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o Structural Results on Linear Programming
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Conclusion

Acknowledgements

Proof of Fundamental Theorem of Linear Inequalities
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Mathematical Programming

Mathematical Programming deals with problems of the form

minimize  f(x)

subject to  g1(x) <0

gm(x) <0

x €R"
@ Very general family of problems.
@ Special case is when all functions f, gy, ..., gm are linear functions

(called Linear Programming - LP for short)
@ Traces of idea of LP in works of Fourier [Fourier 1823, Fourier 1824]

@ Formally studied & importance of LP recognized in 1940's by
Dantzig, Kantorovich, Koopmans and von Neumann.
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What is a Linear Program?

A linear function f : R" — R is given by

f(x):.il-xl—l—...—i—cn-xn:ETx +b
+5
be R
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What is a Linear Program?

A linear function f : R" — R is given by
f(x):cl-xl—l—...—i—c,,-x,,:ETx ib
Linear Programming deals with problems of the form

minimize ¢’ x

subject to AlTx < b.

A;xgb,.
x € R"

L ¢
A: A|Al" AM T)?fb)
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What is a Linear Program?
A linear function f : R" — R is given by

f(x):cl-xl—l—...—i—c,,-x,,:ch

Linear Programming deals with problems of the form

minimize ¢’'x a

subject to AX < b
x eR"
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What is a Linear Program?
A linear function f : R" — R is given by

f(x):cl-xl—i—...—i—c,,-x,,:ch

Linear Programming deals with problems of the form

minimize ¢’ x
subject to  Ax < b

x eR"

We can always represent LPs in standard form:

: b OXn = 5y
minimize ¢’ x 0“X|++ | in¥n )
> subjectto Ax=0b A
x>0 Ni3D
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Why should | care?

@ Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!

. Lineall ’st%&amm.'nz_ in g&a Q ?Iteal'
Upehicat  tool 1 prove sma xeallly
ced rawdh !
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@ Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!

@ Stock portfolio optimization:
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Why should | care?

@ Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!

@ Stock portfolio optimization:

e n companies, stock of company / costs ¢; € R
e company i has expected profit p; € R
e our budgetis B e R

. uo»uo‘if
maximize [pl-x1+--'+p,,-x,,

subject to rcl-xl—i----—l-c,,-x,,gBJ
x>0 J
omunt of e,
Yot we hove Tt y &
o budge
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Why should | care?

@ Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!

@ Stock portfolio optimization:

e n companies, stock of company i costs ¢; € R
e company i has expected profit p; € R
e our budget is B € R

maximize  p1-x1+ -+ Pp - Xn
subjectto ¢ -x1+ -+ c-xp < B
x>0

@ Other problems, such as data fitting, linear classification can be
modelled as linear programs.
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Important Questions

minimize c¢'x
subjectto Ax=05b
x>0
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Important Questions

minimize ¢’ x

subjectto Ax=05b
x>0
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o Is there a solution to the constraints at all?
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Important Questions

minimize ¢’ x

subjectto Ax=05b
x>0

© When is a Linear Program feasible?
o Is there a solution to the constraints at all?
@ When is a Linear Program bounded?

o Is there a minimum? Or is the minimum —oo?
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Important Questions

minimize ¢’ x

subjectto Ax=05b
x>0

© When is a Linear Program feasible?
@ Is there a solution to the constraints at all?
@ When is a Linear Program bounded?
@ Is there a minimum? Or is the minimum —o0?
© Can we characterize optimality?
e How can we know that we found a minimum solution?

e Do these solutions have nice description?
e Do the solutions have small bit complexity?
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Important Questions

minimize ¢’ x

subjectto Ax=05b
x>0

© When is a Linear Program feasible?
@ Is there a solution to the constraints at all?
@ When is a Linear Program bounded?
@ Is there a minimum? Or is the minimum —o0?
© Can we characterize optimality?
e How can we know that we found a minimum solution?
e Do these solutions have nice description?
e Do the solutions have small bit complexity?
© How do we design efficient algorithms that find optimal solutions to
Linear Programs?
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Part |

o Structural Results on Linear Programming

Conclusion

Acknowledgements

Proof of Fundamental Theorem of Linear Inequalities
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Fundamental Theorem of Linear Inequalities
Theorem (Farkas (1894, 1898), Minkowski (1896))

