Lecture 5: Hashing

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

September 21, 2021

1/83



Overview

@ Introduction
e Hash Functions
e Why is hashing?
e How to hash?

@ Succinctness of Hash Functions

o Coping with randomness

o Universal Hashing

e Hashing using 2-universal families
Perfect Hashing

@ Acknowledgements
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Computational Model

Before we talk about hash functions, we need to state our model of
computation:

Definition (Word RAM model)
In the word RAM? model:

@ all elements are integers that fit in a machine word of w bits

@ Basic operations (comparison, arithmetic, bitwise) on such words take
©(1) time

@ We can also access any position in the array in ©(1) time

?RAM stands for Random Access Model

-l - wmry

a4
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Computational Model

Before we talk about hash functions, we need to state our model of
computation:

Definition (Word RAM model)
In the word RAM? model:

@ all elements are integers that fit in a machine word of w bits

@ Basic operations (comparison, arithmetic, bitwise) on such words take
©(1) time

@ We can also access any position in the array in ©(1) time

?RAM stands for Random Access Model

Wait, but aren't we working on asymptotic analysis of algorithms?

Yes, but this model is still relevant for problems of good enough size (so
asymptotics can kick in) but not super huge that words don't fit in a
machine word.
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What is hashing?

Store O(n) elements (keys) from the set U = {0,1,...,m —1},* where
m >> n, in a data structure that supports insertions, deletions, search “as
efficiently as possible.”

'Here we assume that m smaller than our memory. So logm < w.
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What is hashing?

Store O(n) elements (keys) from the set U = {0,1,...,m —1},* where

m >> n, in a data structure that supports insertions, deletions, search “as
efficiently as possible.”

Naive approach: use an array A of m elements, initially A[/] =0 for all i,
and when a key is inserted, set A[i] = 1.

'Here we assume that m smaller than our memory. So logm < w.
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What is hashing?

Store O(n) elements (keys) from the set U = {0,1,...,m —1},* where
(m >>n)in a data structure that supports insertions, deletions, search “as

efficiently as possible.”

Naive approach: use an array A of m elements, initially A[/] =0 for all i,
and when a key is inserted, set A[i] = 1.

e Insertion: O(1), Deletion: O(1), Search: O(1) Wmdlll‘u.(
e Memory: O(m) (this is very bad!)

'Here we assume that m smaller than our memory. So logm < w.
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What is hashing?

Store O(n) elements (keys) from the set U = {0,1,...,m —1},* where
m >> n, in a data structure that supports insertions, deletions, search “as
efficiently as possible.”

Naive approach: use an array A of m elements, initially A[/] =0 for all i,
and when a key is inserted, set A[i] = 1.

o Insertion: O(1), Deletion: O(1), Search: O(1)

e Memory: O(m) (this is very bad!)
Want to also achieve optimal memory O(n). For this we will use a
technique called hashing.

@ A hash function is a function h: U — [0, n—1], where |U| = m >> n.

@ A hash table is a data structure that consists of:
o atable T with n cells [0, n — 1], each cell storing a word
e a hash function h: U — [0,n— 1]

From now on, we will define memory as # of cells.
'Here we assume that m smaller than our memory. So logm < w.
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Why is hashing useful?

Designing efficient data structures (dictionaries) for searching
Data streaming algorithms

Derandomization

Cryptography

Complexity Theory

many more
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Challenges in Hashing

Setup:

@ Universe U ={0,..., m — 1} of size m >> n where n is the size of
the range of our hash function h: U — [0, n — 1]

e Store O(n) elements of U (keys) in hash table T (which has n cells)
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Challenges in Hashing

Setup:

@ Universe U ={0,..., m — 1} of size m >> n where n is the size of
the range of our hash function h: U — [0,n — 1]

e Store O(n) elements of U (keys) in hash table T (which has n cells)

Ideally, want hash function to map different keys into different locations.

Definition (Collision)

We say that a collision happens for hash function h with inputs x,y € U if
x # y and h(x) = h(y).

By pigeonhole principle, impossible to achieve no collisions without
knowing keys in advance (|U| >> n).

v h

colllinom: @’!
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Challenges in Hashing

Setup:

@ Universe U ={0,..., m — 1} of size m >> n where n is the size of
the range of our hash function h: U — [0,n — 1]

e Store O(n) elements of U (keys) in hash table T (which has n cells)

Ideally, want hash function to map different keys into different locations.

