11
 Lecture Linear Programming and Duality Theorems

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

October 19, 2021

Overview

- Part I
- Why Linear Programming?
- Structural Results on Linear Programming
- Duality Theory
- Conclusion
- Acknowledgements
- Proof of Fundamental Theorem of Linear Inequalities

Mathematical Programming

Mathematical Programming deals with problems of the form

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{1}(x) \leq 0 \\
& \vdots \\
& g_{m}(x) \leq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{1}(x) \leq 0 \\
& \vdots \\
& g_{m}(x) \leq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

- Very general family of problems.

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & g_{1}(x) \leq 0 \\
& \vdots \\
& g_{m}(x) \leq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

- Very general family of problems.
- Special case is when all functions f, g_{1}, \ldots, g_{m} are linear functions (called Linear Programming - LP for short)

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & g_{1}(x) \leq 0 \\
& \vdots \\
& g_{m}(x) \leq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

- Very general family of problems.
- Special case is when all functions f, g_{1}, \ldots, g_{m} are linear functions (called Linear Programming - LP for short)
- Traces of idea of LP in works of Fourier [Fourier 1823, Fourier 1824]

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & g_{1}(x) \leq 0 \\
& \vdots \\
& g_{m}(x) \leq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

- Very general family of problems.
- Special case is when all functions f, g_{1}, \ldots, g_{m} are linear functions (called Linear Programming - LP for short)
- Traces of idea of LP in works of Fourier [Fourier 1823, Fourier 1824]
- Formally studied \& importance of LP recognized in 1940's by Dantzig, Kantorovich, Koopmans and von Neumann.

What is a Linear Program?

A linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given by

$$
\begin{array}{rl}
f(x)=\underline{c_{1}} \cdot x_{1}+\ldots+c_{n} \cdot x_{n}= & c^{\top} x+b \\
+b & b \in \mathbb{R}
\end{array}
$$

What is a Linear Program?

A linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given by

$$
f(x)=c_{1} \cdot x_{1}+\ldots+c_{n} \cdot x_{n}=\underline{c}^{T} x+b
$$

Linear Programming deals with problems of the form

$$
\begin{aligned}
\begin{aligned}
\text { minimize } & c^{T} x \\
\text { subject to } & A_{1}^{T} x \leq b_{1} \\
& \vdots \\
& A_{m}^{T} x \leq b_{m} \\
& x \in \mathbb{R}^{n} \\
A=\left(A_{1} A_{2}-A_{m}\right) \quad & A^{T} \vec{x} \leq \vec{b}
\end{aligned}
\end{aligned}
$$

What is a Linear Program?

A linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given by

$$
f(x)=c_{1} \cdot x_{1}+\ldots+c_{n} \cdot x_{n}=c^{T} x
$$

Linear Programming deals with problems of the form

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \vec{~} \\
\text { subject to } & A \vec{x} \leq b \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

What is a Linear Program?

A linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given by

$$
f(x)=c_{1} \cdot x_{1}+\ldots+c_{n} \cdot x_{n}=c^{T} x
$$

Linear Programming deals with problems of the form

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \leq b \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

We can always represent RPs in standard form:

$$
>\left\{\begin{array}{clc}
\operatorname{minimize} & c^{T} x & a_{i 1} x_{1}+\cdots+a_{i n} x_{n}=b_{i} \\
\text { subject to } & A x=b & +s_{i} \\
& x \geq 0 & n_{i} \geqslant 0
\end{array}\right.
$$

Why should I care?

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Linear Programming is also a great theocicical tool to prove some really cod results!

Why should I care?

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Stock portfolio optimization:

Why should I care?

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Stock portfolio optimization:
- n companies, stock of company i costs $c_{i} \in \mathbb{R}$
- company i has expected profit $p_{i} \in \mathbb{R}$
- our budget is $B \in \mathbb{R}$

Why should I care?

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Stock portfolio optimization:
- n companies, stock of company i costs $c_{i} \in \mathbb{R}$
- company i has expected profit $p_{i} \in \mathbb{R}$
- our budget is $B \in \mathbb{R}$

$$
\begin{aligned}
& \text { maximize } p_{1} \cdot x_{1}+\cdots+p_{n} \cdot x_{n} \\
& \text { subject to } \\
& \frac{\sqrt{c_{1} \cdot x_{1}+\cdots+c_{n} \cdot x_{n} \leq B}}{x \geq 0 \quad \text { amount of shares }} \\
& \text { that we have trust fit } \\
& \text { our budget }
\end{aligned}
$$

Why should I care?

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Stock portfolio optimization:
- n companies, stock of company i costs $c_{i} \in \mathbb{R}$
- company i has expected profit $p_{i} \in \mathbb{R}$
- our budget is $B \in \mathbb{R}$

$$
\begin{aligned}
\operatorname{maximize} & p_{1} \cdot x_{1}+\cdots+p_{n} \cdot x_{n} \\
\text { subject to } & c_{1} \cdot x_{1}+\cdots+c_{n} \cdot x_{n} \leq B \\
& x \geq 0
\end{aligned}
$$

- Other problems, such as data fitting, linear classification can be modelled as linear programs.

Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

(1) When is a Linear Program feasible?

- Is there a solution to the constraints at all?

Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

(1) When is a Linear Program feasible?

- Is there a solution to the constraints at all?
(2) When is a Linear Program bounded?
- Is there a minimum? Or is the minimum $-\infty$?

Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

(1) When is a Linear Program feasible?

- Is there a solution to the constraints at all?
(2) When is a Linear Program bounded?
- Is there a minimum? Or is the minimum $-\infty$?
(3) Can we characterize optimality?
- How can we know that we found a minimum solution?
- Do these solutions have nice description?
- Do the solutions have small bit complexity?

Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

(1) When is a Linear Program feasible?

- Is there a solution to the constraints at all?
(2) When is a Linear Program bounded?
- Is there a minimum? Or is the minimum $-\infty$?
(3) Can we characterize optimality?
- How can we know that we found a minimum solution?
- Do these solutions have nice description?
- Do the solutions have small bit complexity?
(9) How do we design efficient algorithms that find optimal solutions to Linear Programs?
- Part I
- Why Linear Programming?
- Structural Results on Linear Programming
- Duality Theory
- Conclusion
- Acknowledgements
- Proof of Fundamental Theorem of Linear Inequalities

Fundamental Theorem of Linear Inequalities
Theorem (Farkas (1894, 1898), Minkowski (1896))
Let $a_{1}, \ldots, a_{m}, b \in \mathbb{R}^{n}$, and $t:=\operatorname{rank}\left\{a_{1}, \ldots, a_{m}, b\right\}$. Then either
(1) b is a non-negative linear combination of linearly independent vectors from a_{1}, \ldots, a_{m}, or
(2) there exists a hyperplane $H:=\left\{x \mid c^{\top} x=0\right\}$ s.t.

- $c^{T} b<0$
- $c^{T} a_{i} \geq 0$
- H contains $t-1$ linearly independent vectors from a_{1}, \ldots, a_{m}

Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))

Let $a_{1}, \ldots, a_{m}, b \in \mathbb{R}^{n}$, and $t:=\operatorname{rank}\left\{a_{1}, \ldots, a_{m}, b\right\}$. Then either
(1) b is a non-negative linear combination of linearly independent vectors from a_{1}, \ldots, a_{m}, or
(2) there exists a hyperplane $H:=\left\{x \mid c^{\top} x=0\right\}$ s.t.

- $c^{\top} b<0$
- $c^{\top} a_{i} \geq 0$
- H contains $t-1$ linearly independent vectors from a_{1}, \ldots, a_{m}

Remark

The hyperplane H above is known as the separating hyperplane.

Farkas' Lemma

Lemma (Farkas Lemma)

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. The following are equivalent:
(1) There exists $x \in \mathbb{R}^{n}$ such that $x \geq 0$ and $A x=b$
(2) $y^{\top} b \geq 0$ for each $y \in \mathbb{R}^{m}$ such that $y^{\top} A \geq 0$

Farkas' Lemma

Lemma (Farkas Lemma)

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. The following are equivalent:
(1) There exists $x \in \mathbb{R}^{n}$ such that $x \geq 0$ and $A x=b$
(2) $y^{\top} b \geq 0$ for each $y \in \mathbb{R}^{m}$ such that $y^{\top} A \geq 0$

Equivalent formulation

Lemma (Farkas Lemma - variant 1)

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Then exactly one of the following statements hold:
(1) There exists $x \in \mathbb{R}^{n}$ such that $x \geq 0$ and $A x=b$
(2) There exists $y \in \mathbb{R}^{m}$ such that $y^{\top} b>0$ and $y^{\top} A \leq 0$

Farkas' Lemma

Equivalent formulation

Lemma (Farkas Lemma - variant 2)

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. The following are equivalent:
(1) There exists $x \in \mathbb{R}^{n}$ such that $A x \leq b$
(2) $y^{\top} b \geq 0$ for each $y \geq 0$ such that $y^{\top} A=0$

$$
\begin{aligned}
& A x \leq b \Rightarrow \\
& \Rightarrow y_{y 0} \quad \frac{y^{\top} A x}{0} \leq y^{\top} b \\
& 0 \leq y^{\top} b
\end{aligned}
$$

Farkas' Lemma

$$
\begin{gathered}
s_{i}+[A(p-n)]_{i}=b_{i} \\
A(p-n) \leqslant b \leftrightarrow A x \leq b \\
x=p-n
\end{gathered}
$$

Lemma (Farkas Lemma - variant 2)
Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. The following are equivalent:
(1) There exists $x \in \mathbb{R}^{n}$ such that $A x \leq b$
(2) $y^{\top} b \geq 0$ for each $y \geq 0$ such that $y^{\top} A=0$

- Let $M=\left[\begin{array}{lll}I & A & -A\end{array}\right]$. Then $A x \leq b$ has a solution jiff $M z=b$ has a non-negative solution $z \geq 0$

$$
\begin{array}{lll}
M=\left(\begin{array}{lll}
I & A & -A
\end{array}\right) & M z=b \\
z=\left(\begin{array}{l}
s \\
p \\
n
\end{array}\right) & & I \Delta+A \cdot p-A n=b
\end{array}
$$

Farkas' Lemma

Equivalent formulation

Lemma (Farkas Lemma - variant 2)

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. The following are equivalent:
(1) There exists $x \in \mathbb{R}^{n}$ such that $A x \leq b$
(2) $y^{\top} b \geq 0$ for each $y \geq 0$ such that $y^{\top} A=0$

- Let $M=\left[\begin{array}{lll}I & A & -A\end{array}\right]$. Then $A x \leq b$ has a solution iff $M z=b$ has a non-negative solution $z \geq 0$
- Now apply the original version of the lemma
- Part I
- Why Linear Programming?
- Structural Results on Linear Programming
- Duality Theory
- Conclusion
- Acknowledgements
- Proof of Fundamental Theorem of Linear Inequalities

Linear Programming Duality

Consider our linear program:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Linear Programming Duality

Consider our linear program:

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

- From Farkas' lemma, we saw that $A x=b$ and $x \geq 0$ has a solution iff $y^{\top} b \geq 0$ for each $y \in \mathbb{R}^{m}$ such that $y^{T} A \geq 0$.

