Lecture 9：Dimension Reduction

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael．oliveira．teaching＠gmail．com

October 7， 2020

Overview

- Introduction
- Administrivia
- Why Reduce Dimensions?
- Background: Continuous Probability Distributions
- Main Problem
- Johnson-Lindenstrauss Lemma
- Acknowledgements

Grad School at UW!

Link to register:

https://uwaterloo.ca/math/events/gradinfosession

Join us for a virtual event to speak with department representatives and learn more about our graduate programs

Monday, October 26, 2020 | 10:30 a.m. - 12:00 p.m. Register: uwaterloo.ca/math/events/gradinfosession

Why do we want low-dimensional objects?

When dealing with high-dimensional data, often times want to reduce dimension so that our algorithms run faster In smaller dimension, things generally run faster, need less storage space, easier to communicate.

Why do we want low-dimensional objects?

When dealing with high-dimensional data, often times want to reduce dimension so that our algorithms run faster In smaller dimension, things generally run faster, need less storage space, easier to communicate.

- Nearest Neighbor Search
- Large Scale Regression Problems
- Minimum Enclosing Ball
- Numerical linear algebra on large matrices
- Clustering

What properties do we want to preserve?

What do we want to preserve?

What properties do we want to preserve?

What do we want to preserve?

- distances between points

What properties do we want to preserve?

What do we want to preserve?

- distances between points
- angles between vectors

What properties do we want to preserve?

What do we want to preserve?

- distances between points
- angles between vectors
- volumes of subsets of the input

What properties do we want to preserve?

What do we want to preserve?

- distances between points
- angles between vectors
- volumes of subsets of the input
- optimal solutions to optimization problems

What properties do we want to preserve?

What do we want to preserve?

- distances between points
- angles between vectors
- volumes of subsets of the input
- optimal solutions to optimization problems

To preserve distances, need to allow some distortion (approximate guarantees).

What properties do we want to preserve?

What do we want to preserve?

- distances between points
- angles between vectors
- volumes of subsets of the input
- optimal solutions to optimization problems

To preserve distances, need to allow some distortion (approximate guarantees).

- Cannot compress simplex while preserving all distances.

Continuous Probability Distributions

So far we have only dealt with discrete random variables. Today, we will use continuous random variables.

Continuous Probability Distributions

So far we have only dealt with discrete random variables. Today, we will use continuous random variables.

How can we define random variables/probabilities over a continuous (infinite) set?

Continuous Probability Distributions

So far we have only dealt with discrete random variables. Today, we will use continuous random variables.

How can we define random variables/probabilities over a continuous (infinite) set?

Say we have a real-valued random variable - that is, X takes values in \mathbb{R}.

Definition (Probability Density Function)

A probability density function $f: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ is a function such that

- f is integrable over \mathbb{R}
- $\int_{-\infty}^{\infty} f(x) d x=1$

Continuous Probability Distributions

So far we have only dealt with discrete random variables. Today, we will use continuous random variables.

How can we define random variables/probabilities over a continuous (infinite) set?

Say we have a real-valued random variable - that is, X takes values in \mathbb{R}.

Definition (Probability Density Function)

A probability density function $f: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ is a function such that

- f is integrable over \mathbb{R}
- $\int_{-\infty}^{\infty} f(x) d x=1$
- Probability density function $f(x)$ intuitively gives us relative likelihood that $X=x$.

Continuous Probability Distributions

So far we have only dealt with discrete random variables. Today, we will use continuous random variables.

How can we define random variables/probabilities over a continuous (infinite) set?

Say we have a real-valued random variable - that is, X takes values in \mathbb{R}.

Definition (Probability Density Function)

A probability density function $f: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ is a function such that

- f is integrable over \mathbb{R}
- $\int_{-\infty}^{\infty} f(x) d x=1$
- Probability density function $f(x)$ intuitively gives us relative likelihood that $X=x$.
-

$$
\operatorname{Pr}[a \leq X \leq b]=\int_{a}^{b} f(x) d x
$$

Gaussian Random Variables (Normal Random Variables)

Definition

A real-valued random variable X has the normal distribution with

- mean μ
- variance σ^{2},
denoted $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, if the probability density function of X, denoted $f_{X}: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ is:

$$
f_{X}(x)=\frac{1}{\sigma \cdot \sqrt{2 \pi}} \cdot \exp \left(-\frac{1}{2} \cdot\left(\frac{x-\mu}{\sigma}\right)^{2}\right)
$$

Gaussian Random Variables (Normal Random Variables)

Definition

A real-valued random variable X has the normal distribution with

- mean μ
- variance σ^{2},
denoted $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, if the probability density function of X, denoted $f_{X}: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ is:

$$
f_{X}(x)=\frac{1}{\sigma \cdot \sqrt{2 \pi}} \cdot \exp \left(-\frac{1}{2} \cdot\left(\frac{x-\mu}{\sigma}\right)^{2}\right)
$$

Remark

When $\mu=0$ and $\sigma=1$ we say that X has standard normal distribution.