Definition (Collision)

We say that a collision happens for hash function h with inputs x,y € U if
x # y and h(x) = h(y).

By pigeonhole principle, impossible to achieve no collisions without
knowing keys in advance (|U| >> n).

Will settle for: # collisions small with high probability.
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Our solution: family of hash functions

Construct family of hash functions H such that the number of collisions is
small with high probability, when we pick hash function uniformly at
random from the family .
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Our solution: family of hash functions

Construct family of hash functions H such that the number of collisions is
small with high probability, when we pick hash function uniformly at
random from the family .

Simplest version to keep in mind:

1
h(x) s s wAyey
Ha5 _ Mz] Pm’n cc
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Our solution: family of hash functions

Construct family of hash functions H such that the number of collisions is
small with high probability, when we pick hash function uniformly at
random from the family .

Simplest version to keep in mind:

Pr [h(x) = h(y)] < —>

herH poly(n) WFyel

Assumptions:
@ keys are independent from hash function we choose.

e we do not know keys in advance (even if we did, nontrivial problem!)

Still could have collisions. How do we handle them? \
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Random Hash Functions?

Natural to consider following approach:

From all functions h: U — [0, n — 1], just pick one uniformly at random.
—~—

= ZO’(,Z) ) n'l"
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Random Hash Functions?

Natural to consider following approach:
From all functions h: U — [0, n — 1], just pick one uniformly at random.

This setting is same as our balls-and-bins setting!
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Random Hash Functions?

Natural to consider following approach:

From all functions h: U — [0, n — 1], just pick one uniformly at random.

This setting is same as our balls-and-bins setting!
So, if we have to store n keys:
@ Expected number of keys in a location: 1

e maximum number of collisions (max load) in one particular location:

G O(log n/ log log n) keys
)

fy gt
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Random Hash Functions?

Natural to consider following approach:

From all functions h: U — [0, n — 1], just pick one uniformly at random.

This setting is same as our balls-and-bins setting!
So, if we have to store n keys:

@ Expected number of keys in a location: 1

e maximum number of collisions (max load) in one particular location:
O(log n/ log log n) keys

Solving collisions: store all keys hashed into location / by a linked list.

Known as chain hashing.

Twat O(1)  Awnch \0(%BVgasn)  hr
doOchm
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Random Hash Functions?

Natural to consider following approach:

From all functions h: U — [0, n — 1], just pick one uniformly at random.
This setting is same as our balls-and-bins setting!
So, if we have to store n keys:
@ Expected number of keys in a location: 1

e maximum number of collisions (max load) in one particular location:
O(log n/ log log n) keys

Solving collisions: store all keys hashed into location i by a linked list.

Known as chain hashing.

Could also pick two random hash functions and use power of two choices.
Collision bound becomes O(log log n).
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Random Hash Functions?

Random hash functions look very good. However, we haven't discussed
the following:
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Random Hash Functions?

Random hash functions look very good. However, we haven't discussed
the following:

How much resource (time & space) does it take to compute random hash
functions?
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Random Hash Functions?

Random hash functions look very good. However, we haven't discussed
the following:

How much resource (time & space) does it take to compute random hash
functions?

@ Storing entire function h: U — [0, n — 1] require O(m) cells (way too
much space!)

@ Even if we only stored the elements we saw, would require O(n) time
to evaluate h(x) (need to decide if we had already computed it!)

= (0000 m = 10
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Random Hash Functions?

Random hash functions look very good. However, we haven't discussed
the following:

How much resource (time & space) does it take to compute random hash
functions?

@ Storing entire function h: U — [0, n — 1] require O(m) cells (way too
much space!)

@ Even if we only stored the elements we saw, would require O(n) time
to evaluate h(x) (need to decide if we had already computed it!)

Thus, for random function all operations (insert, delete, search) take O(n)
time (at best!)
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Random Hash Functions?

Random hash functions look very good. However, we haven't discussed
the following:

How much resource (time & space) does it take to compute random hash
functions?

@ Storing entire function h: U — [0, n — 1] require O(m) cells (way too
much space!)

@ Even if we only stored the elements we saw, would require O(n) time
to evaluate h(x) (need to decide if we had already computed it!)

Thus, for random function all operations (insert, delete, search) take O(n)
time (at best!)