Linear Programming Duality

Consider our linear program:

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

- From Farkas' lemma, we saw that $A x=b$ and $x \geq 0$ has a solution jiff $y^{\top} b \geq 0$ for each $y \in \mathbb{R}^{m}$ such that $y^{\top} A \geq 0$.
- If we look at what happens when we multiply $y^{\top} A$, note the following:

$$
\begin{aligned}
y^{T} A \leq c^{T} & \Rightarrow y^{T} A x \leq c^{T} x \\
& \Rightarrow y^{T} b \leq c^{T} x \\
& \text { nhendord fem } A x=b
\end{aligned}
$$

Linear Programming Duality

Consider our linear program:

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

- From Farkas' lemma, we saw that $A x=b$ and $x \geq 0$ has a solution iff $y^{\top} b \geq 0$ for each $y \in \mathbb{R}^{m}$ such that $y^{\top} A \geq 0$.
- If we look at what happens when we multiply $y^{\top} A$, note the following:

$$
\begin{aligned}
y^{T} A \leq c^{T} & \Rightarrow y^{T} A x \leq c^{T} x \\
& \Rightarrow y^{T} b \leq \frac{c^{T} x}{C} \text { objective function }
\end{aligned}
$$

- Thus, if $y^{\top} A \leq c^{\top}$, then we have that $y^{T} b$ is a lower bound on the solution to our linear program!

Linear Programming Duality

Consider the following linear programs:

Primal $L P$	
minimize	$c^{T} x$
subject to	$A x=b$
	$x \geq 0$

Dual LP
maximize $y^{y^{T} b}$
subject to $y^{T} A \leq c^{T}$
any y ratio frying
the constraint
$\Rightarrow y^{\top} b$ lower bol
on primal
dual LP is maximizing
lower bound to the
primal vie $y^{T} A \leq C^{\top}$

Linear Programming Duality

Consider the following linear programs:

$$
\begin{array}{rlr}
\text { Primal } L P & \text { Dual } L P \\
\text { minimize } & c^{T} x & \text { maximize } \\
\text { subject to } & A x=b & \text { subject to } \\
& y^{T} A \leq c^{T} \\
& x \geq 0 &
\end{array}
$$

- From previous slide

$$
y^{T} A \leq c^{T} \Rightarrow y^{T} b \text { is a lower bound on value of Primal }
$$

Linear Programming Duality

Consider the following linear programs:

$$
\begin{array}{rlr}
\text { Primal } L P & \text { Dual } L P \\
\text { minimize } & c^{T} x & \text { maximize } \quad y^{T} b \\
\text { subject to } & A x=b & \text { subject to } y^{\top} A \leq c^{T} \\
& x \geq 0 &
\end{array}
$$

- From previous slide

$$
y^{T} A \leq c^{T} \Rightarrow y^{T} b \text { is a lower bound on value of Primal }
$$

- Thus, the optimal (maximum) value of dual $L P$ lower bounds the optimal (minimum) value of the Primal LP!

Weak duality of $L P$

Linear Programming Duality

Consider the following linear programs:

Primal LP

$$
\operatorname{minimize} \quad c^{\top} x
$$

$$
\text { subject to } \quad A x=b
$$

$$
x \geq 0
$$

maximize $y^{T} b$
subject to $y^{T} A \leq c^{T}$

- From previous slide

$$
y^{T} A \leq c^{T} \Rightarrow y^{T} b \text { is a lower bound on value of Primal }
$$

- Thus, the optimal (maximum) value of dual $L P$ lower bounds the optimal (minimum) value of the Primal LP!

Theorem (Weak Duality)

Let x be a feasible solution of the primal LP and y be a feasible solution of the dual LP. Then

$$
y^{\top} b \leq c^{\top} x
$$

Remarks on Duality

$$
\begin{aligned}
\text { Primal } & L P \\
\text { minimize } & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Dual LP

maximize $\quad y^{\top} b$
subject to $y^{\top} A \leq c^{\top}$

Remarks on Duality

\[

\]

- Optimal (maximum) value of dual LP lower bounds the optimal (minimum) value of the Primal $L P$!

Remarks on Duality

Primal LP

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Dual LP

α^{*}

- Optimal (maximum) value of dual $L P$ lower bounds the optimal (minimum) value of the Primal LP!
- If $\alpha^{*}, \beta^{*} \in \mathbb{R}$ are the optimal values for primal and dual, respectively.

Remarks on Duality

Primal LP

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Dual LP

maximize $y^{\top} b$
subject to $y^{\top} A \leq c^{\top}$

- Optimal (maximum) value of dual $L P$ lower bounds the optimal (minimum) value of the Primal LP!
- If $\alpha^{*}, \beta^{*} \in \mathbb{R}$ are the optimal values for primal and dual, respectively.
- We showed that when both primal and dual are feasible, we have

$$
\max \text { dual }=\beta^{*} \leq \alpha^{*}=\min \text { of primal }
$$

Remarks on Duality

Primal LP

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Dual LP

maximize $y^{\top} b$
subject to $y^{T} A \leq c^{T}$

- Optimal (maximum) value of dual $L P$ lower bounds the optimal (minimum) value of the Primal $L P$!
- If $\alpha^{*}, \beta^{*} \in \mathbb{R}$ are the optimal values for primal and dual, respectively.
- We showed that when both primal and dual are feasible, we have

$$
\max \text { dual }=\beta^{*} \leq \alpha^{*}=\text { min of primal }
$$

- if primal unbounded $\left(\alpha^{*}=-\infty\right)$ then dual infeasible $\left(\beta^{*}=-\infty\right)$

