
Lecture 6: Graph Sparsification

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

September 23, 2021

1 / 63

Overview

Introduction
Why Sparsify?
Warm-up Problem

Main Problem
Graph Sparsification

Acknowledgements

2 / 63

Why do we sparsify?

Often times graph algorithms for graphs G (V ,E) have runtimes which
depend on |E |. If the graph is dense, i.e. |E | = ω(n1+c) then this may be

too slow.

We want graph that has nearly-linear number of edges O(n · poly log n)

Settle for approximate answers

Used as primitives in many other algorithms (for instance, max-flow,
sparsest cut, etc.)

Applications in network connectivity

3 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Why do we sparsify?

Often times graph algorithms for graphs G (V ,E) have runtimes which
depend on |E |. If the graph is dense, i.e. |E | = ω(n1+c) then this may be

too slow.

We want graph that has nearly-linear number of edges O(n · poly log n)

Settle for approximate answers

Used as primitives in many other algorithms (for instance, max-flow,
sparsest cut, etc.)

Applications in network connectivity

4 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Why do we sparsify?

Often times graph algorithms for graphs G (V ,E) have runtimes which
depend on |E |. If the graph is dense, i.e. |E | = ω(n1+c) then this may be

too slow.

We want graph that has nearly-linear number of edges O(n · poly log n)

Settle for approximate answers

Used as primitives in many other algorithms (for instance, max-flow,
sparsest cut, etc.)

Applications in network connectivity

5 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Graph Cuts
Definition (Graph Cut)

If G (V ,E ,w) is a weighted graph, a cut is a partition of the vertices into
two non-empty sets V = S t S . The value of a cut is the quantity

w(S ,S) :=
∑

e∈E(S ,S)

we .

6 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Contraction of Edges

Definition (Edge Contraction)

Let G (V ,E) be a graph. If e = {u, v} ∈ E is an edge of G , then the
contraction of e is a new graph H(V ∪ {z} \ {u, v},F) where we replace
the vertices u, v by one vertex z , and any edge {u, x} =: f ∈ E \ {e} is
replaced by {z , x} ∈ F .

7 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Randomized Minimum Cut

Input: undirected unweighted graph G (V ,E)

Output: minimum cut (S ,S), with high probability

While there are more than 2 vertices in the graph:

Pick uniformly random edge and contract it

Output the two subsets encoded by the two remaining vertices.

8 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Randomized Minimum Cut

Input: undirected unweighted graph G (V ,E)

Output: minimum cut (S ,S), with high probability

While there are more than 2 vertices in the graph:

Pick uniformly random edge and contract it

Output the two subsets encoded by the two remaining vertices.

9 / 63

Rafael Oliveira

Randomized Minimum Cut

Input: undirected unweighted graph G (V ,E)

Output: minimum cut (S ,S), with high probability

While there are more than 2 vertices in the graph:

Pick uniformly random edge and contract it

Output the two subsets encoded by the two remaining vertices.

10 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Analysis
Why does this work?

Intuition: picking a random edge uniformly at random “favours” small
cuts (i.e. preserves them) with higher probability.

Remark

The value of the minimum cut only increases or stays the same after
contraction.

11 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Analysis
Why does this work?

Intuition: picking a random edge uniformly at random “favours” small
cuts (i.e. preserves them) with higher probability.

Remark

The value of the minimum cut only increases or stays the same after
contraction.

12 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Analysis

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least
2/n(n − 1), where n = |V |.

Let (S ,S) be a minimum cut, and k := |E (S ,S)|. If we never
contract an edge from E (S ,S), the algorithm succeeds.

Probability that an edge from E (S ,S) is contracted in the i th

iteration (conditioned on cut still alive)

Each vertex is a cut, so each vertex has degree ≥ k ⇒

≥ (n − i + 1) · k
2

edges remain.

Contracting random edge, probability we kill cut (S ,S) is

= |E (S ,S)| · 1

(# edges)
≤ k · 2

(n − i + 1) · k
=

2

n − i + 1

Pr[(S ,S) survives] ≥ (1− 2/n) · (1− 3/n) · · · (1− 2/3) = 2/n(n − 1)

13 / 63

Analysis

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least
2/n(n − 1), where n = |V |.