How do we cope with the computational problem that arose with
randomness?
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@ Succinctness of Hash Functions
o Coping with randomness
o Universal Hashing
o Hashing using 2-universal families
o Perfect Hashing

26/83



How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

2Reminder that we are in the word RAM model - in general we would have O(log m)
bits
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How to cope with “hardness” of randomness?
We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

Ideally something that takes O(1) time to compute (as this is the size of
our input).?

2Reminder that we are in the word RAM model - in general we would have O(log m)
bits
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How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

Ideally something that takes O(1) time to compute (as this is the size of

()our input).?
O(Lsoym) 1o (bit complevi'ly)

How many hash functions can we have with the property above? I

@nchm hettan hale dha-'p"fh("w'(c ue’"ﬂ’l"')
) b

2Reminder that we are in the word RAM model - in general we would have O(log m)
bits
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How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

Ideally something that takes O(1) time to compute (as this is the size of
our input).?

How many hash functions can we have with the property above? I

poly(m) functions, as each function takes at most O(log m) bits to
describe. Thus these are succinct functions (easy to describe and
compute) which have random-like properties!
O(denr) clym
- = o? aa, = wm
2Reminder that we are in the word RAM model - in general we would have O(log m)
bits
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How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

Ideally something that takes O(1) time to compute (as this is the size of
our input).?

How many hash functions can we have with the property above? \

poly(m) functions, as each function takes at most O(log m) bits to
describe. Thus these are succinct functions (easy to describe and
compute) which have random-like properties!

Part of derandomization/pseudorandomness: huge subfield in TCS!

2Reminder that we are in the word RAM model - in general we would have O(log m)
bits
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k-wise independence

Weaker notion of independence.
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k-wise independence

Weaker notion of independence.

Definition (Full Independence)

A set of random variables Xj, ..., X, are said to be (fully) independent if
for any subset J C [n] they satisfy

ﬂX,-:a,-

ic)

Pr = [ PrlX = ail

icl

any Volw,  @; ieJ
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k-wise independence

Weaker notion of independence.

Definition (Full Independence)

A set of random variables Xj, ..., X, are said to be (fully) independent if
for any subset J C [n] they satisfy
Pr mXi =aj| = HPr[X; = a,-]
icJ ieJ )
Definition (k-wise Independence)
A set of random variables Xi, ..., X, are said to be k-wise independent if
for any set J C [n] such that |J| < k they satisfy
AmeR
Pr m XI = ai] = H Pr[X, = ai]
icJ icJ )
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Pairwise independence

When k = 2, k-wise independence is called pairwise independence.

hld'l dﬂf

Example (XOR pairwise independence)

Given b uniformly random bits Yi,..., Yp, we can generate 22 — 1
uniformly distributed pairwise independent random variables as follows:

Xs =@V SClbl, S#0

i€eS

Y0 RO

X

l|l|')s -

xfln\ N Y|®V}
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Pairwise independence

When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)

Given b uniformly random bits Yi,..., Yp, we can generate 22 — 1
uniformly distributed pairwise independent random variables as follows:

Xs =@V SClbl, S#0

i€eS
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Pairwise independence

When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)

Given b uniformly random bits Yi,..., Yp, we can generate 22 — 1
uniformly distributed pairwise independent random variables as follows:

Xs =@V SClbl, S#0

i€eS

@ Why are th ven random? v ) \ -
y are eyie a\,’o Kuy <_?1Ly,=y,@)’z -’/7.

Yihy

thl.‘); = Y,Q)Q OB 'P“ [)I‘; # y‘@yz]:l/.,_

A;’()ﬁ—)o o
_)_L_Bi/i
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Pairwise independence

When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)

Given b uniformly random bits Yi,..., Yp, we can generate 22 — 1
uniformly distributed pairwise independent random variables as follows:

Xs =@V SClbl, S#0

i€eS

@ Why are they even random? 5 .# T 3 '€ S\T

o Why are they pairwise independent? —_

@ Y, ino‘(‘mou A
: ?n[x’n:" od X b y; ;€T
@ ?n[xr W) PAL"; by (X‘f "‘% 0 L"S"’_j
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Pairwise independence

When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)

Given b uniformly random bits Yi,..., Yp, we can generate 22 — 1
uniformly distributed pairwise independent random variables as follows:

Xs =@V SClbl, S#0

i€eS

@ Why are they even random?
o Why are they pairwise independent?
@ Are they also 3-wise independent?