Properties of Gaussians

Proposition (Sums of Gaussians)
If $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $Y \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ are independent Gaussians, then

$$
X+Y \sim \mathcal{N}\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right) .
$$

Properties of Gaussians

Proposition (Sums of Gaussians)

If $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $Y \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ are independent Gaussians, then

$$
X+Y \sim \mathcal{N}\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right) .
$$

Proposition (Multiplication by scalar)

If $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right)$, then

$$
\sigma \cdot X \sim \mathcal{N}\left(\sigma \mu_{X},\left(\sigma \cdot \sigma_{X}\right)^{2}\right)
$$

Properties of Gaussians

Proposition (Sums of Gaussians)

If $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $Y \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ are independent Gaussians, then

$$
X+Y \sim \mathcal{N}\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right) .
$$

Proposition (Multiplication by scalar)

If $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right)$, then

$$
\sigma \cdot X \sim \mathcal{N}\left(\sigma \mu_{X},\left(\sigma \cdot \sigma_{X}\right)^{2}\right)
$$

Proposition (General Linear Combinations)

If $X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$ are independent random Gaussians, then

$$
\sum_{i=1}^{n} \alpha_{i} \cdot X_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} \alpha_{i} \cdot \mu_{i}, \quad \sum_{i=1}^{n}\left(\alpha_{i} \cdot \sigma_{i}\right)^{2}\right)
$$

χ^{2} Random Variables

Definition

A real-valued random variable X has the χ^{2} distribution with k degrees of freedom, denoted $X \sim \chi^{2}(k)$, if

$$
X=Z_{1}^{2}+\ldots+Z_{k}^{2}
$$

where each $Z_{i} \sim \mathcal{N}(0,1)$ is an independent standard normal random variable.

Concentration of χ^{2} random variables

Lemma (Chernoff for $\chi^{2}(k)$)

If $Y=\sum_{i=1}^{k} X_{i}^{2}$ is a $\chi^{2}(k)$ random variable with k degrees of freedom (recall $X_{i} \sim \mathcal{N}(0,1)$), then

$$
\operatorname{Pr}\left[Y>(1+\varepsilon)^{2} \cdot k\right] \leq \exp \left(-\frac{3}{4} \cdot d \varepsilon^{2}\right)
$$

Concentration of χ^{2} random variables

Lemma (Chernoff for $\chi^{2}(k)$)

If $Y=\sum_{i=1}^{k} X_{i}^{2}$ is a $\chi^{2}(k)$ random variable with k degrees of freedom (recall $X_{i} \sim \mathcal{N}(0,1)$), then

$$
\operatorname{Pr}\left[Y>(1+\varepsilon)^{2} \cdot k\right] \leq \exp \left(-\frac{3}{4} \cdot d \varepsilon^{2}\right)
$$

- Let $t \in(0,1 / 2)$ be a parameter

Concentration of χ^{2} random variables

Lemma (Chernoff for $\chi^{2}(k)$)

If $Y=\sum_{i=1}^{k} X_{i}^{2}$ is a $\chi^{2}(k)$ random variable with k degrees of freedom (recall $X_{i} \sim \mathcal{N}(0,1)$), then

$$
\operatorname{Pr}\left[Y>(1+\varepsilon)^{2} \cdot k\right] \leq \exp \left(-\frac{3}{4} \cdot d \varepsilon^{2}\right)
$$

- Let $t \in(0,1 / 2)$ be a parameter

$$
\operatorname{Pr}\left[Y>(1+\varepsilon)^{2} \cdot k\right]=\operatorname{Pr}\left[e^{t Y}>e^{t \cdot(1+\varepsilon)^{2} \cdot k}\right] \leq \frac{\mathbb{E}\left[e^{t Y}\right]}{e^{t \cdot(1+\varepsilon)^{2} \cdot k}}
$$

Concentration of χ^{2} random variables

Lemma (Chernoff for $\chi^{2}(k)$)

If $Y=\sum_{i=1}^{k} X_{i}^{2}$ is a $\chi^{2}(k)$ random variable with k degrees of freedom (recall $X_{i} \sim \mathcal{N}(0,1)$), then

$$
\operatorname{Pr}\left[Y>(1+\varepsilon)^{2} \cdot k\right] \leq \exp \left(-\frac{3}{4} \cdot d \varepsilon^{2}\right)
$$

- Let $t \in(0,1 / 2)$ be a parameter

$$
\operatorname{Pr}\left[Y>(1+\varepsilon)^{2} \cdot k\right]=\operatorname{Pr}\left[e^{t Y}>e^{t \cdot(1+\varepsilon)^{2} \cdot k}\right] \leq \frac{\mathbb{E}\left[e^{t Y}\right]}{e^{t \cdot(1+\varepsilon)^{2} \cdot k}}
$$