Remarks on Duality

Primal LP

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Dual LP

maximize $y^{\top} b$
subject to $y^{\top} A \leq c^{\top}$

- Optimal (maximum) value of dual $L P$ lower bounds the optimal (minimum) value of the Primal LP!
- If $\alpha^{*}, \beta^{*} \in \mathbb{R}$ are the optimal values for primal and dual, respectively.
- We showed that when both primal and dual are feasible, we have

$$
\max \text { dual }=\beta^{*} \leq \alpha^{*}=\text { min of primal }
$$

- if primal unbounded $\left(\alpha^{*}=-\infty\right)$ then dual infeasible $\left(\beta^{*}=-\infty\right)$
- if dual unbounded $\left(\beta^{*}=\infty\right)$ then primal infeasible $\left(\alpha^{*}=\infty\right)$

Remarks on Duality

Primal LP

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Dual LP

maximize $y^{\top} b$
subject to $y^{\top} A \leq c^{\top}$

- Optimal (maximum) value of dual $L P$ lower bounds the optimal (minimum) value of the Primal $L P$!
- If $\alpha^{*}, \beta^{*} \in \mathbb{R}$ are the optimal values for primal and dual, respectively.
- We showed that when both primal and dual are feasible, we have

$$
\max \text { dual }=\beta^{*} \leq \alpha^{*}=\text { min of primal }
$$

- if primal unbounded $\left(\alpha^{*}=-\infty\right)$ then dual infeasible $\left(\beta^{*}=-\infty\right)$
- if dual unbounded $\left(\beta^{*}=\infty\right)$ then primal infeasible $\left(\alpha^{*}=\infty\right)$
- Practice problem: show that dual of the dual LP is the primal LP!

Remarks on Duality

Primal LP

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Dual LP

maximize $y^{\top} b$
subject to $y^{\top} A \leq c^{\top}$

- Optimal (maximum) value of dual LP lower bounds the optimal (minimum) value of the Primal $L P$!
- If $\alpha^{*}, \beta^{*} \in \mathbb{R}$ are the optimal values for primal and dual, respectively.
- We showed that when both primal and dual are feasible, we have

$$
\max \text { dual }=\beta^{*} \leq \alpha^{*}=\text { min of primal }
$$

- if primal unbounded ($\alpha^{*}=-\infty$) then dual infeasible $\left(\beta^{*}=-\infty\right)$
- if dual unbounded $\left(\beta^{*}=\infty\right)$ then primal infeasible $\left(\alpha^{*}=\infty\right)$
- Practice problem: show that dual of the dual LP is the primal LP!
- When is the above inequality tight?

Strong Duality

$$
\begin{aligned}
\text { Primal } & L P \\
\text { minimize } & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Dual LP maximize $y^{\top} b$
subject to $y^{T} A \leq c^{T}$

- let $\alpha^{*}, \beta^{*} \in \mathbb{R}$ be optimal values for primal and dual, respectively.

Strong Duality

$$
\begin{aligned}
\text { Primal } & L P \\
\text { minimize } & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

$$
\begin{array}{cl}
\text { Dual } L P \\
\text { maximize } & y^{T} b \\
\text { subject to } & y^{T} A \leq c^{T}
\end{array}
$$

- let $\alpha^{*}, \beta^{*} \in \mathbb{R}$ be optimal values for primal and dual, respectively.

Theorem (Strong Duality)

If primal LP and dual LP are feasible, then max dual $=\beta^{*}=\alpha^{*}=$ min of primal.
ie.: both programs have the same value!

Proof of Strong Duality

Theorem (Strong Duality)

If primal LP and dual LP are feasible, then
max dual $=\beta^{*}=\alpha^{*}=$ min of primal.

Proof of Strong Duality
Theorem (Strong Duality)
If primal LP and dual LP are feasible, then

$$
\max d u a l=\beta^{*}=\alpha^{*}=\min \text { of primal. }
$$

(1) Since we have proved weak duality, suffices to show that the following LP has a solution: $\Leftrightarrow x_{1} y$ feasible then $y^{\top} b \leqslant c^{\top} x$

> don't con objet \leftrightarrow maximize
> whet we are maximin subject to
> 0

Proof of Strong Duality

Theorem (Strong Duality)

If primal LP and dual LP are feasible, then

$$
\max d u a l=\beta^{*}=\alpha^{*}=\text { min of primal. }
$$

(1) Since we have proved weak duality, suffices to show that the following LP has a solution:

$$
\begin{aligned}
\operatorname{maximize} & 0 \\
\text { subject to } & y^{T} A \leq c^{T} \\
& c^{T} x-y^{T} b \leq 0 \\
& A x=b \\
& x \geq 0
\end{aligned}
$$

(2) Apply variant 2 of Farkas' lemma on the system above.

Proof of Strong Duality
(1) LP from previous page encoded by:

$$
B\binom{x}{y}=\underbrace{\left(\begin{array}{cc}
A & 0 \\
-A & 0 \\
c^{T} & -b^{T} \\
0 & A^{T}
\end{array}\right)}_{B}\binom{x}{y} \leq\left(\begin{array}{c}
b \\
-b \\
0 \\
c
\end{array}\right)
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
A x \leq b \\
-A x \leq-b \Leftrightarrow A x \geqslant b
\end{array}\right\} A x=b \\
& c^{\top} x-b^{\top} y \leq 0 \Leftrightarrow c^{\top} x \leq y^{\top} b \\
& A^{\top} y \leq c \Leftrightarrow y^{\top} A \leq c^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
A & 0 \\
-A & 0 \\
c^{\top} & -b^{\top} \\
0 & -A^{\top} \\
-I & 0
\end{array}\right)\binom{x}{y} \leqslant\left(\begin{array}{c}
b \\
-b \\
0 \\
c \\
0
\end{array}\right) \\
& z=\left(\begin{array}{lllll}
u^{\top} & v^{\top} & \lambda & \omega^{\top} & \alpha^{\top}
\end{array}\right) \geqslant 0 \\
& z B=(0,0) \Rightarrow \underbrace{u^{\top} b-b^{\top} b+w^{\top} c \geqslant 0}_{\alpha, \lambda d o n^{+1} \text { oppear }} \\
& z B=(0,0) \quad u^{\top} A-v^{\top} A+\lambda c^{\top}-\alpha^{\top}=0 \Leftrightarrow u^{\top} A-v^{\top} A+\lambda \dot{c}^{\top} \geqslant 0
\end{aligned}
$$