NO : x“i )Qtﬂ )( “,-4
1 i O
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Pairwise independence I

b indgls mdp

Example (Pairwise independence in [F,)

Let p be a prime number. Given 2 uniformly random variables

Y1, Y2 ~[0,...,p— 1], generate p pairwise independent random variables
as follows: ﬂ:—f’ )

Xi:=Yi+i-Y> modp

o ~—

i€0,p—1]
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Pairwise independence I

Example (Pairwise independence in [F,)

Let p be a prime number. Given 2 uniformly random variables

Y1, Y2 ~[0,...,p— 1], generate p pairwise independent random variables
as follows:

Xii=Y1+i-Y> modp iE[O,p—l]

@ Why are they even random?

(ixit\a )’1 Y, st Mi@‘w
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Pairwise independence I

Example (Pairwise independence in [F,)

Let p be a prime number. Given 2 uniformly random variables
Y1, Y2 ~[0,...,p— 1], generate p pairwise independent random variables
as follows:

Xii=Y1+i-Y> modp i€0,p—1]

- -
@ Why are they even random? ?’1 z)(l =a 3 - /P
@ Why are they pairwise independent?

exatly
Xi X YitiYa= o\ | poludm
o b Yo +y¥e: b L (%)

- _ A - Pl Xi=n -‘Fn["a':")
CALES Kk ) ral Palis)
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Pairwise independence I

Example (Pairwise independence in [F,)

Let p be a prime number. Given 2 uniformly random variables

Y1, Y2 ~[0,...,p— 1], generate p pairwise independent random variables
as follows:

Xii=Y1+i-Y> modp iE[O,p—l]

@ Why are they even random?

@ Why are they pairwise independent?

@ Are they also 3-wise independent?

NO : )(o )(( X

i
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Pairwise independence I

Example (Pairwise independence in [F,)

Let p be a prime number. Given 2 uniformly random variables

Y1, Y2 ~[0,...,p— 1], generate p pairwise independent random variables
as follows:

Xi=Y1+i-Y> modp i€0,p—1]

@ Why are they even random?
@ Why are they pairwise independent?
@ Are they also 3-wise independent?

Can think of these random variables as picking a random line over a finite
field. If we only know one point of the line, the second point is still
uniformly random. However two points determine the line.
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Universal Hash Functions
We want hash functions. Why are we talking about random variables?
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Universal Hash Functions
We want hash functions. Why are we talking about random variables?

Definition (Universal Hash Functions)

Let U be a universe with |U| > n. A family of hash functions

H={h:U—[0,n—1]} is k-universal if, for any distinct elements
ui,...,ux € U, we have

iﬁ h(ur) = h(uz) = ... = h(u)] < 1/nk71
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Universal Hash Functions

We want hash functions. Why are we talking about random variables?

Definition (Universal Hash Functions)

Let U be a universe with |U| > n. A family of hash functions

H={h:U—[0,n—1]} is k-universal if, for any distinct elements
ui,...,ux € U, we have

hEPRrH [h(u) = h(uz) = ... = h(u)] < 1/n%71

Definition (Strongly Universal Hash Functions)

H ={h:U— [0,n— 1]} is strongly k-universal if, for any distinct
elements uy, ..., ux € U and for any values y1, ..., yx € [0,n— 1], we have

-_, [A(u1) = y1,. .., h(ug) = yi] = 1/”k
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Relation to k-wise independent random variables

What do the previous definitions have to do with random variables?
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Relation to k-wise independent random variables

What do the previous definitions have to do with random variables?

Family H is strongly k-universal if the random variables
h(0), ..., h(JU| — 1) are k-wise independent.
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Relation to k-wise independent random variables

What do the previous definitions have to do with random variables?

Family H is strongly k-universal if the random variables
h(0), ..., h(JU| — 1) are k-wise independent.

Can use random variables to construct universal hash functions!

50/83



Strongly 2-universal families of hash functions

Let p be a prime number, U = [0, p — 1].

Proposition

H={hp(x):=a-x+b modp | abe0,p—1]}

is strongly 2-universal.

W U=V
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Strongly 2-universal families of hash functions

Let p be a prime number, U = [0, p — 1].

Proposition

H={hyp(x):==a-x+b modp | abel0,p—1]}

is strongly 2-universal.