Let (S ,S) be a minimum cut, and k := |E (S , S)|. If we never
contract an edge from E (S , S), the algorithm succeeds.

Probability that an edge from E (S ,S) is contracted in the i th

iteration (conditioned on cut still alive)

Each vertex is a cut, so each vertex has degree ≥ k ⇒

≥ (n − i + 1) · k
2

edges remain.

Contracting random edge, probability we kill cut (S ,S) is

= |E (S ,S)| · 1

(# edges)
≤ k · 2

(n − i + 1) · k
=

2

n − i + 1

Pr[(S ,S) survives] ≥ (1− 2/n) · (1− 3/n) · · · (1− 2/3) = 2/n(n − 1)

14 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Analysis

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least
2/n(n − 1), where n = |V |.

Let (S ,S) be a minimum cut, and k := |E (S , S)|. If we never
contract an edge from E (S , S), the algorithm succeeds.

Probability that an edge from E (S ,S) is contracted in the i th

iteration (conditioned on cut still alive)

Each vertex is a cut, so each vertex has degree ≥ k ⇒

≥ (n − i + 1) · k
2

edges remain.

Contracting random edge, probability we kill cut (S ,S) is

= |E (S ,S)| · 1

(# edges)
≤ k · 2

(n − i + 1) · k
=

2

n − i + 1

Pr[(S ,S) survives] ≥ (1− 2/n) · (1− 3/n) · · · (1− 2/3) = 2/n(n − 1)

15 / 63

Analysis

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least
2/n(n − 1), where n = |V |.

Let (S ,S) be a minimum cut, and k := |E (S , S)|. If we never
contract an edge from E (S , S), the algorithm succeeds.

Probability that an edge from E (S ,S) is contracted in the i th

iteration (conditioned on cut still alive)
Each vertex is a cut, so each vertex has degree ≥ k ⇒

≥ (n − i + 1) · k
2

edges remain.

Contracting random edge, probability we kill cut (S ,S) is

= |E (S ,S)| · 1

(# edges)
≤ k · 2

(n − i + 1) · k
=

2

n − i + 1

Pr[(S ,S) survives] ≥ (1− 2/n) · (1− 3/n) · · · (1− 2/3) = 2/n(n − 1)

16 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Analysis

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least
2/n(n − 1), where n = |V |.

Let (S ,S) be a minimum cut, and k := |E (S , S)|. If we never
contract an edge from E (S , S), the algorithm succeeds.

Probability that an edge from E (S ,S) is contracted in the i th

iteration (conditioned on cut still alive)
Each vertex is a cut, so each vertex has degree ≥ k ⇒

≥ (n − i + 1) · k
2

edges remain.

Contracting random edge, probability we kill cut (S ,S) is

= |E (S ,S)| · 1

(# edges)
≤ k · 2

(n − i + 1) · k
=

2

n − i + 1

Pr[(S ,S) survives] ≥ (1− 2/n) · (1− 3/n) · · · (1− 2/3) = 2/n(n − 1)

17 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Analysis

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least
2/n(n − 1), where n = |V |.

Let (S ,S) be a minimum cut, and k := |E (S , S)|. If we never
contract an edge from E (S , S), the algorithm succeeds.

Probability that an edge from E (S ,S) is contracted in the i th

iteration (conditioned on cut still alive)
Each vertex is a cut, so each vertex has degree ≥ k ⇒

≥ (n − i + 1) · k
2

edges remain.

Contracting random edge, probability we kill cut (S ,S) is

= |E (S ,S)| · 1

(# edges)
≤ k · 2

(n − i + 1) · k
=

2

n − i + 1

Pr[(S ,S) survives] ≥ (1− 2/n) · (1− 3/n) · · · (1− 2/3) = 2/n(n − 1)

18 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Hmmmmm, this is not with high probability...

To improve success probability, repeat this randomized procedure t
times (for which t?)