- By independence:

$$
\mathbb{E}\left[e^{t Y}\right]=\mathbb{E}\left[\exp \left(\sum_{i=1}^{k} t \cdot X_{i}^{2}\right)\right]=\prod_{i=1}^{k} \mathbb{E}\left[e^{t X_{i}^{2}}\right]
$$

Concentration of χ^{2} random variables

Need to compute $\mathbb{E}\left[e^{t X_{i}^{2}}\right]$ ，where $X_{i} \sim \mathcal{N}(0,1)$

Concentration of χ^{2} random variables

Need to compute $\mathbb{E}\left[e^{t X_{i}^{2}}\right]$, where $X_{i} \sim \mathcal{N}(0,1)$

- PDF of X_{i} :

$$
f_{X_{i}}(x)=\frac{1}{\sqrt{2 \pi}} \cdot \exp \left(-x^{2} / 2\right)
$$

Concentration of χ^{2} random variables

Need to compute $\mathbb{E}\left[e^{t X_{i}^{2}}\right]$, where $X_{i} \sim \mathcal{N}(0,1)$

- PDF of X_{i} :

$$
f_{X_{i}}(x)=\frac{1}{\sqrt{2 \pi}} \cdot \exp \left(-x^{2} / 2\right)
$$

- Thus we know that

$$
\int_{-\infty}^{\infty} f_{X_{i}}(x) d x=1
$$

Concentration of χ^{2} random variables

Need to compute $\mathbb{E}\left[e^{t X_{i}^{2}}\right]$, where $X_{i} \sim \mathcal{N}(0,1)$

- PDF of X_{i} :

$$
f_{X_{i}}(x)=\frac{1}{\sqrt{2 \pi}} \cdot \exp \left(-x^{2} / 2\right)
$$

- Thus we know that

$$
\int_{-\infty}^{\infty} f_{X_{i}}(x) d x=1
$$

$$
\mathbb{E}\left[e^{t X_{i}^{2}}\right]=\int_{-\infty}^{\infty} \underbrace{f_{X_{i}}(x)}_{\text {"probabid lite }} \cdot \frac{e^{t x^{2}}}{e^{\text {val }}} d x=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \cdot e^{-x^{2} / 2} \cdot e^{t x^{2}} d x
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp (\underbrace{-(1-2 t) x^{2} / 2}_{-z^{2} / 2}) \underbrace{z=\sqrt{1-2 t} x}_{\frac{d z}{\sqrt{1-2 t}}} \\
& z=
\end{aligned}
$$

$\hookrightarrow \Rightarrow d z=\sqrt{1-2 t} d x$

Concentration of χ^{2} random variables

Need to compute $\mathbb{E}\left[e^{t X_{i}^{2}}\right]$, where $X_{i} \sim \mathcal{N}(0,1)$

- PDF of X_{i} :

$$
f_{X_{i}}(x)=\frac{1}{\sqrt{2 \pi}} \cdot \exp \left(-x^{2} / 2\right)
$$

- Thus we know that

$$
\int_{-\infty}^{\infty} f_{X_{i}}(x) d x=1
$$

$$
\mathbb{E}\left[e^{t X_{i}^{2}}\right]=\int_{-\infty}^{\infty} f_{X_{i}}(x) \cdot e^{t x^{2}} d x=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \cdot e^{-x^{2} / 2} \cdot e^{t x^{2}} d x
$$

- Change of variables $z=x \sqrt{1-2 t}$

$$
\mathbb{E}\left[e^{t X_{i}^{2}}\right]=\frac{1}{\sqrt{2 \pi} \cdot \sqrt{1-2 t}} \cdot \int_{=1 \text { by bullet } 2}^{\int_{-\infty}^{\infty} e^{-z^{2} / 2} d z=\frac{1}{\sqrt{1-2 t}}}
$$

Concentration of χ^{2} random variables
Putting everything together:

Concentration of χ^{2} random variables

Putting everything together:

$$
\operatorname{Pr}\left[Y>(1+\varepsilon)^{2} \cdot k\right] \leq \frac{\mathbb{E}\left[e^{t Y}\right]}{e^{t \cdot(1+\varepsilon)^{2} \cdot k}}
$$

Concentration of χ^{2} random variables

Putting everything together:
-

$$
\begin{aligned}
\operatorname{Pr}[Y & \left.>(1+\varepsilon)^{2} \cdot k\right] \leq \frac{\mathbb{E}\left[e^{t Y}\right]}{e^{t \cdot(1+\varepsilon)^{2} \cdot k}} \\
\mathbb{E}\left[e^{t Y}\right] & =\prod_{i=1}^{k} \mathbb{E}\left[e^{t X_{i}^{2}}\right]=\left(\frac{1}{\sqrt{1-2 t}}\right)^{k}=(1-2 t)^{-k / 2}
\end{aligned}
$$