Proof of Strong Duality
(1) LP from previous page encoded by:

$$
B\binom{x}{y}=\left(\begin{array}{cc}
A & 0 \\
-A & 0 \\
c^{T} & -b^{T} \\
0 & A^{T}
\end{array}\right)\binom{x}{y} \leq\left(\begin{array}{c}
b \\
-b \\
0 \\
c
\end{array}\right)
$$

(2) Variant 2 of Parkas' lemma gives that the system has solution of for each $z=\left(u^{T} v^{\top} \lambda w^{T}\right) \geq 0$ such that $z B=0$ then we have

$$
\begin{aligned}
& u^{T} b-v^{\top} b+w^{T} c \geq 0 \\
& \left.\begin{array}{l}
z B=0 \\
z \geqslant 0
\end{array}\right\} \Rightarrow z\left(\begin{array}{c}
b \\
-b \\
0 \\
c
\end{array}\right) \geqslant 0 \\
& \text { (variant } 2 \text { of } \\
& \text { Forlas lemma) } \\
& (u^{\top} \overbrace{v^{\top} \lambda w^{\top}})\left(\begin{array}{c}
b \\
-b \\
0 \\
c
\end{array}\right)=u^{\top} b-v^{\top} b+w^{\top} c \geqslant 0
\end{aligned}
$$

Proof of Strong Duality
(1) LP from previous page encoded by:

$$
B\binom{x}{y}=\left(\begin{array}{cc}
A & 0 \\
-A & 0 \\
c^{T} & -b^{T} \\
0 & A^{T}
\end{array}\right)\binom{x}{y} \leq\left(\begin{array}{c}
b \\
-b \\
0 \\
c
\end{array}\right)
$$

(2) Variant 2 of Farkas' lemma gives that the system has solution ff for each $z=\left(u^{T} \quad v^{T} \quad \lambda w^{T}\right) \geq 0$ such that $z B=0$ then we have

$$
\rightarrow u^{T} b-v^{T} b+w^{T} c \geq 0
$$

(3) If $\lambda>0$, then $\lambda c^{T} \geq\left(v^{T}-u^{T}\right) A \Rightarrow \lambda c^{T} w \geq\left(v^{T}-u^{T}\right) A w$ and so

$$
\begin{aligned}
& \lambda\left(u^{T}-v^{T}\right) b+\lambda w^{T} c \geq \lambda\left(u^{T}-v^{T}\right) b-\left(u^{T}-v^{T}\right) A w \\
& =\left(u^{\top}-v^{\top}\right)[\lambda b-A \omega]=0 \\
& \lambda c^{\top} w=\left(v^{\top}-u^{\top}\right) A w \quad \lambda>0 \Rightarrow\left(u^{T}-v^{\top}\right) b+w^{\top} c \geqslant 0 \Leftrightarrow \lambda\left[\left(u^{\top}-v^{\top}\right) b+d_{0}\right)
\end{aligned}
$$

Proof of Strong Duality

(1) LP from previous page encoded by:

$$
B\binom{x}{y}=\left(\begin{array}{cc}
A & 0 \\
-A & 0 \\
c^{T} & -b^{T} \\
0 & A^{T}
\end{array}\right)\binom{x}{y} \leq\left(\begin{array}{c}
b \\
-b \\
0 \\
c
\end{array}\right)
$$

(2) Variant 2 of Farkas' lemma gives that the system has solution iff for each $z=\left(u^{T} v^{T} \lambda \underline{w}^{T}\right) \geq 0$ such that $z B=0$ then we have
$\rightarrow u^{T} b-v^{T} b+w^{T} c \geq 0$
(3) If $\lambda>0$, then $\lambda c^{T}=\left(v^{T}-u^{T}\right) A \Rightarrow \lambda c^{T} w=\left(v^{T}-u^{T}\right) A w$ and so

$$
\lambda\left(u^{T}-v^{T}\right) b+\lambda w^{T} c=\lambda\left(u^{T}-v^{T}\right) b-\left(u^{T}-v^{T}\right) A w
$$

(9) If $\lambda=0$, let x, y be feasible solutions (which we assumed to exist). Then $x \geq 0, A x=b$ and $y^{T} A \leq c^{T}$. Thus

$$
\begin{aligned}
& c^{T} w \sum^{\top} A w=0=\left(v^{T}-u^{T}\right) A x=\left(v^{T}-u^{T}\right) b \\
& w \geqslant 0
\end{aligned}
$$

Proof Strong Duality: $\lambda>0$

$$
\begin{aligned}
& z B=\left(\begin{array}{llll}
u^{\top} & v^{\top} & \lambda & \omega^{\top}
\end{array}\right)\left(\begin{array}{cc}
A & 0 \\
-A & 0 \\
c^{\top} & -b^{\top} \\
0 & A^{\top}
\end{array}\right)= \\
& (0,0) \\
& =\left(\begin{array}{ll}
\left(u^{\top}-v^{\top}\right) A+\lambda c^{\top}, & \omega^{\top} A^{\top}-\lambda b^{\top}
\end{array}\right) \\
& \Leftrightarrow \lambda c^{\top} \geq\left(v^{\top}-u^{\top}\right) A \text { and } \quad \lambda b^{\top}=\omega^{\top} A^{\top} \\
& \text { al } \\
& \\
& \\
&
\end{aligned}
$$