If we repeat for t times, failure probability is

≤
(

1− 2

n(n − 1)

)t

setting t = 2n(n − 1) then

≤
(

1− 2

n(n − 1)

)t

≤ exp

(
− 2t

n(n − 1)

)
= e−4

Running time: One execution implemented in O(n2), so t executions
in time O(n2t) = O(n4).

You will work on some running time improvements in your homework!

19 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Hmmmmm, this is not with high probability...

To improve success probability, repeat this randomized procedure t
times (for which t?)

If we repeat for t times, failure probability is

≤
(

1− 2

n(n − 1)

)t

setting t = 2n(n − 1) then

≤
(

1− 2

n(n − 1)

)t

≤ exp

(
− 2t

n(n − 1)

)
= e−4

Running time: One execution implemented in O(n2), so t executions
in time O(n2t) = O(n4).

You will work on some running time improvements in your homework!

20 / 63

Rafael Oliveira

Hmmmmm, this is not with high probability...

To improve success probability, repeat this randomized procedure t
times (for which t?)

If we repeat for t times, failure probability is

≤
(

1− 2

n(n − 1)

)t

setting t = 2n(n − 1) then

≤
(

1− 2

n(n − 1)

)t

≤ exp

(
− 2t

n(n − 1)

)
= e−4

Running time: One execution implemented in O(n2), so t executions
in time O(n2t) = O(n4).

You will work on some running time improvements in your homework!

21 / 63

Hmmmmm, this is not with high probability...

To improve success probability, repeat this randomized procedure t
times (for which t?)

If we repeat for t times, failure probability is

≤
(

1− 2

n(n − 1)

)t

setting t = 2n(n − 1) then

≤
(

1− 2

n(n − 1)

)t

≤ exp

(
− 2t

n(n − 1)

)
= e−4

Running time: One execution implemented in O(n2), so t executions
in time O(n2t) = O(n4).

You will work on some running time improvements in your homework!

22 / 63

Combinatorial Application

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least
2/n(n − 1), where n = |V |.

Corollary

There are at most O(n2) minimum cuts in an undirected graph.

Each minimum cut survives with probability Ω(1/n2)

Events that two different cuts survive are disjoint

Non-trivial statement to prove using other arguments!

This is all good, but we haven’t “sparsified” anything so far!

23 / 63

Combinatorial Application

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least
2/n(n − 1), where n = |V |.

Corollary

There are at most O(n2) minimum cuts in an undirected graph.

Each minimum cut survives with probability Ω(1/n2)

Events that two different cuts survive are disjoint

Non-trivial statement to prove using other arguments!

This is all good, but we haven’t “sparsified” anything so far!

24 / 63

Combinatorial Application

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least
2/n(n − 1), where n = |V |.

Corollary

There are at most O(n2) minimum cuts in an undirected graph.

Each minimum cut survives with probability Ω(1/n2)

Events that two different cuts survive are disjoint

Non-trivial statement to prove using other arguments!

This is all good, but we haven’t “sparsified” anything so far!

25 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Combinatorial Application

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least
2/n(n − 1), where n = |V |.

Corollary

There are at most O(n2) minimum cuts in an undirected graph.

Each minimum cut survives with probability Ω(1/n2)

Events that two different cuts survive are disjoint

Non-trivial statement to prove using other arguments!

This is all good, but we haven’t “sparsified” anything so far!

26 / 63

Combinatorial Application

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least
2/n(n − 1), where n = |V |.

Corollary

There are at most O(n2) minimum cuts in an undirected graph.

Each minimum cut survives with probability Ω(1/n2)

Events that two different cuts survive are disjoint

Non-trivial statement to prove using other arguments!

This is all good, but we haven’t “sparsified” anything so far!

27 / 63

Introduction
Why Sparsify?
Warm-up Problem

Main Problem
Graph Sparsification

Acknowledgements

28 / 63

Graph Sparsification

Definition (Weight of a cut)

Let G (V ,E ,w) be undirected weighted graph. For any cut (S , S), let the
weight of (S , S) be

w(S ,S) :=
∑

e∈E(S ,S)

w(e).

Definition (Sparse Graph)

We say that a graph G (V ,E) is sparse if |E | = Õ(|V |).

