back to step 1.
 - To conclude the proof, need to show that this procedure always terminates. If process doesn't terminate, there are two times r < t such that $\mathcal{L}_r = \mathcal{L}_t$
 - Let ℓ be the highest index for which a_{ℓ} has been removed from \mathcal{L}_k for some $r \leq k < t$.

- Write $b = \lambda_{i_1}a_{i_1} + \ldots + \lambda_{i_n}a_{i_n}$. If $\lambda_i \ge 0$ we are done
- ② If not, let *h* be smallest index from $i_1, ..., i_n$ such that $\lambda_h < 0$. Let $H_0 = \{x \in \mathbb{R}^n \mid c_0^T x = 0\}$ be the hyperplane spanned by $\mathcal{L}_0 \setminus \{a_h\}$. Normalize it so that $c_0^T a_h = 1$.
- **3** If $c_0^T a_i \ge 0$ for all $i \in [m]$ we are done (case 2)
- Otherwise, choose smallest $s \in [m]$ such that $c_0^T a_s < 0$, and let $\mathcal{L}_1 = \mathcal{L} \cup \{a_s\} \setminus \{a_h\}$. Go back to step 1.
 - To conclude the proof, need to show that this procedure always terminates. If process doesn't terminate, there are two times r < t such that $\mathcal{L}_r = \mathcal{L}_t$
 - Let ℓ be the highest index for which a_{ℓ} has been removed from \mathcal{L}_k for some $r \leq k < t$.
 - $\mathcal{L}_r = \mathcal{L}_t \Rightarrow a_\ell$ has also been added from some $\mathcal{L}_{k'}$ for some $r \leq k' < t$.

- Say a_r was removed at iteration k and added back at iteration k' so $r \le k < k' < t$
- Let c be the vector defining the hyperplane at the k' iteration (when we added a_r back to the set), and let L_k = {a_{i1},..., a_{in}}
- Now, above implies the following contradiction:

$$0 > c^{\mathsf{T}}b = c^{\mathsf{T}}(\lambda_{i_1}a_{i_1} + \dots + \lambda_{i_n}a_{i_n}) = \lambda_{i_1}c^{\mathsf{T}}a_{i_1} + \dots \lambda_{i_n}c^{\mathsf{T}}a_{i_n} \ge 0$$

- Say a_r was removed at iteration k and added back at iteration k' so $r \le k < k' < t$
- Let c be the vector defining the hyperplane at the k' iteration (when we added a_r back to the set), and let $\mathcal{L}_k = \{a_{i_1}, \ldots, a_{i_n}\}$
- Now, above implies the following contradiction:

$$0 > c^{\mathsf{T}}b = c^{\mathsf{T}}(\lambda_{i_1}a_{i_1} + \dots + \lambda_{i_n}a_{i_n}) = \lambda_{i_1}c^{\mathsf{T}}a_{i_1} + \dots \lambda_{i_n}c^{\mathsf{T}}a_{i_n} \ge 0$$

• First inequality comes because at each iteration we choose c such that $c^T b < 0$

- Say a_r was removed at iteration k and added back at iteration k' so $r \le k < k' < t$
- Let c be the vector defining the hyperplane at the k' iteration (when we added a_r back to the set), and let $\mathcal{L}_k = \{a_{i_1}, \ldots, a_{i_n}\}$
- Now, above implies the following contradiction:

$$0 > c^{\mathsf{T}}b = c^{\mathsf{T}}(\lambda_{i_1}a_{i_1} + \dots + \lambda_{i_n}a_{i_n}) = \lambda_{i_1}c^{\mathsf{T}}a_{i_1} + \dots \lambda_{i_n}c^{\mathsf{T}}a_{i_n} \ge 0$$

- First inequality comes because at each iteration we choose c such that $c^T b < 0$
- Second inequality holds term by term:

۲

References I

Schrijver, Alexander (1986)

Theory of Linear and Integer Programming

Fourier, J. B. 1826

Analyse des travaux de l'Académie Royale des Sciences pendant l'année 1823. Partie mathématique (1826)

Fourier, J. B. 1827

Analyse des travaux de l'Académie Royale des Sciences pendant l'année 1824. Partie mathématique (1827)