Let a1,...,am,b € R", and t :=rank{ay,...,am, b}. Then either
© b is a non-negative linear combination of linearly independent vectors
from a1, ...,am, or
Q@ there exists a hyperplane H := {x | c"x = 0} s.t.
e c’h<0
ecla>0
e H contains t — 1 linearly independent vectors from ay, ..., an
Q, b= 04 o0y +0ha,
o¢; é 0 Edi-'. 3
c
H
AN oy . &%
Cox &
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Fundamental Theorem of Linear Inequalities
Theorem (Farkas (1894, 1898), Minkowski (1896))

Let a1,...,am,b € R", and t :=rank{ay,...,am, b}. Then either
© b is a non-negative linear combination of linearly independent vectors
from a1, ..., am, or
O there exists a hyperplane H := {x | c"x = 0} s.t.
e c’h<0
eclai>0
e H contains t — 1 linearly independent vectors from ay, ..., an

The hyperplane H above is known as the separating hyperplane. \
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Farkas' Lemma

Lemma (Farkas Lemma)

Let A€ R™*" and b € R™. The following are equivalent:
© There exists x € R" such that x > 0 and Ax = b
@ y'b>0 foreachy € R™ such that yT A >0
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Farkas' Lemma

Lemma (Farkas Lemma)

Let A€ R™*" and b € R™. The following are equivalent:
© There exists x € R" such that x > 0 and Ax = b
@ y'b>0 foreachy € R™ such that yT A >0

Equivalent formulation

Lemma (Farkas Lemma - variant 1)

Let A€ R™<" and b € R™.
hold:

@ There exists x € R" such that x > 0 and Ax = b
@ There exists y € R™ such that y'b >0 and y"A <0

Then exactly one of the following statements
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Farkas' Lemma

Equivalent formulation

Lemma (Farkas Lemma - variant 2)

Let A€ R™*" and b € R™. The following are equivalent:
@ There exists x € R" such that Ax < b
@ y'b>0 foreachy >0 such that yTA=0

Avsb = yac<g®

ey

4
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Farkas' Lemma

Ai 4[_15\(?'")]" = b
A =5 e Acsb

x = f—'ﬂ

Equivalent formulation

Lemma (Farkas Lemma - variant 2)

Let A€ R™*" and b € R™. The following are equivalent:
@ There exists x € R" such that Ax < b
@ y'b>0 foreachy >0 such that yTA=0

o Let M=[l A — A]. Then Ax < b has a solution iff Mz = b has a
non-negative solution z > 0

M‘—'(J. A -'A) M2r:=b
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Farkas' Lemma

Equivalent formulation

Lemma (Farkas Lemma - variant 2)

Let A€ R™*" and b € R™. The following are equivalent:
@ There exists x € R" such that Ax < b
@ y'b>0 foreachy >0 such that yTA=0

o Let M=[l A — A]. Then Ax < b has a solution iff Mz = b has a
non-negative solution z > 0

@ Now apply the original version of the lemma
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o Duality Theory

Conclusion

Acknowledgements

Proof of Fundamental Theorem of Linear Inequalities
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Linear Programming Duality

Consider our linear program:

minimize c¢'x

subject to Ax =
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Linear Programming Duality
Consider our linear program:
minimize ¢’ x
subjectto Ax=0b
x>0

@ From Farkas' lemma, we saw that Ax = b and x > 0 has a solution iff
yTh >0 for each y € R™ such that yT A > 0.
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Linear Programming Duality
Consider our linear program:
minimize ¢’ x
subjectto Ax=0b
x>0