Question

How to make a graph sparse (nearly linear # edges) while approximating
the value of every cut of a graph?

29 / 63

Graph Sparsification

Definition (Weight of a cut)

Let G (V ,E ,w) be undirected weighted graph. For any cut (S , S), let the
weight of (S , S) be

w(S ,S) :=
∑

e∈E(S ,S)

w(e).

Definition (Sparse Graph)

We say that a graph G (V ,E) is sparse if |E | = Õ(|V |).

Question

How to make a graph sparse (nearly linear # edges) while approximating
the value of every cut of a graph?

30 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Graph Sparsification

Definition (Weight of a cut)

Let G (V ,E ,w) be undirected weighted graph. For any cut (S , S), let the
weight of (S , S) be

w(S ,S) :=
∑

e∈E(S ,S)

w(e).

Definition (Sparse Graph)

We say that a graph G (V ,E) is sparse if |E | = Õ(|V |).

Question

How to make a graph sparse (nearly linear # edges) while approximating
the value of every cut of a graph?

31 / 63

Graph Sparsification

Input: graph G (V ,E ,wG), ε > 0.

n = |V |, m = |E |.

Output: graph H(V ,F ,wH) such that for every cut (S , S), we have

(1− ε) · wG (S , S) ≤ wH(S ,S) ≤ (1 + ε) · wG (S , S)

Assumption (for this class): the input graph G (V ,E) is unweighted
and has minimum cut value Ω(log n) (i.e., a large-ish cut)

Algorithm:

Let p ∈ (0, 1) be a parameter.

For each edge e ∈ E (G), with probability p, make e an edge of H
with weight wH(e) = 1/p.

32 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Graph Sparsification

Input: graph G (V ,E ,wG), ε > 0.

n = |V |, m = |E |.

Output: graph H(V ,F ,wH) such that for every cut (S , S), we have

(1− ε) · wG (S , S) ≤ wH(S ,S) ≤ (1 + ε) · wG (S , S)

Assumption (for this class): the input graph G (V ,E) is unweighted
and has minimum cut value Ω(log n) (i.e., a large-ish cut)

Algorithm:

Let p ∈ (0, 1) be a parameter.

For each edge e ∈ E (G), with probability p, make e an edge of H
with weight wH(e) = 1/p.

33 / 63

Graph Sparsification

Input: graph G (V ,E ,wG), ε > 0.

n = |V |, m = |E |.

Output: graph H(V ,F ,wH) such that for every cut (S , S), we have

(1− ε) · wG (S , S) ≤ wH(S ,S) ≤ (1 + ε) · wG (S , S)

Assumption (for this class): the input graph G (V ,E) is unweighted
and has minimum cut value Ω(log n) (i.e., a large-ish cut)

Algorithm:

Let p ∈ (0, 1) be a parameter.

For each edge e ∈ E (G), with probability p, make e an edge of H
with weight wH(e) = 1/p.

34 / 63

Graph Sparsification

Idea:

Set p to get correct expected value for both # edges in H and the
value of each cut (S ,S) in H.

After that, need to prove concentration around expected values for all
cuts simultaneously!

Use Chernoff-Hoeffding and assumption that min-cut value is large.

Theorem ([Karger, 1993])

Let c be the value of the min-cut of G . Set

p =
15 ln n

ε2 · c
.

Graph H given by algorithm from previous slide approximates all cuts of
G and has O(p · |E |) edges with probability ≥ 1− 4/n.

35 / 63

Graph Sparsification

Idea:

Set p to get correct expected value for both # edges in H and the
value of each cut (S ,S) in H.

After that, need to prove concentration around expected values for all
cuts simultaneously!

Use Chernoff-Hoeffding and assumption that min-cut value is large.

Theorem ([Karger, 1993])

Let c be the value of the min-cut of G . Set

p =
15 ln n

ε2 · c
.

Graph H given by algorithm from previous slide approximates all cuts of
G and has O(p · |E |) edges with probability ≥ 1− 4/n.

36 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Graph Sparsification

Idea:

Set p to get correct expected value for both # edges in H and the
value of each cut (S ,S) in H.