Concentration of χ^{2} random variables

Putting everything together:

$$
\begin{gathered}
\operatorname{Pr}\left[Y>(1+\varepsilon)^{2} \cdot k\right] \leq \frac{\mathbb{E}\left[e^{t Y}\right]}{e^{t \cdot(1+\varepsilon)^{2} \cdot k}} \\
\mathbb{E}\left[e^{t Y}\right]=\prod_{i=1}^{k} \mathbb{E}\left[e^{t X_{i}^{2}}\right]=\left(\frac{1}{\sqrt{1-2 t}}\right)^{k}
\end{gathered}
$$

$$
\operatorname{Pr}\left[Y>(1+\varepsilon)^{2} \cdot k\right] \leq e^{-t \cdot(1+\varepsilon)^{2} \cdot k} \cdot(1-2 t)^{-k / 2}=\left[(1+\varepsilon)^{2} e^{1-(1+\varepsilon)^{2}}\right]^{k / 2}
$$

- Setting $t=(1 / 2) \cdot\left(1-\frac{1}{(1+\varepsilon)^{2}}\right)$ above

$$
1-2 t=(1+\epsilon)^{-2} \quad-t(1+\epsilon)^{2}=\frac{1}{2}\left(1-(1+\epsilon)^{2}\right)
$$

$(1-2 t)^{-k / 2}=(1+\epsilon)^{k}$

Concentration of χ^{2} random variables

Putting everything together:

$$
\begin{aligned}
\operatorname{Pr}[Y & \left.>(1+\varepsilon)^{2} \cdot k\right] \leq \frac{\mathbb{E}\left[e^{t Y}\right]}{e^{t \cdot(1+\varepsilon)^{2} \cdot k}} \\
\mathbb{E}\left[e^{t Y}\right] & =\prod_{i=1}^{k} \mathbb{E}\left[e^{t X_{i}^{2}}\right]=\left(\frac{1}{\sqrt{1-2 t}}\right)^{k}
\end{aligned}
$$

$$
\operatorname{Pr}\left[Y>(1+\varepsilon)^{2} \cdot k\right] \leq e^{-t \cdot(1+\varepsilon)^{2} \cdot k} \cdot(1-2 t)^{-k / 2}=\left[(1+\varepsilon)^{2} e^{1-(1+\varepsilon)^{2}}\right]^{k / 2}
$$

- Setting $t=(1 / 2) \cdot\left(1-\frac{1}{(1+\varepsilon)^{2}}\right)$ above
- Use $\ln (1+x) \leq x-x^{4} / 4$ for $x \in[0,1]$

$$
\operatorname{Pr}\left[Y>(1+\varepsilon)^{2} \cdot k\right] \leq \exp \left(-(3 / 4) \cdot k \varepsilon^{2}\right)
$$

Concentration of χ^{2} random variables

Putting everything together:

$$
\begin{aligned}
\operatorname{Pr}[Y & \left.>(1+\varepsilon)^{2} \cdot k\right] \leq \frac{\mathbb{E}\left[e^{t Y}\right]}{e^{t \cdot(1+\varepsilon)^{2} \cdot k}} \\
\mathbb{E}\left[e^{t Y}\right] & =\prod_{i=1}^{k} \mathbb{E}\left[e^{t X_{i}^{2}}\right]=\left(\frac{1}{\sqrt{1-2 t}}\right)^{k}
\end{aligned}
$$

$$
\operatorname{Pr}\left[Y>(1+\varepsilon)^{2} \cdot k\right] \leq e^{-t \cdot(1+\varepsilon)^{2} \cdot k} \cdot(1-2 t)^{-k / 2}=\left[(1+\varepsilon)^{2} e^{1-(1+\varepsilon)^{2}}\right]^{k / 2}
$$

- Setting $t=(1 / 2) \cdot\left(1-\frac{1}{(1+\varepsilon)^{2}}\right)$ above
- Use $\ln (1+x) \leq x-x^{4} / 4$ for $x \in[0,1]$

$$
\operatorname{Pr}\left[Y>(1+\varepsilon)^{2} \cdot k\right] \leq \exp \left(-(3 / 4) \cdot k \varepsilon^{2}\right)
$$

- Similar result for $\operatorname{Pr}\left[Y<(1-\varepsilon)^{2} \cdot k\right]$ - Practice problem.

－Introduction

－Administrivia
－Why Reduce Dimensions？
－Background：Continuous Probability Distributions
－Main Problem
－Johnson－Lindenstrauss Lemma
－Acknowledgements

Dimension Reduction

- Input: m points $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$.
- Output: m points $y_{1}, \ldots, y_{m} \in \mathbb{R}^{d}$, where $d \ll n$ such that

Dimension Reduction

- Input: m points $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$.
- Output: m points $y_{1}, \ldots, y_{m} \in \mathbb{R}^{d}$, where $d \ll n$ such that

$$
\left\|y_{a}-y_{b}\right\|_{2} \approx\left\|x_{a}-x_{b}\right\|_{2} \quad \forall a, b \in[m]
$$