@ From Farkas' lemma, we saw that Ax = b and x > 0 has a solution iff
yTh >0 for each y € R™ such that yT A > 0.

o If we look at what happens when we multiply y " A, note the following:

v Yecomrn x 30
l yTA< CT}:> yTAx < cTx

= yTb < cTx

A Srondond prm Axb

34/83
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Linear Programming Duality
Consider our linear program:

minimize ¢’ x

subjectto Ax=0b
x>0

@ From Farkas' lemma, we saw that Ax = b and x > 0 has a solution iff
yTh >0 for each y € R™ such that yT A > 0.

o If we look at what happens when we multiply y " A, note the following:

\2"“(] mf;\"" yTA<cT = yTAx < c'x

T T
o awe LY =y bgcéaabjeeh'ﬂ- -f»nd’\'h

o Thus, ifly" A < ¢, then we have that y " b is a lower bound on the
solution to our linear program!
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Linear Programming Duality

Consider the following linear programs

Primal LP

minimize

Dual LP
c’x maximize y'b
subjectto Ax=0b subject to |yTA<c
x>0

S
O'ﬂ:j g /)a-l—d@‘..,
Hox comtramt
= (dTb Dowey, bd
o
dul LP ix meximitn
49 b
Sower priivel Via a"\ <d

m]

=

D¢
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Linear Programming Duality
Consider the following linear programs:

Primal LP Dual LP
minimize ¢’ x maximize yTb
subjectto Ax=b subjectto  yTA<c'
x>0

@ From previous slide

yTA<c" = yThis a lower bound on value of Primal

37/83



Linear Programming Duality
Consider the following linear programs:

Primal LP Dual LP
minimize ¢’ x maximize yTb
subjectto Ax=b subjectto  yTA<c'
x>0

@ From previous slide
yTA<c" = yThis a lower bound on value of Primal

@ Thus, the optimal (maximum) value of dual LP lower bounds the
optimal (minimum) value of the Primal LP!

Weale du.oﬂ"l'a of (P
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Linear Programming Duality
Consider the following linear programs:

Primal LP Dual LP
minimize ¢’ x maximize yTb
subjectto Ax=b subjectto  yTA<c'
x>0

@ From previous slide
yTA<c" = yThis a lower bound on value of Primal

@ Thus, the optimal (maximum) value of dual LP lower bounds the
optimal (minimum) value of the Primal LP!

Theorem (Weak Duality)

Let x be a feasible solution of the primal LP and y be a feasible solution
of the dual LP. Then
yTb <cTx.
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Remarks on Duality

Primal LP

minimize ¢’ x
subjectto Ax=b
x>0

Dual LP
maximize y'b
subjectto  yTA<c'
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Remarks on Duality

Primal LP ANt Dual LP
minimize ¢’ x ‘E maximize y'b
subject to Ax=0b subject to yTA<c'
x>0

e Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!
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Remarks on Duality

Primal LP Dual LP
off  minimize  c¢'x ]f maximize y'b
subject to Ax=0b subject to yTA<c'
x>0

e Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!
o If a*, 8" € R are the optimal values for primal and dual, respectively.
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Remarks on Duality

Primal LP Dual LP
minimize ¢’ x maximize yTb
subject to Ax=0b subject to yTA<c'
x>0

e Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!
o If a*, 8" € R are the optimal values for primal and dual, respectively.
o We showed that when both primal and dual are feasible, we have

max dual = 8* < a* = min of primal

= D
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Remarks on Duality

Primal LP Dual LP
minimize ¢’ x maximize yTb
subject to Ax=0b subject to yTA<c'
x>0

e Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!
o If a*, 8" € R are the optimal values for primal and dual, respectively.
o We showed that when both primal and dual are feasible, we have

max dual = 8* < a* = min of primal

e if primal unbounded (a* = —o0) then dual infeasible (8* = —o0)
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Remarks on Duality