After that, need to prove concentration around expected values for all
cuts simultaneously!

Use Chernoff-Hoeffding and assumption that min-cut value is large.

Theorem ([Karger, 1993])

Let c be the value of the min-cut of G . Set

p =
15 ln n

ε2 · c
.

Graph H given by algorithm from previous slide approximates all cuts of
G and has O(p · |E |) edges with probability ≥ 1− 4/n.

37 / 63

Graph Sparsification

Idea:

Set p to get correct expected value for both # edges in H and the
value of each cut (S ,S) in H.

After that, need to prove concentration around expected values for all
cuts simultaneously!

Use Chernoff-Hoeffding and assumption that min-cut value is large.

Theorem ([Karger, 1993])

Let c be the value of the min-cut of G . Set

p =
15 ln n

ε2 · c
.

Graph H given by algorithm from previous slide approximates all cuts of
G and has O(p · |E |) edges with probability ≥ 1− 4/n.

38 / 63

Graph Sparsification

Take a cut (S ,S). Suppose k := wG (S , S). Let

Xe =

{
1, if edge e included in H

0, otherwise

E[|F |] =
∑
e∈E

E[Xe] =
∑
e∈E

(p · 1 + (1− p) · 0) = p · |E |

E[wH(S ,S)] =
∑

e∈E(S,S)

E[wH(e)] =
∑

e∈E(S,S)

(p · 1

p
+ (1− p) · 0)

= |E (S ,S)| = k = wG (S ,S)

39 / 63

Graph Sparsification

Take a cut (S ,S). Suppose k := wG (S , S). Let

Xe =

{
1, if edge e included in H

0, otherwise

E[|F |] =
∑
e∈E

E[Xe] =
∑
e∈E

(p · 1 + (1− p) · 0) = p · |E |

E[wH(S ,S)] =
∑

e∈E(S,S)

E[wH(e)] =
∑

e∈E(S,S)

(p · 1

p
+ (1− p) · 0)

= |E (S ,S)| = k = wG (S ,S)

40 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Graph Sparsification

Take a cut (S ,S). Suppose k := wG (S , S). Let

Xe =

{
1, if edge e included in H

0, otherwise

E[|F |] =
∑
e∈E

E[Xe] =
∑
e∈E

(p · 1 + (1− p) · 0) = p · |E |

E[wH(S , S)] =
∑

e∈E(S,S)

E[wH(e)] =
∑

e∈E(S,S)

(p · 1

p
+ (1− p) · 0)

= |E (S ,S)| = k = wG (S ,S)

41 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Graph Sparsification - Concentration

Take a cut (S ,S). Suppose k := wG (S , S). Let

we =

{
1/p, if edge e included in H

0, otherwise

wH(S ,S) is a sum of independent random variables we

Chernoff Bound:

Pr[|wH(S ,S)− k | ≥ ε · k] ≤ 2 exp

(
−ε

2kp

3

)
= 2n−5k/c

Note that k ≥ c , as c is the weight of the minimum cut

This is probability of single cut deviating from its mean... How can
we handle the exponentially many cuts in the graph?

Observation: probability that large cut violated is much smaller, and
there are not many small cuts!

So we can do a clever union bound!

42 / 63

Graph Sparsification - Concentration

Take a cut (S ,S). Suppose k := wG (S , S). Let

we =

{
1/p, if edge e included in H

0, otherwise

wH(S ,S) is a sum of independent random variables we

Chernoff Bound:

Pr[|wH(S ,S)− k | ≥ ε · k] ≤ 2 exp

(
−ε

2kp

3

)
= 2n−5k/c

Note that k ≥ c , as c is the weight of the minimum cut

This is probability of single cut deviating from its mean... How can
we handle the exponentially many cuts in the graph?

Observation: probability that large cut violated is much smaller, and
there are not many small cuts!

So we can do a clever union bound!

