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Grad School at UW!

Link to register:
https://uwaterloo.ca/math/events/gradinfosession
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Why do we want low-dimensional objects?

When dealing with high-dimensional data, often times want to reduce
dimension so that our algorithms run faster

In smaller dimension, things generally run faster, need less storage space,
easier to communicate.
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Why do we want low-dimensional objects?

When dealing with high-dimensional data, often times want to reduce
dimension so that our algorithms run faster

In smaller dimension, things generally run faster, need less storage space,
easier to communicate.

Nearest Neighbor Search

Large Scale Regression Problems

Minimum Enclosing Ball

Numerical linear algebra on large matrices

Clustering
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What properties do we want to preserve?

What do we want to preserve?
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What do we want to preserve?

distances between points
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volumes of subsets of the input

optimal solutions to optimization problems

To preserve distances, need to allow some distortion (approximate
guarantees).
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What properties do we want to preserve?

What do we want to preserve?

distances between points

angles between vectors

volumes of subsets of the input

optimal solutions to optimization problems

To preserve distances, need to allow some distortion (approximate
guarantees).

Cannot compress simplex while preserving all distances.
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Continuous Probability Distributions
So far we have only dealt with discrete random variables. Today, we will
use continuous random variables.
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Continuous Probability Distributions
So far we have only dealt with discrete random variables. Today, we will
use continuous random variables.

How can we define random variables/probabilities over a continuous
(infinite) set?

Say we have a real-valued random variable - that is, X takes values in R.

Definition (Probability Density Function)

A probability density function f : R → R≥0 is a function such that

f is integrable over R�∞
−∞ f (x)dx = 1
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Continuous Probability Distributions
So far we have only dealt with discrete random variables. Today, we will
use continuous random variables.

How can we define random variables/probabilities over a continuous
(infinite) set?

Say we have a real-valued random variable - that is, X takes values in R.

Definition (Probability Density Function)

A probability density function f : R → R≥0 is a function such that

f is integrable over R�∞
−∞ f (x)dx = 1

Probability density function f (x) intuitively gives us relative likelihood
that X = x .

Pr[a ≤ X ≤ b] =

� b

a
f (x)dx
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Gaussian Random Variables (Normal Random Variables)

Definition

A real-valued random variable X has the normal distribution with

mean µ

variance σ2,

denoted X ∼ N (µ,σ2), if the probability density function of X , denoted
fX : R → R≥0 is:

fX (x) =
1

σ ·
√
2π

· exp
�
−1

2
·
�
x − µ

σ

�2
�
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Gaussian Random Variables (Normal Random Variables)

Definition

A real-valued random variable X has the normal distribution with

mean µ

variance σ2,

denoted X ∼ N (µ,σ2), if the probability density function of X , denoted
fX : R → R≥0 is:

fX (x) =
1

σ ·
√
2π

· exp
�
−1

2
·
�
x − µ

σ

�2
�

Remark

When µ = 0 and σ = 1 we say that X has standard normal distribution.
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Properties of Gaussians

Proposition (Sums of Gaussians)

If X ∼ N (µX ,σ
2
X ) and Y ∼ N (µY ,σ

2
Y ) are independent Gaussians, then

X + Y ∼ N (µX + µY ,σ
2
X + σ2

Y ).
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Properties of Gaussians

Proposition (Sums of Gaussians)

If X ∼ N (µX ,σ
2
X ) and Y ∼ N (µY ,σ

2
Y ) are independent Gaussians, then

X + Y ∼ N (µX + µY ,σ
2
X + σ2

Y ).

Proposition (Multiplication by scalar)

If X ∼ N (µX ,σ
2
X ), then

σ · X ∼ N (σµX , (σ · σX )2).
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Properties of Gaussians

Proposition (Sums of Gaussians)

If X ∼ N (µX ,σ
2
X ) and Y ∼ N (µY ,σ

2
Y ) are independent Gaussians, then

X + Y ∼ N (µX + µY ,σ
2
X + σ2

Y ).

Proposition (Multiplication by scalar)

If X ∼ N (µX ,σ
2
X ), then

σ · X ∼ N (σµX , (σ · σX )2).