Primal LP Dual LP
minimize ¢’ x maximize yTb
subject to Ax=0b subject to yTA<c'
x>0

e Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!
o If a*, 8" € R are the optimal values for primal and dual, respectively.
o We showed that when both primal and dual are feasible, we have

max dual = 8* < a* = min of primal

e if primal unbounded (a* = —o0) then dual infeasible (8* = —o0)
o if dual unbounded (8* = 00) then primal infeasible (a* = o)
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Remarks on Duality

Primal LP Dual LP
minimize ¢’ x maximize y'b
subjectto Ax=0b subjectto  yTA<c'
x>0

e Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!
o If a*, 8" € R are the optimal values for primal and dual, respectively.
o We showed that when both primal and dual are feasible, we have

max dual = 8* < a* = min of primal

e if primal unbounded (a* = —o0) then dual infeasible (8* = —o0)
o if dual unbounded (8* = 00) then primal infeasible (a* = o)

@ Practice problem: show that dual of the dual LP is the primal LP!
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Remarks on Duality

Primal LP Dual LP
minimize ¢’ x maximize y'b
subjectto Ax=0b subjectto  yTA<c'
x>0

e Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!
o If a*, 8" € R are the optimal values for primal and dual, respectively.
o We showed that when both primal and dual are feasible, we have

max dual = 8* < a* = min of primal
e if primal unbounded (a* = —o0) then dual infeasible (8* = —o0)
o if dual unbounded (8* = 00) then primal infeasible (a* = o)

@ Practice problem: show that dual of the dual LP is the primal LP!
@ When is the above inequality tight?
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Strong Duality

Primal LP Dual LP
minimize ¢’ x maximize yTb
subjectto Ax=b subjectto  yTA<c'
x>0

o let o*, 3* € R be optimal values for primal and dual, respectively.
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Strong Duality

Primal LP Dual LP
minimize ¢’ x maximize yTb
subjectto Ax=b subjectto  yTA<c'
x>0

o let o*, 3* € R be optimal values for primal and dual, respectively.

Theorem (Strong Duality)
If primal LP and dual LP are feasible, then

max dual = 3% = o* = min of primal.

ie- i both proguanma have Jou vane V‘“&“I
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Proof of Strong Duality

Theorem (Strong Duality)
If primal LP and dual LP are feasible, then

max dual = 3% = o* = min of primal.
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Proof of Strong Duality

Theorem (Strong Duality)

If primal LP and dual LP are feasible, then

max dual = 3% = o* = min of primal.

@ Since we have proved weak duality, suffices to show that the following
LP has a solution: S Ay .‘w}b’c dun (aTb ¢

Jd-
'} cona blﬂJ P
imi u‘: mnﬁ;’“maxmlze 0 y 2. B
subject to (yTA < T | o Jou ool
T T

?mmx Duek c'x—y b<0
wma CK mex Y'b P\u‘mﬂA e Mﬁ,‘j&
adr Ax:b ai ATASCT

X0

Fimew
) CTxéﬁTb (=5 743 o:t\*uq:‘m
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Proof of Strong Duality

Theorem (Strong Duality)
If primal LP and dual LP are feasible, then

max dual = 3% = o = min of primal.

@ Since we have proved weak duality, suffices to show that the following
LP has a solution:

maximize 0

subjectto  yTA<cT

@ Apply variant 2 of Farkas' lemma on the system above.
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Proof of Strong Duality
@ LP from previous page encoded by:

A0 b
2()=| ] O)=| @
0 AT c
—N—
B
A)(‘.55 % A.)(:‘::
~AX £ -b & Ax3b

c'x - ng <p & ¢X snTb

Alysc & .3TAecT
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Proof of Strong Duality
@ LP from previous page encoded by:

A 0 b

X -A 0 X —b
B<Y>_ c™ —bT (Y)S 0
0 AT c

@ Variant 2 of Farkas’ lemma gives that the system has solution iff for
each z=(u” vT X wT) >0 such that zB = 0 then we have

uThb—vib+wlc>0
5 (vmiomt 2 o )
1$=0&:) (-5 |20 Forlar lomw,
230 ¢
(T(LT v A ujr -4