Dimension Reduction

- Input: m points $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$.
- Output: m points $y_{1}, \ldots, y_{m} \in \mathbb{R}^{d}$, where $d \ll n$ such that

$$
\left\|y_{a}-y_{b}\right\|_{2} \approx\left\|x_{a}-x_{b}\right\|_{2} \quad \forall a, b \in[m]
$$

Theorem (Johnson-Lindenstrauss Theorem)

Let $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ and $\varepsilon \in(0,1)$. For $d=O\left(\log (m) / \varepsilon^{2}\right)$ there exist points $y_{1}, \ldots, y_{m} \in \mathbb{R}^{d}$ such that:

$$
(1-\varepsilon) \cdot\left\|x_{a}-x_{b}\right\|_{2} \leq\left\|y_{a}-y_{b}\right\|_{2} \leq(1+\varepsilon) \cdot\left\|x_{a}-x_{b}\right\|_{2} \quad \forall a, b \in[m]
$$

Moreover, the points $y_{j}=L x_{j}$, where $L \in \mathbb{R}^{d \times n}$ is a matrix whose entries $L_{a, b} \sim \mathcal{N}(0,1)$, satisfies the above with probability $\geq 1-2 / m$.

Dimension Reduction

- Input: m points $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$.
- Output: m points $y_{1}, \ldots, y_{m} \in \mathbb{R}^{d}$, where $d \ll n$ such that

$$
\left\|y_{a}-y_{b}\right\|_{2} \approx\left\|x_{a}-x_{b}\right\|_{2} \quad \forall a, b \in[m]
$$

Theorem (Johnson-Lindenstrauss Theorem)

Let $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ and $\varepsilon \in(0,1)$. For $d=O\left(\log (m) / \varepsilon^{2}\right)$ there exist points $y_{1}, \ldots, y_{m} \in \mathbb{R}^{d}$ such that:

$$
(1-\varepsilon) \cdot\left\|x_{a}-x_{b}\right\|_{2} \leq\left\|y_{a}-y_{b}\right\|_{2} \leq(1+\varepsilon) \cdot\left\|x_{a}-x_{b}\right\|_{2} \quad \forall a, b \in[m]
$$

Moreover, the points $y_{j}=L x_{j}$, where $L \in \mathbb{R}^{d \times n}$ is a matrix whose entries $L_{a, b} \sim \mathcal{N}(0,1)$, satisfies the above with probability $\geq 1-2 / m$.

- If one of the points is 0 then approximate norm of vectors as well!
- Independent of the original dimension n

Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let $v \in \mathbb{R}^{n}$ such that $\|v\|_{2}=1, \varepsilon \in(0,1)$ and $d=O\left(\log (m) / \varepsilon^{2}\right)$. Let $r_{1}, \ldots, r_{d} \in \mathbb{R}^{n}$ be such that $r_{i} \sim \mathcal{N}(0,1)$. If we let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ s.t.

$$
f(v)=\left(r_{1}^{T} v, r_{2}^{T} v, \ldots, r_{d}^{T} v\right)
$$

Then

$$
\operatorname{Pr}\left[(1-\varepsilon) \leq \frac{\|f(v)\|_{2}}{\sqrt{d}} \leq(1+\varepsilon)\right] \geq 1-2 / m^{3}
$$

Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let $v \in \mathbb{R}^{n}$ such that $\|v\|_{2}=1, \varepsilon \in(0,1)$ and $d=O\left(\log (m) / \varepsilon^{2}\right)$. Let $r_{1}, \ldots, r_{d} \in \mathbb{R}^{n}$ be such that $r_{i} \sim \mathcal{N}(0,1)$. If we let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ s.t.

$$
f(v)=\left(r_{1}^{T} v, r_{2}^{T} v, \ldots, r_{d}^{T} v\right)
$$

Then

$$
\operatorname{Pr}\left[(1-\varepsilon) \leq \frac{\|f(v)\|_{2}}{\sqrt{d}} \leq(1+\varepsilon)\right] \geq 1-2 / m^{3}
$$

Proof of theorem given lemma:

- Define linear map $L(v)=f(v) / \sqrt{d}$

Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let $v \in \mathbb{R}^{n}$ such that $\|v\|_{2}=1, \varepsilon \in(0,1)$ and $d=O\left(\log (m) / \varepsilon^{2}\right)$. Let $r_{1}, \ldots, r_{d} \in \mathbb{R}^{n}$ be such that $r_{i} \sim \mathcal{N}(0,1)$. If we let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ st.

$$
f(v)=\left(r_{1}^{T} v, r_{2}^{T} v, \ldots, r_{d}^{T} v\right)
$$

Then

$$
\operatorname{Pr}\left[(1-\varepsilon) \leq \frac{\|f(v)\|_{2}}{\sqrt{d}} \leq(1+\varepsilon)\right] \geq 1-2 / m^{3}
$$

Proof of theorem given lemma:

- Define linear map $L(v)=f(v) / \sqrt{d}$
- By lemma, for any $u \in \mathbb{R}^{n}$, we have

$$
\operatorname{Pr}\left[(1-\varepsilon) \cdot\|u\|_{2} \leq\|L(u)\|_{2} \leq(1+\varepsilon) \cdot\|u\|_{2}\right] \geq 1-2 / m^{3}
$$

thus probability of failure (ie. Large distortion)
is $\leqslant 2 / \mathrm{m}^{3}$

Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let $v \in \mathbb{R}^{n}$ such that $\|v\|_{2}=1, \varepsilon \in(0,1)$ and $d=O\left(\log (m) / \varepsilon^{2}\right)$. Let $r_{1}, \ldots, r_{d} \in \mathbb{R}^{n}$ be such that $r_{i} \sim \mathcal{N}(0,1)$. If we let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ s.t.

$$
f(v)=\left(r_{1}^{T} v, r_{2}^{T} v, \ldots, r_{d}^{T} v\right)
$$

Then

$$
\operatorname{Pr}\left[(1-\varepsilon) \leq \frac{\|f(v)\|_{2}}{\sqrt{d}} \leq(1+\varepsilon)\right] \geq 1-2 / m^{3}
$$

Proof of theorem given lemma:

- Define linear map $L(v)=f(v) / \sqrt{d}$
- By lemma, for any $u \in \mathbb{R}^{n}$, we have

$$
\operatorname{Pr}\left[(1-\varepsilon) \cdot\|u\|_{2} \leq\|L(u)\|_{2} \leq(1+\varepsilon) \cdot\|u\|_{2}\right] \geq 1-2 / m^{3}
$$

- Apply this result and union bound to all vectors $x_{a}-x_{b}$.
- Probability any failure on the norm $\leq m^{2} \cdot 2 / m^{3}=2 / m$.

Intuition Please?

- JL Lemma essentially states that if we project a unit vector to a uniformly random d-dimensional subspace we can (almost) preserve the norm!

Intuition Please?

- JL Lemma essentially states that if we project a unit vector to a uniformly random d-dimensional subspace we can (almost) preserve the norm!
- One advantage of choosing random subspace is that we could flip the randomness: consider any d-dimensional space and take vector to be uniformly random unit vector

Intuition Please?

- JL Lemma essentially states that if we project a unit vector to a uniformly random d-dimensional subspace we can (almost) preserve the norm!
- One advantage of choosing random subspace is that we could flip the randomness: consider any d-dimensional space and take vector to be uniformly random unit vector
- So why not do that?

Intuition Please?

- JL Lemma essentially states that if we project a unit vector to a uniformly random d-dimensional subspace we can (almost) preserve the norm!
- One advantage of choosing random subspace is that we could flip the randomness: consider any d-dimensional space and take vector to be uniformly random unit vector
- So why not do that?
- A bit cumbersome to get random subspace (need to make L orthonormal - so need to use Gram-Schmidt)
(even though in analysis we can blip the randomness, in the algorithm we would need to use GS to get random subspace)

Intuition Please?

- JL Lemma essentially states that if we project a unit vector to a uniformly random d-dimensional subspace we can (almost) preserve the norm!
- One advantage of choosing random subspace is that we could flip the randomness: consider any d-dimensional space and take vector to be uniformly random unit vector
- So why not do that?
- A bit cumbersome to get random subspace (need to make L orthonormal - so need to use Gram-Schmidt)
- Just taking Gaussians do the trick without Gram-Schmidt!
- More convenient algorithmically

Proof of Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let $v \in \mathbb{R}^{n}$ such that $\|v\|_{2}=1, \varepsilon \in(0,1)$ and $d=O\left(\log (m) / \varepsilon^{2}\right)$. Let $r_{1}, \ldots, r_{d} \in \mathbb{R}^{n}$ be such that $r_{i} \sim \mathcal{N}(0,1)$. If we let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ s.t.

$$
f(v)=\left(r_{1}^{T} v, r_{2}^{T} v, \ldots, r_{d}^{T} v\right)
$$

Then

$$
\operatorname{Pr}\left[(1-\varepsilon) \leq \frac{\|f(v)\|_{2}}{\sqrt{d}} \leq(1+\varepsilon)\right] \geq 1-2 / m^{3}
$$

Proof of Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)
Let $v \in \mathbb{R}^{n}$ such that $\|v\|_{2}=1, \varepsilon \in(0,1)$ and $d=O\left(\log (m) / \varepsilon^{2}\right)$. Let $r_{1}, \ldots, r_{d} \in \mathbb{R}^{n}$ be such that $r_{i} \sim \mathcal{N}(0,1)$. If we let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ s.t.

$$
f(v)=\left(r_{1}^{T} v, r_{2}^{T} v, \ldots, r_{d}^{T} v\right)
$$

Then

$$
\operatorname{Pr}\left[(1-\varepsilon) \leq \frac{\|f(v)\|_{2}}{\sqrt{d}} \leq(1+\varepsilon)\right] \geq 1-2 / m^{3}
$$