Proposition (General Linear Combinations)

If Xi ∼ N (µi ,σ
2
i ) are independent random Gaussians, then

n�

i=1

αi · Xi ∼ N
�

n�

i=1

αi · µi ,
n�

i=1

(αi · σi )2
�
.
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χ2 Random Variables

Definition

A real-valued random variable X has the χ2 distribution with k degrees of
freedom, denoted X ∼ χ2(k), if

X = Z 2
1 + . . .+ Z 2

k

where each Zi ∼ N (0, 1) is an independent standard normal random
variable.
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Concentration of χ2 random variables

Lemma (Chernoff for χ2(k))

If Y =
�k

i=1 X
2
i is a χ2(k) random variable with k degrees of freedom

(recall Xi ∼ N (0, 1)), then

Pr[Y > (1 + ε)2 · k] ≤ exp

�
−3

4
· dε2

�
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Concentration of χ2 random variables

Lemma (Chernoff for χ2(k))

If Y =
�k

i=1 X
2
i is a χ2(k) random variable with k degrees of freedom

(recall Xi ∼ N (0, 1)), then

Pr[Y > (1 + ε)2 · k] ≤ exp

�
−3

4
· dε2

�

Let t ∈ (0, 1/2) be a parameter
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Concentration of χ2 random variables

Lemma (Chernoff for χ2(k))

If Y =
�k

i=1 X
2
i is a χ2(k) random variable with k degrees of freedom

(recall Xi ∼ N (0, 1)), then

Pr[Y > (1 + ε)2 · k] ≤ exp

�
−3

4
· dε2

�

Let t ∈ (0, 1/2) be a parameter

Pr[Y > (1 + ε)2 · k] = Pr
�
etY > et·(1+ε)2·k

�
≤ E[etY ]

et·(1+ε)2·k
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Concentration of χ2 random variables

Lemma (Chernoff for χ2(k))

If Y =
�k

i=1 X
2
i is a χ2(k) random variable with k degrees of freedom

(recall Xi ∼ N (0, 1)), then

Pr[Y > (1 + ε)2 · k] ≤ exp

�
−3

4
· dε2

�

Let t ∈ (0, 1/2) be a parameter

Pr[Y > (1 + ε)2 · k] = Pr
�
etY > et·(1+ε)2·k

�
≤ E[etY ]

et·(1+ε)2·k

By independence:

E[etY ] = E

�
exp

�
k�

i=1

t · X 2
i

��
=

k�

i=1

E[etX
2
i ]

27 / 67



Concentration of χ2 random variables

Need to compute E[etX 2
i ], where Xi ∼ N (0, 1)
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Concentration of χ2 random variables

Need to compute E[etX 2
i ], where Xi ∼ N (0, 1)

PDF of Xi :

fXi
(x) =

1√
2π

· exp(−x2/2)
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Concentration of χ2 random variables

Need to compute E[etX 2
i ], where Xi ∼ N (0, 1)

PDF of Xi :

fXi
(x) =

1√
2π

· exp(−x2/2)

Thus we know that � ∞

−∞
fXi

(x)dx = 1
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Concentration of χ2 random variables

Need to compute E[etX 2
i ], where Xi ∼ N (0, 1)

PDF of Xi :

fXi
(x) =

1√
2π

· exp(−x2/2)

Thus we know that � ∞

−∞
fXi

(x)dx = 1

E[etX
2
i ] =

� ∞

−∞
fXi

(x) · etx2dx =

� ∞

−∞

1√
2π

· e−x2/2 · etx2dx
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Concentration of χ2 random variables

Need to compute E[etX 2
i ], where Xi ∼ N (0, 1)

PDF of Xi :

fXi
(x) =

1√
2π

· exp(−x2/2)

Thus we know that � ∞

−∞
fXi

(x)dx = 1

E[etX
2
i ] =

� ∞

−∞
fXi

(x) · etx2dx =

� ∞

−∞

1√
2π

· e−x2/2 · etx2dx

Change of variables z = x
√
1− 2t

E[etX
2
i ] =

1√
2π ·

√
1− 2t

·
� ∞

−∞
e−z2/2dz =

1√
1− 2t
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Concentration of χ2 random variables
Putting everything together:
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Concentration of χ2 random variables
Putting everything together:

Pr[Y > (1 + ε)2 · k] ≤ E[etY ]
et·(1+ε)2·k
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Concentration of χ2 random variables
Putting everything together:

Pr[Y > (1 + ε)2 · k] ≤ E[etY ]
et·(1+ε)2·k

E[etY ] =
k�

i=1

E[etX
2
i ] =

�
1√

1− 2t

�k
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Concentration of χ2 random variables
Putting everything together:

Pr[Y > (1 + ε)2 · k] ≤ E[etY ]
et·(1+ε)2·k

E[etY ] =
k�

i=1

E[etX
2
i ] =

�
1√

1− 2t

�k

Pr[Y > (1+ε)2·k] ≤ e−t·(1+ε)2·k ·(1−2t)−k/2 =
�
(1 + ε)2e1−(1+ε)2

�k/2

Setting t = (1/2) ·
�
1− 1

(1 + ε)2

�
above
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Concentration of χ2 random variables
Putting everything together:

Pr[Y > (1 + ε)2 · k] ≤ E[etY ]
et·(1+ε)2·k

E[etY ] =
k�

i=1

E[etX
2
i ] =

�
1√

1− 2t

�k

Pr[Y > (1+ε)2·k] ≤ e−t·(1+ε)2·k ·(1−2t)−k/2 =
�
(1 + ε)2e1−(1+ε)2

�k/2

Setting t = (1/2) ·
�
1− 1

(1 + ε)2

�
above

Use ln(1 + x) ≤ x − x4/4 for x ∈ [0, 1]

Pr[Y > (1 + ε)2 · k] ≤ exp(−(3/4) · kε2)
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Concentration of χ2 random variables
Putting everything together:

Pr[Y > (1 + ε)2 · k] ≤ E[etY ]
et·(1+ε)2·k

E[etY ] =
k�

i=1

E[etX
2
i ] =

�
1√

1− 2t

�k

Pr[Y > (1+ε)2·k] ≤ e−t·(1+ε)2·k ·(1−2t)−k/2 =
�
(1 + ε)2e1−(1+ε)2

�k/2

Setting t = (1/2) ·
�
1− 1

(1 + ε)2

�
above

Use ln(1 + x) ≤ x − x4/4 for x ∈ [0, 1]

Pr[Y > (1 + ε)2 · k] ≤ exp(−(3/4) · kε2)

Similar result for Pr[Y < (1− ε)2 · k] - Practice problem.
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Dimension Reduction
Input: m points x1, . . . , xm ∈ Rn.

Output: m points y1, . . . , ym ∈ Rd , where d � n such that
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Dimension Reduction
Input: m points x1, . . . , xm ∈ Rn.

Output: m points y1, . . . , ym ∈ Rd , where d � n such that

�ya − yb�2 ≈ �xa − xb�2 ∀a, b ∈ [m]

Theorem (Johnson-Lindenstrauss Theorem)

Let x1, . . . , xm ∈ Rn and ε ∈ (0, 1). For d = O(log(m)/ε2) there exist
points y1, . . . , ym ∈ Rd such that:

(1− ε) · �xa − xb�2 ≤ �ya − yb�2 ≤ (1 + ε) · �xa − xb�2 ∀a, b ∈ [m]

Moreover, the points yj = Lxj , where L ∈ Rd×n is a matrix whose entries
La,b ∼ N (0, 1), satisfies the above with probability ≥ 1− 2/m.
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Dimension Reduction
Input: m points x1, . . . , xm ∈ Rn.

Output: m points y1, . . . , ym ∈ Rd , where d � n such that

�ya − yb�2 ≈ �xa − xb�2 ∀a, b ∈ [m]

Theorem (Johnson-Lindenstrauss Theorem)

Let x1, . . . , xm ∈ Rn and ε ∈ (0, 1). For d = O(log(m)/ε2) there exist
points y1, . . . , ym ∈ Rd such that:

(1− ε) · �xa − xb�2 ≤ �ya − yb�2 ≤ (1 + ε) · �xa − xb�2 ∀a, b ∈ [m]

Moreover, the points yj = Lxj , where L ∈ Rd×n is a matrix whose entries
La,b ∼ N (0, 1), satisfies the above with probability ≥ 1− 2/m.

If one of the points is 0 then approximate norm of vectors as well!

Independent of the original dimension n
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Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let v ∈ Rn such that �v�2 = 1, ε ∈ (0, 1) and d = O(log(m)/ε2). Let
r1, . . . , rd ∈ Rn be such that ri ∼ N (0, 1). If we let f : Rn → Rd s.t.

f (v) = (rT1 v , rT2 v , . . . , rTd v)

Then

Pr

�
(1− ε) ≤ �f (v)�2√

d
≤ (1 + ε)

�
≥ 1− 2/m3.
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Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let v ∈ Rn such that �v�2 = 1, ε ∈ (0, 1) and d = O(log(m)/ε2). Let
r1, . . . , rd ∈ Rn be such that ri ∼ N (0, 1). If we let f : Rn → Rd s.t.

f (v) = (rT1 v , rT2 v , . . . , rTd v)

Then

Pr

�
(1− ε) ≤ �f (v)�2√

d
≤ (1 + ε)

�
≥ 1− 2/m3.