(o]

[
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Proof of Strong Duality

@ LP from previous page encoded by:

A 0 b

X —A 0 X —b
— <

B<y> ™ —bT (Y>‘ 0

0 AT c

@ Variant 2 of Farkas’ lemma gives that the system has solution iff for

each z=(u” v X w') >0 such that!zB = Olthen we have
—u'b—vib+wlc>0 =

(5] Ifl)\ > 0,/then AcT & (vT —uT)A= Ac"Tw2 (vT — uT)Aw and so
AMuT =vD)b+dw cd Nw” —vb—(u" —vAw

= @T_v'l')[)\b- /‘(W‘) <0

)b+ulez0 S >\((“T' 'T)";_‘i(]
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Proof of Strong Duality
@ LP from previous page encoded by:

A 0 b

X —A 0 X —b
- <

B(Y) ch —bT <Y> 0

0 AT c

@ Variant 2 of Farkas’ lemma gives that the system has solution iff for

each z=(u” vT X w')> 0 such that zB = 0 then we have
—sulb—vib+wlc>0
@ IfA>0,then \c” = (vT —u")A= Ac"w=(vT —uT)Aw and so

MuT =vDb+awTc=Au" —vHb— (v —vTAw

Q If A =0, let x,y be feasible solutions (which we assumed to exist).
Then x > 0,Ax = b and yTA < cT. Thus

cTw>yTAw=0=(v" —u")Ax=(vT —u")b

w>o
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Proof Strong Duality: A > 0
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Proof of Strong Duality: A =0
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Affine form of Farkas' Lemma

A consequence of LP duality is the following lemma:

Lemma (Affine Farkas' Lemma)

Let the system

Ax < b

have at least one solution, and suppose that inequality
c™x<§
holds whenever x satisfies Ax < b. Then, for some §' < ¢ the linear

inequality
‘ cTx<é

is a non-negative linear combination of the inequalities of Ax < b.
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Affine form of Farkas' Lemma

A consequence of LP duality is the following lemma:

Lemma (Affine Farkas' Lemma)

Let the system
Ax < b

have at least one solution, and suppose that inequality
c™x<§

holds whenever x satisfies Ax < b. Then, for some &' < ¢ the linear
inequality
cx <

is a non-negative linear combination of the inequalities of Ax < b.

Practice problem: use LP duality and Farkas' lemma to prove this
lemmal

60/83



Complementary Slackness

o If the optima in both primal and dual is finite, and x, y are feasible
solutions, the following are equivalent:

© x,y are optimal solutions to the primal and dual

Q@ c'x=y"b

@ if x; > 0 then the corresponding inequality y " A; < ¢; is an equality:
that is, we must have yTA; = ¢;.

A\
Mg daeﬂilg

©, Femy x>0 = ‘éTAi:C‘
5 m;\mfn\} te A3y iufe },9 [=./] b’(e\q’hm
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Complementary Slackness

o If the optima in both primal and dual is finite, and x, y are feasible
solutions, the following are equivalent:

© x,y are optimal solutions to the primal and dual
Q@ c'x=yTb

@ if x; > 0 then the corresponding inequality y " A; < ¢; is an equality:
that is, we must have yTA; = ¢;.

@ 1 and 2 are equivalent due to strong duality
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Complementary Slackness

o If the optima in both primal and dual is finite, and x, y are feasible
solutions, the following are equivalent:
© x,y are optimal solutions to the primal and dual
Q@ c'x=yTb
@ if x; > 0 then the corresponding inequality y " A; < ¢; is an equality:
that is, we must have yTA; = ¢;.
@ 1 and 2 are equivalent due to strong duality

@ 2 and 3 are equivalent as we can write

c"x—yTb=c"x—yTAx=(cT —yTA)x = Z(c; —yTA)X;

T i=1 =6 >0
X (w;i)a&
A\ szb n L Tx_ Tb=°
%30  (onditim 3 Z X; (ci-n‘k;): o0& X
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Conclusion

@ Mathematical programming - very general, and pervasive in
Algorithmic life
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@ Special cases have very striking applications!