Proof of upper tail: $\operatorname{Pr}\left[\|f(v)\|_{2}>\sqrt{ } \bar{d} \cdot(1+\varepsilon)\right]<1 / m^{3}$

Proof of Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let $v \in \mathbb{R}^{n}$ such that $\|v\|_{2}=1, \varepsilon \in(0,1)$ and $d=O\left(\log (m) / \varepsilon^{2}\right)$. Let $r_{1}, \ldots, r_{d} \in \mathbb{R}^{n}$ be such that $r_{i} \sim \mathcal{N}(0,1)$. If we let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ s.t.

$$
f(v)=\left(r_{1}^{T} v, r_{2}^{T} v, \ldots, r_{d}^{T} v\right)
$$

Then

$$
\operatorname{Pr}\left[(1-\varepsilon) \leq \frac{\|f(v)\|_{2}}{\sqrt{d}} \leq(1+\varepsilon)\right] \geq 1-2 / m^{3}
$$

Proof of upper tail: $\operatorname{Pr}\left[\|f(v)\|_{2}>\sqrt{d} \cdot(1+\varepsilon)\right]<1 / m^{3}$

- Let $X_{i}=r_{i}^{T} v$
random variable for $i^{t h}$ coordinate of $f(v)$

Proof of Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let $v \in \mathbb{R}^{n}$ such that $\|v\|_{2}=1, \varepsilon \in(0,1)$ and $d=O\left(\log (m) / \varepsilon^{2}\right)$. Let $r_{1}, \ldots, r_{d} \in \mathbb{R}^{n}$ be such that $r_{i} \sim \mathcal{N}(0,1)$. If we let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ s.t.

$$
f(v)=\left(r_{1}^{T} v, r_{2}^{T} v, \ldots, r_{d}^{T} v\right)
$$

Then

$$
\operatorname{Pr}\left[(1-\varepsilon) \leq \frac{\|f(v)\|_{2}}{\sqrt{d}} \leq(1+\varepsilon)\right] \geq 1-2 / m^{3}
$$

Proof of upper tail: $\operatorname{Pr}\left[\|f(v)\|_{2}>\sqrt{d} \cdot(1+\varepsilon)\right]<1 / m^{3}$

- Let $X_{i}=r_{i}^{T} v$
random variable for $i^{t h}$ coordinate of $f(v)$
- $X_{i} \sim \mathcal{N}\left(0, \sum_{i=1}^{n} v_{i}^{2}\right)=\mathcal{N}(0,1)$ sum of Gaussians

Proof of Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let $v \in \mathbb{R}^{n}$ such that $\|v\|_{2}=1, \varepsilon \in(0,1)$ and $d=O\left(\log (m) / \varepsilon^{2}\right)$. Let $r_{1}, \ldots, r_{d} \in \mathbb{R}^{n}$ be such that $r_{i} \sim \mathcal{N}(0,1)$. If we let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ s.t.

$$
f(v)=\left(r_{1}^{T} v, r_{2}^{T} v, \ldots, r_{d}^{T} v\right)
$$

Then

$$
\operatorname{Pr}\left[(1-\varepsilon) \leq \frac{\|f(v)\|_{2}}{\sqrt{d}} \leq(1+\varepsilon)\right] \geq 1-2 / m^{3}
$$

Proof of upper tail: $\operatorname{Pr}\left[\|f(v)\|_{2}>\sqrt{d} \cdot(1+\varepsilon)\right]<1 / m^{3}$

- Let $X_{i}=r_{i}^{T} v$
random variable for $i^{t h}$ coordinate of $f(v)$
- $X_{i} \sim \mathcal{N}\left(0, \sum_{i=1}^{n} v_{i}^{2}\right)=\mathcal{N}(0,1) \quad$ sum of Gaussians

$$
\|f(v)\|_{2}^{2}=\sum_{i=1}^{d}\left(r_{i}^{T} v\right)^{2}=\sum_{i=1}^{d} X_{i}^{2}
$$

Proof of Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let $v \in \mathbb{R}^{n}$ such that $\|v\|_{2}=1, \varepsilon \in(0,1)$ and $d=O\left(\log (m) / \varepsilon^{2}\right)$. Let $r_{1}, \ldots, r_{d} \in \mathbb{R}^{n}$ be such that $r_{i} \sim \mathcal{N}(0,1)$. If we let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ s.t.

$$
f(v)=\left(r_{1}^{T} v, r_{2}^{T} v, \ldots, r_{d}^{T} v\right)
$$

Then

$$
\operatorname{Pr}\left[(1-\varepsilon) \leq \frac{\|f(v)\|_{2}}{\sqrt{d}} \leq(1+\varepsilon)\right] \geq 1-2 / m^{3}
$$