Proof of theorem given lemma:

Define linear map L(v) = f (v)/
√
d
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Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let v ∈ Rn such that �v�2 = 1, ε ∈ (0, 1) and d = O(log(m)/ε2). Let
r1, . . . , rd ∈ Rn be such that ri ∼ N (0, 1). If we let f : Rn → Rd s.t.

f (v) = (rT1 v , rT2 v , . . . , rTd v)

Then

Pr

�
(1− ε) ≤ �f (v)�2√

d
≤ (1 + ε)

�
≥ 1− 2/m3.

Proof of theorem given lemma:

Define linear map L(v) = f (v)/
√
d

By lemma, for any u ∈ Rn, we have
Pr[(1− ε) · �u�2 ≤ �L(u)�2 ≤ (1 + ε) · �u�2] ≥ 1− 2/m3
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Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let v ∈ Rn such that �v�2 = 1, ε ∈ (0, 1) and d = O(log(m)/ε2). Let
r1, . . . , rd ∈ Rn be such that ri ∼ N (0, 1). If we let f : Rn → Rd s.t.

f (v) = (rT1 v , rT2 v , . . . , rTd v)

Then

Pr

�
(1− ε) ≤ �f (v)�2√

d
≤ (1 + ε)

�
≥ 1− 2/m3.

Proof of theorem given lemma:

Define linear map L(v) = f (v)/
√
d

By lemma, for any u ∈ Rn, we have
Pr[(1− ε) · �u�2 ≤ �L(u)�2 ≤ (1 + ε) · �u�2] ≥ 1− 2/m3

Apply this result and union bound to all vectors xa − xb.

Probability any failure on the norm ≤ m2 · 2/m3 = 2/m.
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Intuition Please?

JL Lemma essentially states that if we project a unit vector to a
uniformly random d-dimensional subspace we can (almost) preserve
the norm!
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Intuition Please?

JL Lemma essentially states that if we project a unit vector to a
uniformly random d-dimensional subspace we can (almost) preserve
the norm!

One advantage of choosing random subspace is that we could flip the
randomness: consider any d-dimensional space and take vector to be
uniformly random unit vector

So why not do that?

A bit cumbersome to get random subspace (need to make L
orthonormal - so need to use Gram-Schmidt)

Just taking Gaussians do the trick without Gram-Schmidt!

More convenient algorithmically
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Proof of Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let v ∈ Rn such that �v�2 = 1, ε ∈ (0, 1) and d = O(log(m)/ε2). Let
r1, . . . , rd ∈ Rn be such that ri ∼ N (0, 1). If we let f : Rn → Rd s.t.

f (v) = (rT1 v , rT2 v , . . . , rTd v)

Then

Pr

�
(1− ε) ≤ �f (v)�2√

d
≤ (1 + ε)

�
≥ 1− 2/m3.
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Proof of Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let v ∈ Rn such that �v�2 = 1, ε ∈ (0, 1) and d = O(log(m)/ε2). Let
r1, . . . , rd ∈ Rn be such that ri ∼ N (0, 1). If we let f : Rn → Rd s.t.

f (v) = (rT1 v , rT2 v , . . . , rTd v)

Then

Pr

�
(1− ε) ≤ �f (v)�2√

d
≤ (1 + ε)

�
≥ 1− 2/m3.

Proof of upper tail: Pr[�f (v)�2 >
√
d · (1 + ε)] < 1/m3
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Proof of Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let v ∈ Rn such that �v�2 = 1, ε ∈ (0, 1) and d = O(log(m)/ε2). Let
r1, . . . , rd ∈ Rn be such that ri ∼ N (0, 1). If we let f : Rn → Rd s.t.

f (v) = (rT1 v , rT2 v , . . . , rTd v)

Then

Pr

�
(1− ε) ≤ �f (v)�2√

d
≤ (1 + ε)

�
≥ 1− 2/m3.

Proof of upper tail: Pr[�f (v)�2 >
√
d · (1 + ε)] < 1/m3

Let Xi = rTi v random variable for i th coordinate of f (v)
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Proof of Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let v ∈ Rn such that �v�2 = 1, ε ∈ (0, 1) and d = O(log(m)/ε2). Let
r1, . . . , rd ∈ Rn be such that ri ∼ N (0, 1). If we let f : Rn → Rd s.t.

f (v) = (rT1 v , rT2 v , . . . , rTd v)

Then

Pr

�
(1− ε) ≤ �f (v)�2√

d
≤ (1 + ε)

�
≥ 1− 2/m3.