Today: Linear Programming
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applications!
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Conclusion

Mathematical programming - very general, and pervasive in
Algorithmic life

o General mathematical programming very hard (how hard do you think
it is?)

Special cases have very striking applications!

Today: Linear Programming

Linear Programming and Duality - fundamental concepts, lots of
applications!
o Applications in Combinatorial Optimization (a lot of it happened here
at UW!)
o Applications in Game Theory (minimax theorem)
o Applications in Learning Theory (boosting)
e many more
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Proof of Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))
Let a1,...,am,b € R", and t :=rank{a1,...,am, b}. Then either

@ b is a non-negative linear combination of linearly independent vectors

from ay,...,am, or
@ there exists a hyperplane H := {x | c"x = 0} s.t.
e c’Th<0
ecla;>0
e H contains t — 1 linearly independent vectors from ay, ..., am
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Theorem (Farkas (1894, 1898), Minkowski (1896))
Let a1,...,am,b € R", and t :=rank{a1,...,am, b}. Then either

@ b is a non-negative linear combination of linearly independent vectors

from ay,...,am, or
@ there exists a hyperplane H := {x | c"x = 0} s.t.
e c’Th<0
e c'a;>0
e H contains t — 1 linearly independent vectors from ay, ..., am
@ We can assume that as, ..., a, span R”, otherwise work on the

spanning subspace after appropriate linear transformation
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Proof of Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))
Let a1,...,am,b € R", and t :=rank{a1,...,am, b}. Then either

@ b is a non-negative linear combination of linearly independent vectors

from ay,...,am, or
@ there exists a hyperplane H := {x | c"x = 0} s.t.
e c’Th<0
e c'a;>0
e H contains t — 1 linearly independent vectors from ay, ..., am
@ We can assume that as, ..., a, span R”, otherwise work on the

spanning subspace after appropriate linear transformation

@ Since 1 and 2 mutually exclusive, choose linearly independent
,Co = {a,-l, SN a,-n}
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Proof of Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))
Let a1,...,am,b € R", and t :=rank{a1,...,am, b}. Then either

@ b is a non-negative linear combination of linearly independent vectors

from ay,...,am, or
@ there exists a hyperplane H := {x | c"x = 0} s.t.
e c’Th<0
e c'a;>0
e H contains t — 1 linearly independent vectors from ay, ..., am
@ We can assume that as, ..., a, span R”, otherwise work on the

spanning subspace after appropriate linear transformation

@ Since 1 and 2 mutually exclusive, choose linearly independent
,Co = {a,-l, SN a,-n}
@ We will perform an iterative procedure:
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Proof of Fundamental Theorem of Linear Inequalities
Iterative procedure, starting with Lg:
Q@ Write b= Xjaj, +...+ \j,a;,. If \j; > 0 we are done
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Proof of Fundamental Theorem of Linear Inequalities
Iterative procedure, starting with Lo:

Q@ Write b= \;a;, + ...+ \j,aj,- If \j > 0 we are done

@ If not, let h be smallest index from i1, ..., i, such that A\, < 0. Let

Ho = {x € R" | ¢/ x = 0} be the hyperplane spanned by Lo\ {as}.

Normalize it so that ¢j ap = 1.

75/83



Proof of Fundamental Theorem of Linear Inequalities
Iterative procedure, starting with Lo:

Q@ Write b= \;a;, + ...+ \j,aj,- If \j > 0 we are done

@ If not, let h be smallest index from i1, ..., i, such that A\, < 0. Let

Ho = {x € R" | ¢/ x = 0} be the hyperplane spanned by Lo\ {as}.

Normalize it so that ¢j ap = 1.