Proof of Strong Duality: $\lambda=0$

$$
\begin{aligned}
& \lambda=0 \\
& \left(v^{\top}-u^{\top}\right) A \leqslant 0 \\
& \text { and } \Leftrightarrow \text { and } \\
& z B=0 \\
& \omega^{\top} A^{\top}=0 \Leftrightarrow A \omega=0
\end{aligned}
$$

$$
\begin{aligned}
& \omega \geqslant 0 \\
& \begin{array}{c}
(x \text { feasith solution of }) \\
\text { primal }
\end{array}
\end{aligned}
$$

rearranging $c^{\top} w+\left(u^{\top}-v^{\top}\right) b \geqslant 0$

Affine form of Farkas' Lemma

A consequence of LP duality is the following lemma:

Lemma (Affine Farkas' Lemma)

Let the system

$$
A x \leq b
$$

have at least one solution, and suppose that inequality

$$
c^{\top} x \leq \delta
$$

holds whenever x satisfies $A x \leq b$. Then, for some $\delta^{\prime} \leq \delta$ the linear inequality

$$
c^{\top} x \leq \delta^{\prime}
$$

is a non-negative linear combination of the inequalities of $A x \leq b$.

Affine form of Farkas' Lemma

A consequence of LP duality is the following lemma:

Lemma (Affine Farkas' Lemma)

Let the system

$$
A x \leq b
$$

have at least one solution, and suppose that inequality

$$
c^{\top} x \leq \delta
$$

holds whenever x satisfies $A x \leq b$. Then, for some $\delta^{\prime} \leq \delta$ the linear inequality

$$
c^{\top} x \leq \delta^{\prime}
$$

is a non-negative linear combination of the inequalities of $A x \leq b$.
Practice problem: use LP duality and Farkas' lemma to prove this lemma!

Complementary Slackness

- If the optima in both primal and dual is finite, and x, y are feasible solutions, the following are equivalent:
(1) x, y are optimal solutions to the primal and dual$c^{\top} x=y^{\top} b$
if $x_{i}>0$ then the corresponding inequality $y^{\top} A_{i} \leq c_{i}$ is an equality: that is, we must have $y^{\top} A_{i}=c_{i}$.
strong duality
(3) for every $x_{i}>0 \Rightarrow y^{\top} A_{i}=C_{i}$

3 equivalent to saying x, y are both optime

Complementary Slackness

- If the optima in both primal and dual is finite, and x, y are feasible solutions, the following are equivalent:
(1) x, y are optimal solutions to the primal and dual
(2) $c^{T} x=y^{\top} b$
(3) if $x_{i}>0$ then the corresponding inequality $y^{\top} A_{i} \leq c_{i}$ is an equality: that is, we must have $y^{\top} A_{i}=c_{i}$.
- 1 and 2 are equivalent due to strong duality

Complementary Slackness

- If the optima in both primal and dual is finite, and x, y are feasible solutions, the following are equivalent:
(1) x, y are optimal solutions to the primal and dual
(2) $c^{\top} x=y^{\top} b$
(3) if $x_{i}>0$ then the corresponding inequality $y^{\top} A_{i} \leq c_{i}$ is an equality: that is, we must have $y^{\top} A_{i}=c_{i}$.
- 1 and 2 are equivalent due to strong duality
- 2 and 3 are equivalent as we can write

$$
\begin{aligned}
& c^{\top} x-y^{\top} b=c^{T} x-y^{\top} A x=\left(c^{T}-y^{\top} A\right) x=\sum_{i=1}^{n} \frac{\left(c_{i}-y^{\top} A_{i}\right) x_{i}}{=0}>0 \\
& x_{i} \geqslant 0 \quad \text { condition } 3 \Leftrightarrow \sum_{i=1}^{n} x_{i}\left(c_{i}-y^{\top} A_{i}\right)=0 \Leftrightarrow c^{\top} x-y^{\top} b=0
\end{aligned}
$$

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life
- General mathematical programming very hard (how hard do you think it is?)

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life
- General mathematical programming very hard (how hard do you think it is?)
- Special cases have very striking applications!

Today: Linear Programming

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life
- General mathematical programming very hard (how hard do you think it is?)
- Special cases have very striking applications!

Today: Linear Programming

- Linear Programming and Duality - fundamental concepts, lots of applications!

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life
- General mathematical programming very hard (how hard do you think it is?)
- Special cases have very striking applications!

Today: Linear Programming

- Linear Programming and Duality - fundamental concepts, lots of applications!
- Applications in Combinatorial Optimization (a lot of it happened here at UW!)
- Applications in Game Theory (minimax theorem)
- Applications in Learning Theory (boosting)
- many more

Acknowledgement

- Lecture based largely on:
- [Schrijver 1986, Chapter 7]

Proof of Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))
Let $a_{1}, \ldots, a_{m}, b \in \mathbb{R}^{n}$, and $t:=\operatorname{rank}\left\{a_{1}, \ldots, a_{m}, b\right\}$. Then either
(1) b is a non-negative linear combination of linearly independent vectors from a_{1}, \ldots, a_{m}, or
(2) there exists a hyperplane $H:=\left\{x \mid c^{T} x=0\right\}$ s.t.

