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Why do we sparsify?

Often times graph algorithms for graphs G (V ,E ) have runtimes which
depend on |E |. If the graph is dense, i.e. |E | = ω(n1+c) then this may be

too slow.

We want graph that has nearly-linear number of edges O(n · poly log n)

Settle for approximate answers

Used as primitives in many other algorithms (for instance, max-flow,
sparsest cut, etc.)

Applications in network connectivity
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Graph Cuts
Definition (Graph Cut)

If G (V ,E ,w) is a weighted graph, a cut is a partition of the vertices into
two non-empty sets V = S t S . The value of a cut is the quantity

w(S ,S) :=
∑

e∈E(S ,S)

we .
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Contraction of Edges

Definition (Edge Contraction)

Let G (V ,E ) be a graph. If e = {u, v} ∈ E is an edge of G , then the
contraction of e is a new graph H(V ∪ {z} \ {u, v},F ) where we replace
the vertices u, v by one vertex z , and any edge {u, x} =: f ∈ E \ {e} is
replaced by {z , x} ∈ F .
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Randomized Minimum Cut

Input: undirected unweighted graph G (V ,E )

Output: minimum cut (S ,S), with high probability

While there are more than 2 vertices in the graph:

Pick uniformly random edge and contract it

Output the two subsets encoded by the two remaining vertices.
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Analysis
Why does this work?

Intuition: picking a random edge uniformly at random “favours” small
cuts (i.e. preserves them) with higher probability.

Remark

The value of the minimum cut only increases or stays the same after
contraction.
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Analysis

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least
2/n(n − 1), where n = |V |.

Let (S ,S) be a minimum cut, and k := |E (S ,S)|. If we never
contract an edge from E (S ,S), the algorithm succeeds.

Probability that an edge from E (S ,S) is contracted in the i th

iteration (conditioned on cut still alive)

Each vertex is a cut, so each vertex has degree ≥ k ⇒

≥ (n − i + 1) · k
2

edges remain.

Contracting random edge, probability we kill cut (S ,S) is

= |E (S ,S)| · 1

(# edges)
≤ k · 2

(n − i + 1) · k
=

2

n − i + 1

Pr[(S ,S) survives] ≥ (1− 2/n) · (1− 3/n) · · · (1− 2/3) = 2/n(n − 1)
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Hmmmmm, this is not with high probability...

To improve success probability, repeat this randomized procedure t
times (for which t?)

If we repeat for t times, failure probability is

≤
(

1− 2

n(n − 1)

)t

setting t = 2n(n − 1) then

≤
(

1− 2

n(n − 1)

)t

≤ exp

(
− 2t

n(n − 1)

)
= e−4

Running time: One execution implemented in O(n2), so t executions
in time O(n2t) = O(n4).

You will work on some running time improvements in your homework!
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Combinatorial Application

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least
2/n(n − 1), where n = |V |.

Corollary

There are at most O(n2) minimum cuts in an undirected graph.

Each minimum cut survives with probability Ω(1/n2)

Events that two different cuts survive are disjoint

Non-trivial statement to prove using other arguments!

This is all good, but we haven’t “sparsified” anything so far!
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Graph Sparsification

Definition (Weight of a cut)

Let G (V ,E ,w) be undirected weighted graph. For any cut (S , S), let the
weight of (S , S) be

w(S ,S) :=
∑

e∈E(S ,S)

w(e).

Definition (Sparse Graph)

We say that a graph G (V ,E ) is sparse if |E | = Õ(|V |).

Question

How to make a graph sparse (nearly linear # edges) while approximating
the value of every cut of a graph?
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Graph Sparsification

Input: graph G (V ,E ,wG ), ε > 0.

n = |V |, m = |E |.

Output: graph H(V ,F ,wH) such that for every cut (S , S), we have

(1− ε) · wG (S , S) ≤ wH(S ,S) ≤ (1 + ε) · wG (S , S)

Assumption (for this class): the input graph G (V ,E ) is unweighted
and has minimum cut value Ω(log n) (i.e., a large-ish cut)

Algorithm:

Let p ∈ (0, 1) be a parameter.