43 / 63

Graph Sparsification - Concentration

Take a cut (S ,S). Suppose k := wG (S , S). Let

we =

{
1/p, if edge e included in H

0, otherwise

wH(S ,S) is a sum of independent random variables we

Chernoff Bound:

Pr[|wH(S , S)− k | ≥ ε · k] ≤ 2 exp

(
−ε

2kp

3

)
= 2n−5k/c

Note that k ≥ c , as c is the weight of the minimum cut

This is probability of single cut deviating from its mean... How can
we handle the exponentially many cuts in the graph?

Observation: probability that large cut violated is much smaller, and
there are not many small cuts!

So we can do a clever union bound!

44 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Graph Sparsification - Concentration

Take a cut (S ,S). Suppose k := wG (S , S). Let

we =

{
1/p, if edge e included in H

0, otherwise

wH(S ,S) is a sum of independent random variables we

Chernoff Bound:

Pr[|wH(S , S)− k | ≥ ε · k] ≤ 2 exp

(
−ε

2kp

3

)
= 2n−5k/c

Note that k ≥ c , as c is the weight of the minimum cut

This is probability of single cut deviating from its mean... How can
we handle the exponentially many cuts in the graph?

Observation: probability that large cut violated is much smaller, and
there are not many small cuts!

So we can do a clever union bound!

45 / 63

Graph Sparsification - Concentration

Take a cut (S ,S). Suppose k := wG (S , S). Let

we =

{
1/p, if edge e included in H

0, otherwise

wH(S ,S) is a sum of independent random variables we

Chernoff Bound:

Pr[|wH(S , S)− k | ≥ ε · k] ≤ 2 exp

(
−ε

2kp

3

)
= 2n−5k/c

Note that k ≥ c , as c is the weight of the minimum cut

This is probability of single cut deviating from its mean... How can
we handle the exponentially many cuts in the graph?

Observation: probability that large cut violated is much smaller, and
there are not many small cuts!

So we can do a clever union bound!

46 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Graph Sparsification - Concentration

Take a cut (S ,S). Suppose k := wG (S , S). Let

we =

{
1/p, if edge e included in H

0, otherwise

wH(S ,S) is a sum of independent random variables we

Chernoff Bound:

Pr[|wH(S , S)− k | ≥ ε · k] ≤ 2 exp

(
−ε

2kp

3

)
= 2n−5k/c

Note that k ≥ c , as c is the weight of the minimum cut

This is probability of single cut deviating from its mean... How can
we handle the exponentially many cuts in the graph?

Observation: probability that large cut violated is much smaller, and
there are not many small cuts!

So we can do a clever union bound!

47 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Graph Sparsification - Concentration

Take a cut (S ,S). Suppose k := wG (S , S). Let

we =

{
1/p, if edge e included in H

0, otherwise

wH(S ,S) is a sum of independent random variables we

Chernoff Bound:

Pr[|wH(S , S)− k | ≥ ε · k] ≤ 2 exp

(
−ε

2kp

3

)
= 2n−5k/c

Note that k ≥ c , as c is the weight of the minimum cut

This is probability of single cut deviating from its mean... How can
we handle the exponentially many cuts in the graph?

Observation: probability that large cut violated is much smaller, and
there are not many small cuts!

So we can do a clever union bound!

48 / 63

Number of Cuts Lemma

Lemma (Number of small cuts)

The number of cuts with at most α · c edges for α ≥ 1 is at most n2α.

Practice problem: generalize our earlier proof on the # minimum cuts to
this case.

49 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Number of Cuts Lemma

Lemma (Number of small cuts)

The number of cuts with at most α · c edges for α ≥ 1 is at most n2α.

Practice problem: generalize our earlier proof on the # minimum cuts to
this case.

50 / 63

Union Bound on # Cuts

Pr[some cut is violated] ≤
∑
S⊆V

Pr[(S ,S) is violated]

≤
∑

α=1,2,4,8,...