- $c^{\top} b<0$
- $c^{\top} a_{i} \geq 0$
- H contains $t-1$ linearly independent vectors from a_{1}, \ldots, a_{m}

Proof of Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))
Let $a_{1}, \ldots, a_{m}, b \in \mathbb{R}^{n}$, and $t:=\operatorname{rank}\left\{a_{1}, \ldots, a_{m}, b\right\}$. Then either
(1) b is a non-negative linear combination of linearly independent vectors from a_{1}, \ldots, a_{m}, or
(2) there exists a hyperplane $H:=\left\{x \mid c^{T} x=0\right\}$ s.t.

- $c^{T} b<0$
- $c^{\top} a_{i} \geq 0$
- H contains $t-1$ linearly independent vectors from a_{1}, \ldots, a_{m}
- We can assume that a_{1}, \ldots, a_{m} span \mathbb{R}^{n}, otherwise work on the spanning subspace after appropriate linear transformation

Proof of Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))
Let $a_{1}, \ldots, a_{m}, b \in \mathbb{R}^{n}$, and $t:=\operatorname{rank}\left\{a_{1}, \ldots, a_{m}, b\right\}$. Then either
(1) b is a non-negative linear combination of linearly independent vectors from a_{1}, \ldots, a_{m}, or
(2) there exists a hyperplane $H:=\left\{x \mid c^{T} x=0\right\}$ s.t.

- $c^{T} b<0$
- $c^{\top} a_{i} \geq 0$
- H contains $t-1$ linearly independent vectors from a_{1}, \ldots, a_{m}
- We can assume that a_{1}, \ldots, a_{m} span \mathbb{R}^{n}, otherwise work on the spanning subspace after appropriate linear transformation
- Since 1 and 2 mutually exclusive, choose linearly independent $\mathcal{L}_{0}:=\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right\}$

Proof of Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))

Let $a_{1}, \ldots, a_{m}, b \in \mathbb{R}^{n}$, and $t:=\operatorname{rank}\left\{a_{1}, \ldots, a_{m}, b\right\}$. Then either
(1) b is a non-negative linear combination of linearly independent vectors from a_{1}, \ldots, a_{m}, or
(2) there exists a hyperplane $H:=\left\{x \mid c^{T} x=0\right\}$ s.t.

- $c^{\top} b<0$
- $c^{\top} a_{i} \geq 0$
- H contains $t-1$ linearly independent vectors from a_{1}, \ldots, a_{m}
- We can assume that a_{1}, \ldots, a_{m} span \mathbb{R}^{n}, otherwise work on the spanning subspace after appropriate linear transformation
- Since 1 and 2 mutually exclusive, choose linearly independent $\mathcal{L}_{0}:=\left\{a_{i}, \ldots, a_{i_{n}}\right\}$
- We will perform an iterative procedure:

Proof of Fundamental Theorem of Linear Inequalities

 Iterative procedure, starting with \mathcal{L}_{0} :(1) Write $b=\lambda_{i_{1}} a_{i_{1}}+\ldots+\lambda_{i_{n}} a_{i_{n}}$. If $\lambda_{i} \geq 0$ we are done

Proof of Fundamental Theorem of Linear Inequalities

Iterative procedure, starting with \mathcal{L}_{0} :
(1) Write $b=\lambda_{i_{1}} a_{i_{1}}+\ldots+\lambda_{i_{n}} a_{i_{n}}$. If $\lambda_{i} \geq 0$ we are done
(2) If not, let h be smallest index from i_{1}, \ldots, i_{n} such that $\lambda_{h}<0$. Let $H_{0}=\left\{x \in \mathbb{R}^{n} \mid c_{0}^{T} x=0\right\}$ be the hyperplane spanned by $\mathcal{L}_{0} \backslash\left\{a_{h}\right\}$. Normalize it so that $c_{0}^{T} a_{h}=1$.

Proof of Fundamental Theorem of Linear Inequalities

Iterative procedure, starting with \mathcal{L}_{0} :
(1) Write $b=\lambda_{i_{1}} a_{i_{1}}+\ldots+\lambda_{i_{n}} a_{i_{n}}$. If $\lambda_{i} \geq 0$ we are done
(2) If not, let h be smallest index from i_{1}, \ldots, i_{n} such that $\lambda_{h}<0$. Let $H_{0}=\left\{x \in \mathbb{R}^{n} \mid c_{0}^{\top} x=0\right\}$ be the hyperplane spanned by $\mathcal{L}_{0} \backslash\left\{a_{h}\right\}$. Normalize it so that $c_{0}^{\top} a_{h}=1$.
(3) If $c_{0}^{T} a_{i} \geq 0$ for all $i \in[m]$ we are done (case 2)

Proof of Fundamental Theorem of Linear Inequalities

Iterative procedure, starting with \mathcal{L}_{0} :
(1) Write $b=\lambda_{i_{1}} a_{i_{1}}+\ldots+\lambda_{i_{n}} a_{i_{n}}$. If $\lambda_{i} \geq 0$ we are done
(2) If not, let h be smallest index from i_{1}, \ldots, i_{n} such that $\lambda_{h}<0$. Let $H_{0}=\left\{x \in \mathbb{R}^{n} \mid c_{0}^{\top} x=0\right\}$ be the hyperplane spanned by $\mathcal{L}_{0} \backslash\left\{a_{h}\right\}$. Normalize it so that $c_{0}^{\top} a_{h}=1$.
(3) If $c_{0}^{T} a_{i} \geq 0$ for all $i \in[m]$ we are done (case 2)
(9) Otherwise, choose smallest $s \in[m]$ such that $c_{0}^{T} a_{s}<0$, and let $\mathcal{L}_{1}=\mathcal{L} \cup\left\{a_{s}\right\} \backslash\left\{a_{h}\right\}$. Go back to step 1.