How do we make the domain U much larger than image of the maps? (as
usually in hashing size of universe much larger than size of table)
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Strongly 2-universal families of hash functions

Let p be a prime number, U = [0, p — 1].

Proposition

H={hyp(x):==a-x+b modp | abel0,p—1]}

is strongly 2-universal.

How do we make the domain U much larger than image of the maps? (as
usually in hashing size of uniyersekmuch larger than size of table)

» =

Proposition
Let U=[0,p* —1] =[0,p — 1]% and 3= (ao, . .- ak_1)

H={hsp(X):==a-X+b modp | dcU,bcl0,p—1]}

is strongly 2-universal.
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Strongly 2-universal families of hash functions

Proposition
Let U=1[0,pk —1]=[0,p — 1]¥ and 3= (ao, ... ak_1)

H={hsp(X):=3-X+b modp | acU,bec[0,p—1]}

is strongly 2-universal.
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2-universal families of hash functions

What if my hasfa table size is not a prime?

Proposition

H={h,p(x):=(a-x+b modp) modn | abe[0,p—1],a+#0}

is 2-universal (but not strongly 2-universal).

Practice problem: prove the proposition above.
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k-universal families of hash functions

Can we construct k-universal families of hash functions like this?
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k-universal families of hash functions

Can we construct k-universal families of hash functions like this?

@ YES! Instead of constructing random lines (degree 1 polynomials),
can construct random univariate polynomials of degree k — 1

Y| + t Y‘L 1 'é()g
2 - Wik in&!rn-a"«*
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k-universal families of hash functions

Can we construct k-universal families of hash functions like this?

@ YES! Instead of constructing random lines (degree 1 polynomials),
can construct random univariate polynomials of degree k — 1

@ Two points determine a line. Similarly, k points determine a
univariate polynomial of degree kK — 1
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k-universal families of hash functions

Can

we construct k-universal families of hash functions like this?

YES! Instead of constructing random lines (degree 1 polynomials),
can construct random univariate polynomials of degree k — 1

Two points determine a line. Similarly, k points determine a
univariate polynomial of degree kK — 1

Random degree k — 1 polynomials are k-wise independent!
Practice problem: prove this!
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Efficiency

How did pairwise independent improve the problems we were having with
random functions?
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Efficiency

How did pairwise independent improve the problems we were having with
random functions?

For random function all operations (insert, delete, search) take O(n) time
(at best!)
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Efficiency

How did pairwise independent improve the problems we were having with
random functions?

For random function all operations (insert, delete, search) take O(n) time
(at best!)

v

@ In XOR example, our function takes O(b) storage space, and O(b)

time to compute.?  ianput SC ) n = 2"_|
e In [F, examples, our function takes O(1) storage space and O(1) time
to compute!? _ -
hm,y(x) - axib m‘”’i’

Reminder that we assume that b < w. Qa
b\We assume that p < 2“. niwe I ”
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Hashing with 2-universal families

e Let U=[0,m— 1], and p be a prime number such that m < p < 2m
(exists by Bertrand's postulate)
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Hashing with 2-universal families

e Let U=[0,m— 1], and p be a prime number such that m < p < 2m
(exists by Bertrand's postulate)

o H={hp(x):=(a-x+b modp) modn | abe[0,p—1]}
of0
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Hashing with 2-universal families

e Let U=[0,m— 1], and p be a prime number such that m < p < 2m
(exists by Bertrand's postulate)

o H={hyp(x):=(a-x+b modp) modn | abe|0,p—1]}

@ Only need to choose a, b € [0, p — 1] to store a function from H.

o#0
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Hashing with 2-universal families
e Let U=[0,m— 1], and p be a prime number such that m < p < 2m
(exists by Bertrand's postulate)
o H={hyp(x):=(a-x+b modp) modn | abe|0,p—1]}
@ Only need to choose a, b € [0, p — 1] to store a function from H.

e Computation time of h,p is also O(1)
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Hashing with 2-universal families

e Let U=[0,m— 1], and p be a prime number such that m < p < 2m
(exists by Bertrand's postulate)

o H={hyp(x):=(a-x+b modp) modn | abe|0,p—1]}
@ Only need to choose a, b € [0, p — 1] to store a function from H.
e Computation time of h,p is also O(1)

@ Can this hash function match chain hashing parameters?
(O(log log n) satebtime)
Mme X 0804
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Hashing with 2-universal families

e Let U=[0,m— 1], and p be a prime number such that m < p < 2m
(exists by Bertrand's postulate)

o H={hyp(x):=(a-x+b modp) modn | abe|0,p—1]}
@ Only need to choose a, b € [0, p — 1] to store a function from H.
e Computation time of h,p is also O(1)

@ Can this hash function match chain hashing parameters?