∑
S⊆V

αc≤|wG (S ,S)|≤2·αc

Pr[(S ,S) is violated]

≤
∑

α=1,2,4,8,...

n4α · Pr[(S ,S) is violated | αc ≤ |wG (S ,S)| ≤ 2 · αc]

≤
∑

α=1,2,4,8,...

n4α · 2n−5αc/c

=
∑

α=1,2,4,8,...

n−α ≤ 4/n

Another application of Chernoff gives us that H has the right number of
edges |F | ≈ p · |E | (i.e., sparse)

51 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Union Bound on # Cuts

Pr[some cut is violated] ≤
∑
S⊆V

Pr[(S ,S) is violated]

≤
∑

α=1,2,4,8,...

∑
S⊆V

αc≤|wG (S ,S)|≤2·αc

Pr[(S ,S) is violated]

≤
∑

α=1,2,4,8,...

n4α · Pr[(S ,S) is violated | αc ≤ |wG (S ,S)| ≤ 2 · αc]

≤
∑

α=1,2,4,8,...

n4α · 2n−5αc/c

=
∑

α=1,2,4,8,...

n−α ≤ 4/n

Another application of Chernoff gives us that H has the right number of
edges |F | ≈ p · |E | (i.e., sparse)

52 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Union Bound on # Cuts

Pr[some cut is violated] ≤
∑
S⊆V

Pr[(S ,S) is violated]

≤
∑

α=1,2,4,8,...

∑
S⊆V

αc≤|wG (S ,S)|≤2·αc

Pr[(S ,S) is violated]

≤
∑

α=1,2,4,8,...

n4α · Pr[(S ,S) is violated | αc ≤ |wG (S ,S)| ≤ 2 · αc]

≤
∑

α=1,2,4,8,...

n4α · 2n−5αc/c

=
∑

α=1,2,4,8,...

n−α ≤ 4/n

Another application of Chernoff gives us that H has the right number of
edges |F | ≈ p · |E | (i.e., sparse)

53 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Union Bound on # Cuts

Pr[some cut is violated] ≤
∑
S⊆V

Pr[(S ,S) is violated]

≤
∑

α=1,2,4,8,...

∑
S⊆V

αc≤|wG (S ,S)|≤2·αc

Pr[(S ,S) is violated]

≤
∑

α=1,2,4,8,...

n4α · Pr[(S ,S) is violated | αc ≤ |wG (S ,S)| ≤ 2 · αc]

≤
∑

α=1,2,4,8,...

n4α · 2n−5αc/c

=
∑

α=1,2,4,8,...

n−α ≤ 4/n

Another application of Chernoff gives us that H has the right number of
edges |F | ≈ p · |E | (i.e., sparse)

54 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Union Bound on # Cuts

Pr[some cut is violated] ≤
∑
S⊆V

Pr[(S ,S) is violated]

≤
∑

α=1,2,4,8,...

∑
S⊆V

αc≤|wG (S ,S)|≤2·αc

Pr[(S ,S) is violated]

≤
∑

α=1,2,4,8,...

n4α · Pr[(S ,S) is violated | αc ≤ |wG (S ,S)| ≤ 2 · αc]

≤
∑

α=1,2,4,8,...

n4α · 2n−5αc/c

=
∑

α=1,2,4,8,...

n−α ≤ 4/n

Another application of Chernoff gives us that H has the right number of
edges |F | ≈ p · |E | (i.e., sparse)

55 / 63

How to remove the assumption?

Assumed that the graph has large min-cut value (c = Ω(log n)).

Without min-cut assumption, uniform sampling won’t work

[Benczur, Karger 1996]: without minimum cut assumption, just
sample non-uniformly in clever way!

Sample edge with probability proportional to “connectivity” of two
endpoints (i.e., how relevant is the edge between them?)

Strong Connectivity: a k-strong component is a maximal induced
subgraph that is k-edge-connected. For each edge e, let se be the
maximum value k such that there exists a k-strong component
containing e.

Sample edge e with probability pe = Θ

(
log n

ε2 · se

)
and weight 1/pe .

56 / 63

How to remove the assumption?

Assumed that the graph has large min-cut value (c = Ω(log n)).

Without min-cut assumption, uniform sampling won’t work

[Benczur, Karger 1996]: without minimum cut assumption, just
sample non-uniformly in clever way!

Sample edge with probability proportional to “connectivity” of two
endpoints (i.e., how relevant is the edge between them?)