Proof of Fundamental Theorem of Linear Inequalities

 Iterative procedure, starting with \mathcal{L}_{0} :(1) Write $b=\lambda_{i_{1}} a_{i_{1}}+\ldots+\lambda_{i_{n}} a_{i_{n}}$. If $\lambda_{i} \geq 0$ we are done
(2) If not, let h be smallest index from i_{1}, \ldots, i_{n} such that $\lambda_{h}<0$. Let $H_{0}=\left\{x \in \mathbb{R}^{n} \mid c_{0}^{\top} x=0\right\}$ be the hyperplane spanned by $\mathcal{L}_{0} \backslash\left\{a_{h}\right\}$. Normalize it so that $c_{0}^{T} a_{h}=1$.
(- If $c_{0}^{T} a_{i} \geq 0$ for all $i \in[m]$ we are done (case 2)

- Otherwise, choose smallest $s \in[m]$ such that $c_{0}^{\top} a_{s}<0$, and let $\mathcal{L}_{1}=\mathcal{L} \cup\left\{a_{s}\right\} \backslash\left\{a_{h}\right\}$. Go back to step 1.
- To conclude the proof, need to show that this procedure always terminates. If process doesn't terminate, there are two times $r<t$ such that $\mathcal{L}_{r}=\mathcal{L}_{t}$
- Let ℓ be the highest index for which a_{ℓ} has been removed from \mathcal{L}_{k} for some $r \leq k<t$.

Proof of Fundamental Theorem of Linear Inequalities

 Iterative procedure, starting with \mathcal{L}_{0} :(1) Write $b=\lambda_{i_{1}} a_{i_{1}}+\ldots+\lambda_{i_{n}} a_{i_{n}}$. If $\lambda_{i} \geq 0$ we are done
(2) If not, let h be smallest index from i_{1}, \ldots, i_{n} such that $\lambda_{h}<0$. Let $H_{0}=\left\{x \in \mathbb{R}^{n} \mid c_{0}^{\top} x=0\right\}$ be the hyperplane spanned by $\mathcal{L}_{0} \backslash\left\{a_{h}\right\}$. Normalize it so that $c_{0}^{T} a_{h}=1$.
(- If $c_{0}^{T} a_{i} \geq 0$ for all $i \in[\mathrm{~m}]$ we are done (case 2)

- Otherwise, choose smallest $s \in[m]$ such that $c_{0}^{\top} a_{s}<0$, and let $\mathcal{L}_{1}=\mathcal{L} \cup\left\{a_{s}\right\} \backslash\left\{a_{h}\right\}$. Go back to step 1.
- To conclude the proof, need to show that this procedure always terminates. If process doesn't terminate, there are two times $r<t$ such that $\mathcal{L}_{r}=\mathcal{L}_{t}$
- Let ℓ be the highest index for which a_{ℓ} has been removed from \mathcal{L}_{k} for some $r \leq k<t$.
- $\mathcal{L}_{r}=\mathcal{L}_{t} \Rightarrow a_{\ell}$ has also been added from some $\mathcal{L}_{k^{\prime}}$ for some $r \leq k^{\prime}<t$.

Proof of Fundamental Theorem of Linear Inequalities

- Say a_{r} was removed at iteration k and added back at iteration k^{\prime} so $r \leq k<k^{\prime}<t$
- Let c be the vector defining the hyperplane at the k^{\prime} iteration (when we added a_{r} back to the set), and let $\mathcal{L}_{k}=\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right\}$
- Now, above implies the following contradiction:

$$
0>c^{T} b=c^{T}\left(\lambda_{i_{1}} a_{i_{1}}+\cdots+\lambda_{i_{n}} a_{i_{n}}\right)=\lambda_{i_{1}} c^{\top} a_{i_{1}}+\cdots \lambda_{i_{n}} c^{T} a_{i_{n}} \geq 0
$$

Proof of Fundamental Theorem of Linear Inequalities

- Say a_{r} was removed at iteration k and added back at iteration k^{\prime} so $r \leq k<k^{\prime}<t$
- Let c be the vector defining the hyperplane at the k^{\prime} iteration (when we added a_{r} back to the set), and let $\mathcal{L}_{k}=\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right\}$
- Now, above implies the following contradiction:

$$
0>c^{T} b=c^{T}\left(\lambda_{i_{1}} a_{i_{1}}+\cdots+\lambda_{i_{n}} a_{i_{n}}\right)=\lambda_{i_{1}} c^{T} a_{i_{1}}+\cdots \lambda_{i_{n}} c^{T} a_{i_{n}} \geq 0
$$

- First inequality comes because at each iteration we choose c such that $c^{T} b<0$

Proof of Fundamental Theorem of Linear Inequalities

- Say a_{r} was removed at iteration k and added back at iteration k^{\prime} so $r \leq k<k^{\prime}<t$
- Let c be the vector defining the hyperplane at the k^{\prime} iteration (when we added a_{r} back to the set), and let $\mathcal{L}_{k}=\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right\}$
- Now, above implies the following contradiction:

$$
0>c^{T} b=c^{T}\left(\lambda_{i_{1}} a_{i_{1}}+\cdots+\lambda_{i_{n}} a_{i_{n}}\right)=\lambda_{i_{1}} c^{\top} a_{i_{1}}+\cdots \lambda_{i_{n}} c^{T} a_{i_{n}} \geq 0
$$

- First inequality comes because at each iteration we choose c such that $c^{T} b<0$
- Second inequality holds term by term:

References I

Schrijver, Alexander (1986)
Theory of Linear and Integer Programming

Fourier, J. B. 1826
Analyse des travaux de l'Académie Royale des Sciences pendant l'année 1823.
Partie mathématique (1826)
Fourier, J. B. 1827
Analyse des travaux de l'Académie Royale des Sciences pendant l'année 1824. Partie mathématique (1827)