Proof of upper tail: Pr[�f (v)�2 >
√
d · (1 + ε)] < 1/m3

Let Xi = rTi v random variable for i th coordinate of f (v)

Xi ∼ N (0,
�n

i=1 v
2
i ) = N (0, 1) sum of Gaussians
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Proof of Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let v ∈ Rn such that �v�2 = 1, ε ∈ (0, 1) and d = O(log(m)/ε2). Let
r1, . . . , rd ∈ Rn be such that ri ∼ N (0, 1). If we let f : Rn → Rd s.t.

f (v) = (rT1 v , rT2 v , . . . , rTd v)

Then

Pr

�
(1− ε) ≤ �f (v)�2√

d
≤ (1 + ε)

�
≥ 1− 2/m3.

Proof of upper tail: Pr[�f (v)�2 >
√
d · (1 + ε)] < 1/m3

Let Xi = rTi v random variable for i th coordinate of f (v)

Xi ∼ N (0,
�n

i=1 v
2
i ) = N (0, 1) sum of Gaussians

�f (v)�22 =
d�

i=1

(rTi v)2 =
d�

i=1

X 2
i
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Proof of Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let v ∈ Rn such that �v�2 = 1, ε ∈ (0, 1) and d = O(log(m)/ε2). Let
r1, . . . , rd ∈ Rn be such that ri ∼ N (0, 1). If we let f : Rn → Rd s.t.

f (v) = (rT1 v , rT2 v , . . . , rTd v)

Then

Pr

�
(1− ε) ≤ �f (v)�2√

d
≤ (1 + ε)

�
≥ 1− 2/m3.

Proof of upper tail: Pr[�f (v)�2 >
√
d · (1 + ε)] < 1/m3

�f (v)�22 =
d�

i=1

(rTi v)2 =
d�

i=1

X 2
i χ2(d) random variable!
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Proof of Johnson-Lindenstrauss Lemma

Theorem (Johnson-Lindenstrauss Lemma)

Let v ∈ Rn such that �v�2 = 1, ε ∈ (0, 1) and d = O(log(m)/ε2). Let
r1, . . . , rd ∈ Rn be such that ri ∼ N (0, 1). If we let f : Rn → Rd s.t.

f (v) = (rT1 v , rT2 v , . . . , rTd v)

Then

Pr

�
(1− ε) ≤ �f (v)�2√

d
≤ (1 + ε)

�
≥ 1− 2/m3.

Proof of upper tail: Pr[�f (v)�2 >
√
d · (1 + ε)] < 1/m3

�f (v)�22 =
d�

i=1

(rTi v)2 =
d�

i=1

X 2
i χ2(d) random variable!

Chernoff:

Pr[�f (v)�22 > d · (1 + ε)2] < exp(−(3/4) · dε2) < 1/m3
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What if I don’t like Gaussians?

Can we even sample from a Gaussian?

Same results also hold if pick a random matrix with entries uniformly
from {−1, 1} (Rademacher random variables).

Proof a little more involved (see Jelani’s notes for a proof)
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Remarks on JL Lemma

How tight is the JL lemma?
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Remarks on JL Lemma

How tight is the JL lemma?

Very tight!

Theorem (Noga Alon)

Let y0, . . . , yn ∈ Rd such that 1 ≤ �yi − yj�2 ≤ 1 + ε for all i �= j . Then

d = Ω

�
log n

ε2 · log 1/ε

�
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Can I also compress other norms?
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How tight is the JL lemma?

Very tight!

Theorem (Noga Alon)

Let y0, . . . , yn ∈ Rd such that 1 ≤ �yi − yj�2 ≤ 1 + ε for all i �= j . Then

d = Ω

�
log n

ε2 · log 1/ε

�

Can I also compress other norms?

Answer is NO in general.
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Remarks on JL Lemma

How tight is the JL lemma?

Very tight!

Theorem (Noga Alon)

Let y0, . . . , yn ∈ Rd such that 1 ≤ �yi − yj�2 ≤ 1 + ε for all i �= j . Then

d = Ω

�
log n

ε2 · log 1/ε

�

Can I also compress other norms?

Answer is NO in general.

[Brinkman, Charikar 2005]: For the �1-norm, where �x�1 =
�n

i=1 |xi |,
if want distortion (1 + ε) dimension must be Ω(n1/(1+ε)2)
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