© If ¢f a; > 0 for all i € [m] we are done (case 2)
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Proof of Fundamental Theorem of Linear Inequalities
Iterative procedure, starting with Lo:

Q@ Write b= \;a;, + ...+ \j,aj,- If \j > 0 we are done

@ If not, let h be smallest index from i1, ..., i, such that A\, < 0. Let

Ho = {x € R" | ¢/ x = 0} be the hyperplane spanned by Lo\ {as}.

Normalize it so that ¢j ap = 1.

© If ¢f a; > 0 for all i € [m] we are done (case 2)
@ Otherwise, choose smallest s € [m] such that ¢{ as < 0, and let
L1 =LU{as}\ {an}. Go back to step 1.
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Proof of Fundamental Theorem of Linear Inequalities
Iterative procedure, starting with Lo:
Q@ Write b= \;a;, + ...+ \j,aj,- If \j > 0 we are done
@ If not, let h be smallest index from i1, ..., i, such that A\, < 0. Let
Ho = {x € R" | ¢/ x = 0} be the hyperplane spanned by Lo\ {as}.
Normalize it so that ¢j ap = 1.
© If ¢f a; > 0 for all i € [m] we are done (case 2)
@ Otherwise, choose smallest s € [m] such that ¢{ as < 0, and let
L1 =LU{as}\ {an}. Go back to step 1.

@ To conclude the proof, need to show that this procedure always
terminates. If process doesn't terminate, there are two times r < t
such that £, = L;

@ Let ¢ be the highest index for which a; has been removed from L for
some r < k < t.
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Proof of Fundamental Theorem of Linear Inequalities
Iterative procedure, starting with Lo:
Q@ Write b= \;a;, + ...+ \j,aj,- If \j > 0 we are done
@ If not, let h be smallest index from i1, ..., i, such that A\, < 0. Let
Ho = {x € R" | ¢/ x = 0} be the hyperplane spanned by Lo\ {as}.
Normalize it so that ¢j ap = 1.
© If ¢f a; > 0 for all i € [m] we are done (case 2)
@ Otherwise, choose smallest s € [m] such that ¢{ as < 0, and let
L1 =LU{as}\ {an}. Go back to step 1.

@ To conclude the proof, need to show that this procedure always
terminates. If process doesn't terminate, there are two times r < t
such that £, = L;

@ Let ¢ be the highest index for which a; has been removed from L for
some r < k < t.

e L, = L; = ag has also been added from some L, for some
r<k' <t.

79/83



Proof of Fundamental Theorem of Linear Inequalities

@ Say a, was removed at iteration k and added back at iteration k' so
r<k<k <t

@ Let ¢ be the vector defining the hyperplane at the k' iteration (when
we added a, back to the set), and let L, = {a;,...,a;,}

@ Now, above implies the following contradiction:

0>c'b= CT()\,-]a,-1 +-+ Aja;,) = )\,-lcTa,1 A€ a,n >0
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Proof of Fundamental Theorem of Linear Inequalities

@ Say a, was removed at iteration k and added back at iteration k' so
r<k<k <t

@ Let ¢ be the vector defining the hyperplane at the k' iteration (when
we added a, back to the set), and let L, = {a;,...,a;,}

@ Now, above implies the following contradiction:
0>c'b= CT()\,-]a,-1 +-+ Aja;,) = )\,-lcTa,1 A€ a,n >0

@ First inequality comes because at each iteration we choose ¢ such
that c"h< 0
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Proof of Fundamental Theorem of Linear Inequalities
@ Say a, was removed at iteration k and added back at iteration k' so
r<k<k <t

@ Let ¢ be the vector defining the hyperplane at the k' iteration (when
we added a, back to the set), and let L, = {a;,...,a;,}

@ Now, above implies the following contradiction:
0>c'b= CT()\,-]a,-1 +-+ Aja;,) = )\,-lcTa,1 A€ a,n >0

@ First inequality comes because at each iteration we choose ¢ such
that c"h< 0
@ Second inequality holds term by term:
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