Proof of upper tail: $\operatorname{Pr}\left[\|f(v)\|_{2}>\sqrt{d} \cdot(1+\varepsilon)\right]<1 / m^{3}$

$$
\|f(v)\|_{2}^{2}=\sum_{i=1}^{d}\left(r_{i}^{T} v\right)^{2}=\sum_{i=1}^{d} X_{i}^{2}
$$

Proof of Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let $v \in \mathbb{R}^{n}$ such that $\|v\|_{2}=1, \varepsilon \in(0,1)$ and $d=O\left(\log (m) / \varepsilon^{2}\right)$. Let $r_{1}, \ldots, r_{d} \in \mathbb{R}^{n}$ be such that $r_{i} \sim \mathcal{N}(0,1)$. If we let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ s.t.

$$
f(v)=\left(r_{1}^{T} v, r_{2}^{T} v, \ldots, r_{d}^{T} v\right)
$$

Then

$$
\operatorname{Pr}\left[(1-\varepsilon) \leq \frac{\|f(v)\|_{2}}{\sqrt{d}} \leq(1+\varepsilon)\right] \geq 1-2 / m^{3}
$$

Proof of upper tail: $\operatorname{Pr}\left[\|f(v)\|_{2}>\sqrt{d} \cdot(1+\varepsilon)\right]<1 / m^{3}$

- $\|f(v)\|_{2}^{2}=\sum_{i=1}^{d}\left(r_{i}^{T} v\right)^{2}=\sum_{i=1}^{d} X_{i}^{2}$
- Chernoff:

$$
\operatorname{Pr}\left[\|f(v)\|_{2}^{2}>d \cdot(1+\varepsilon)^{2}\right]<\exp \left(-(3 / 4) \cdot d \varepsilon^{2}\right)<1 / m^{3}
$$

What if I don't like Gaussians?

- Can we even sample from a Gaussian?
- Same results also hold if pick a random matrix with entries uniformly from $\{-1,1\}$ (Rademacher random variables).
- Proof a little more involved (see Jelani's notes for a proof)

Remarks on JL Lemma

How tight is the JL lemma?

Remarks on JL Lemma

How tight is the JL lemma?
Very tight!
Theorem (Noga Alon)
Let $y_{0}, \ldots, y_{n} \in \mathbb{R}^{d}$ such that $1 \leq\left\|y_{i}-y_{j}\right\|_{2} \leq 1+\varepsilon$ for all $i \neq j$. Then

$$
d=\Omega\left(\frac{\log n}{\varepsilon^{2} \cdot \log 1 / \varepsilon}\right)
$$

Remarks on JL Lemma

How tight is the JL lemma?
Very tight!
Theorem (Noga Alon)
Let $y_{0}, \ldots, y_{n} \in \mathbb{R}^{d}$ such that $1 \leq\left\|y_{i}-y_{j}\right\|_{2} \leq 1+\varepsilon$ for all $i \neq j$. Then

$$
d=\Omega\left(\frac{\log n}{\varepsilon^{2} \cdot \log 1 / \varepsilon}\right)
$$

Can I also compress other norms?

Remarks on JL Lemma

How tight is the JL lemma?
Very tight!
Theorem (Noga Alon)
Let $y_{0}, \ldots, y_{n} \in \mathbb{R}^{d}$ such that $1 \leq\left\|y_{i}-y_{j}\right\|_{2} \leq 1+\varepsilon$ for all $i \neq j$. Then

$$
d=\Omega\left(\frac{\log n}{\varepsilon^{2} \cdot \log 1 / \varepsilon}\right)
$$

Can I also compress other norms?

- Answer is NO in general.

Remarks on JL Lemma

How tight is the JL lemma?
Very tight!
Theorem (Noga Alon)
Let $y_{0}, \ldots, y_{n} \in \mathbb{R}^{d}$ such that $1 \leq\left\|y_{i}-y_{j}\right\|_{2} \leq 1+\varepsilon$ for all $i \neq j$. Then

$$
d=\Omega\left(\frac{\log n}{\varepsilon^{2} \cdot \log 1 / \varepsilon}\right)
$$

Can I also compress other norms?

- Answer is NO in general.
- [Brinkman, Charikar 2005]: For the ℓ_{1}-norm, where $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$, if want distortion $(1+\varepsilon)$ dimension must be $\Omega\left(n^{1 /(1+\varepsilon)^{2}}\right)$

Acknowledgement

- Lecture based largely on Jelani Nelson's and Nick Harvey's notes.
- See Jelani's notes at http://web.mit.edu/minilek/www/jl_notes.pdf
- See Nick's notes at http://www.cs.ubc.ca/~nickhar/W12/Lecture6Notes.pdf

References I

\square Brinkman, Bo and Charikar, Moses (2005)
On the impossibility of dimension reduction in ℓ_{1}
Journal of the ACM 52(5), 766-788.
W William B. Johnson and Joram Lindenstrauss (1984)
Extensions of Lipschitz mappings into a Hilbert space
Contemporary Mathematics, 26:189-206, 1984.