Strong Connectivity: a k-strong component is a maximal induced
subgraph that is k-edge-connected. For each edge e, let se be the
maximum value k such that there exists a k-strong component
containing e.

Sample edge e with probability pe = Θ

(
log n

ε2 · se

)
and weight 1/pe .

57 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

How to remove the assumption?

Assumed that the graph has large min-cut value (c = Ω(log n)).

Without min-cut assumption, uniform sampling won’t work

[Benczur, Karger 1996]: without minimum cut assumption, just
sample non-uniformly in clever way!

Sample edge with probability proportional to “connectivity” of two
endpoints (i.e., how relevant is the edge between them?)

Strong Connectivity: a k-strong component is a maximal induced
subgraph that is k-edge-connected. For each edge e, let se be the
maximum value k such that there exists a k-strong component
containing e.

Sample edge e with probability pe = Θ

(
log n

ε2 · se

)
and weight 1/pe .

58 / 63

How to remove the assumption?

Assumed that the graph has large min-cut value (c = Ω(log n)).

Without min-cut assumption, uniform sampling won’t work

[Benczur, Karger 1996]: without minimum cut assumption, just
sample non-uniformly in clever way!

Sample edge with probability proportional to “connectivity” of two
endpoints (i.e., how relevant is the edge between them?)

Strong Connectivity: a k-strong component is a maximal induced
subgraph that is k-edge-connected. For each edge e, let se be the
maximum value k such that there exists a k-strong component
containing e.

Sample edge e with probability pe = Θ

(
log n

ε2 · se

)
and weight 1/pe .

59 / 63

How to remove the assumption?

Assumed that the graph has large min-cut value (c = Ω(log n)).

Without min-cut assumption, uniform sampling won’t work

[Benczur, Karger 1996]: without minimum cut assumption, just
sample non-uniformly in clever way!

Sample edge with probability proportional to “connectivity” of two
endpoints (i.e., how relevant is the edge between them?)

Strong Connectivity: a k-strong component is a maximal induced
subgraph that is k-edge-connected. For each edge e, let se be the
maximum value k such that there exists a k-strong component
containing e.

Sample edge e with probability pe = Θ

(
log n

ε2 · se

)
and weight 1/pe .

60 / 63

How to remove the assumption?

Assumed that the graph has large min-cut value (c = Ω(log n)).

Without min-cut assumption, uniform sampling won’t work

[Benczur, Karger 1996]: without minimum cut assumption, just
sample non-uniformly in clever way!

Sample edge with probability proportional to “connectivity” of two
endpoints (i.e., how relevant is the edge between them?)

Strong Connectivity: a k-strong component is a maximal induced
subgraph that is k-edge-connected. For each edge e, let se be the
maximum value k such that there exists a k-strong component
containing e.

Sample edge e with probability pe = Θ

(
log n

ε2 · se

)
and weight 1/pe .

61 / 63

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Acknowledgement

Lecture based largely on Lap Chi’s notes.

See Lap Chi’s Lecture 1 notes at
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L01.pdf

See Lap Chi’s Lecture 3 notes at
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L03.pdf

See Mohsen’s notes for the general Benczur-Karger algorithm
https://people.inf.ethz.ch/gmohsen/AA18/Notes/S1.pdf.

62 / 63

https://cs.uwaterloo.ca/~lapchi/cs466/notes/L01.pdf
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L03.pdf
https://people.inf.ethz.ch/gmohsen/AA18/Notes/S1.pdf

References I

Motwani, Rajeev and Raghavan, Prabhakar (2007)

Randomized Algorithms

Mitzenmacher, Michael, and Eli Upfal (2017)

Probability and computing: Randomization and probabilistic techniques in
algorithms and data analysis.

Cambridge university press, 2017.

Karger, David (1993)

Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm.

SODA 93, 21–30.

Benczur, Andras and Karger, David (1996)

Approximating st minimum cuts in Õ(n2) time.

Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
47 – 55.

63 / 63

	Introduction
	Why Sparsify?
	Warm-up Problem

	Main Problem
	Graph Sparsification

	Acknowledgements