For each edge e ∈ E (G ), with probability p, make e an edge of H
with weight wH(e) = 1/p.
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Graph Sparsification

Idea:

Set p to get correct expected value for both # edges in H and the
value of each cut (S ,S) in H.

After that, need to prove concentration around expected values for all
cuts simultaneously!

Use Chernoff-Hoeffding and assumption that min-cut value is large.

Theorem ([Karger, 1993])

Let c be the value of the min-cut of G . Set

p =
15 ln n

ε2 · c
.

Graph H given by algorithm from previous slide approximates all cuts of
G and has O(p · |E |) edges with probability ≥ 1− 4/n.
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Graph Sparsification

Take a cut (S ,S). Suppose k := wG (S , S). Let

Xe =

{
1, if edge e included in H

0, otherwise

E[|F |] =
∑
e∈E

E[Xe ] =
∑
e∈E

(p · 1 + (1− p) · 0) = p · |E |

E[wH(S ,S)] =
∑

e∈E(S,S)

E[wH(e)] =
∑

e∈E(S,S)

(p · 1

p
+ (1− p) · 0)

= |E (S ,S)| = k = wG (S ,S)
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Graph Sparsification - Concentration

Take a cut (S ,S). Suppose k := wG (S , S). Let

we =

{
1/p, if edge e included in H

0, otherwise

wH(S ,S) is a sum of independent random variables we

Chernoff Bound:

Pr[|wH(S ,S)− k | ≥ ε · k] ≤ 2 exp

(
−ε

2kp

3

)
= 2n−5k/c

Note that k ≥ c , as c is the weight of the minimum cut

This is probability of single cut deviating from its mean... How can
we handle the exponentially many cuts in the graph?

Observation: probability that large cut violated is much smaller, and
there are not many small cuts!

So we can do a clever union bound!
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Observation: probability that large cut violated is much smaller, and
there are not many small cuts!

So we can do a clever union bound!
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Number of Cuts Lemma

Lemma (Number of small cuts)

The number of cuts with at most α · c edges for α ≥ 1 is at most n2α.

Practice problem: generalize our earlier proof on the # minimum cuts to
this case.
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Union Bound on # Cuts

Pr[some cut is violated] ≤
∑
S⊆V

Pr[(S ,S) is violated]

≤
∑

α=1,2,4,8,...

∑
S⊆V

αc≤|wG (S ,S)|≤2·αc

Pr[(S ,S) is violated]

≤
∑

α=1,2,4,8,...

n4α · Pr[(S ,S) is violated | αc ≤ |wG (S ,S)| ≤ 2 · αc]

≤
∑

α=1,2,4,8,...

n4α · 2n−5αc/c

=
∑

α=1,2,4,8,...

n−α ≤ 4/n

Another application of Chernoff gives us that H has the right number of
edges |F | ≈ p · |E | (i.e., sparse)
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How to remove the assumption?

Assumed that the graph has large min-cut value (c = Ω(log n)).

Without min-cut assumption, uniform sampling won’t work

[Benczur, Karger 1996]: without minimum cut assumption, just
sample non-uniformly in clever way!

Sample edge with probability proportional to “connectivity” of two
endpoints (i.e., how relevant is the edge between them?)

Strong Connectivity: a k-strong component is a maximal induced
subgraph that is k-edge-connected. For each edge e, let se be the
maximum value k such that there exists a k-strong component
containing e.

Sample edge e with probability pe = Θ

(
log n

ε2 · se

)
and weight 1/pe .
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Lecture based largely on Lap Chi’s notes.

See Lap Chi’s Lecture 1 notes at
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L01.pdf

See Lap Chi’s Lecture 3 notes at
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L03.pdf

See Mohsen’s notes for the general Benczur-Karger algorithm
https://people.inf.ethz.ch/gmohsen/AA18/Notes/S1.pdf.
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