(O(loglog n) search time)

Do not have same expected search time as chain hashing.
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Hashing with 2-universal families

e Let U=[0,m— 1], and p be a prime number such that m < p < 2m
(exists by Bertrand's postulate)

o H={hyp(x):=(a-x+b modp) modn | abe|0,p—1]}
@ Only need to choose a, b € [0, p — 1] to store a function from H.
e Computation time of h,p is also O(1)

@ Can this hash function match chain hashing parameters?

(O(log log n) search time)

Do not have same expected search time as chain hashing.

Lemma (Maximum number of collisions)

The expected number of collisions when inserting ¢ elements in a table of
size n using a 2-universal hash family is

< 0?/2n
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Hashing with 2-universal families

Lemma (Maximum number of collision)

The expected number of collisions when inserting ¢ elements in a table of
size n using a 2-universal hash family is

< £?/2n
O o i
fx)- & Bl Lw
x = Z X.: # Cﬂl")l'm i) |'<\)t
B ordl < £
' 2n
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Hashing with 2-universal families
Lemma (Maximum number of collision)

The expected number of collisions when inserting ¢ elements in a table of
size n using a 2-universal hash family is

< £?/2n

Thus, by Markov's inequality, we have

Lemma (Maximum load of entry of hash table)

With probability > 1/2 the maximum load when inserting ¢ elements in a
table of size n using a 2-universal hash family is

202
<4/ =.
n

When ¢ = n (as is usually assumed in hashing), we expect v/2n.
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Number of collisions

Lemma (Maximum load of entry of hash table)

With probability > 1/2 the maximum load when inserting ¢ elements in a
table of size n using a 2-universal hash family is

202
<4/ ==

n

When ¢ =~ n (as is usually assumed in hashing), we expect \/2n.
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Number of collisions

Lemma (Maximum load of entry of hash table)

With probability > 1/2 the maximum load when inserting ¢ elements in a
table of size n using a 2-universal hash family is

202

n o

<

When ¢ ~ n (as is usually assumed in hashing), we expect v/
ax mim el T, 08
o Let C be the rumpber-oieallisions,in a cell ?"[%>WJ<‘-

[_Q‘fc} ¢ 1 @gigX-\#Pr[CZ\/sz 31/§> g
) okt &t Wire, | Jode
?A[K> f} H collinins

Conivg o Yoot R e 1<

V.

73/83


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira



Perfect Hashing

Setup: the set of keys is static (i.e., we know them in advance).

How to build a hash table with O(1) search time and O(n) memory? Can
we still do it with a 2-universal family of hash functions?
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Perfect Hashing

Setup: the set of keys is static (i.e., we know them in advance).

How to build a hash table with O(1) search time and O(n) memory? Can
we still do it with a 2-universal family of hash functions?

If h € H is a random hash function from a 2-universal family of hash

functions, then for any set S C U of size { < \/n, the probability of h
being perfect for S is at least 1/2.

Proof: There is no collision with probability > 1/2.

: l
%{WxM 2 (j@_fT jé 7
—
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Perfect Hashing

Setup: the set of keys is static (i.e., we know them in advance).

How to build a hash table with O(1) search time and O(n) memory? Can
we still do it with a 2-universal family of hash functions?

If h € H is a random hash function from a 2-universal family of hash

functions, then for any set S C U of size { < \/n, the probability of h
being perfect for S is at least 1/2.

Proof: There is no collision with probability > 1/2.

New idea: build a two-level hash table!
‘M ‘l"& ’(‘
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Perfect Hashing

Setup: the set of keys is static (i.e., we know them in advance).
How to build a hash table with O(1) search time and O(n) memory? Can
we still do it with a 2-universal family of hash functions?

If h € H is a random hash function from a 2-universal family of hash

functions, then for any set S C U of size { < +/n, the probability of h
being perfect for S is at least 1/2.

Proof: There is no collision with probability > 1/2.

New idea: build a two-level hash table!

The two-level approach gives perfect hashing scheme.

hae  O(n) hask tabby  wmewmy O(v)
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Proof of Theorem
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