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Final Project

It is not mandatory to work on an open problem. Doing survey on a
topic of your interest is also a very good project!

3 / 76



Final Project

It is not mandatory to work on an open problem. Doing survey on a
topic of your interest is also a very good project!

If you have questions about it, you can reach out to the TAs and
myself during office hours or piazza to ask your questions!

4 / 76



Final Project

It is not mandatory to work on an open problem. Doing survey on a
topic of your interest is also a very good project!

If you have questions about it, you can reach out to the TAs and
myself during office hours or piazza to ask your questions!

Probably many of you may have similar questions about the final
project, so if you want to ask us something, piazza would be great so
that everyone can participate in the discussion! :)

5 / 76



Final Project

It is not mandatory to work on an open problem. Doing survey on a
topic of your interest is also a very good project!

If you have questions about it, you can reach out to the TAs and
myself during office hours or piazza to ask your questions!

Probably many of you may have similar questions about the final
project, so if you want to ask us something, piazza would be great so
that everyone can participate in the discussion! :)

There is a post pinned on piazza for you all to look for partners for
your final project (undergraduates). So if you have a project in mind
and want to check if someone else is interested in working with you
on it, please post it there!
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Collaboration on Homework

Collaboration is highly encouraged in the homework, and I encourage
everyone to discuss their questions with their colleagues on piazza!

7 / 76



Collaboration on Homework

Collaboration is highly encouraged in the homework, and I encourage
everyone to discuss their questions with their colleagues on piazza!

The only thing that is not allowed is for you to tell your solution
verbatim, or to write it down to your colleague. But talking about the
ideas behind it is highly encouraged! :)

8 / 76



Collaboration on Homework

Collaboration is highly encouraged in the homework, and I encourage
everyone to discuss their questions with their colleagues on piazza!

The only thing that is not allowed is for you to tell your solution
verbatim, or to write it down to your colleague. But talking about the
ideas behind it is highly encouraged! :)

Please refrain from asking us to read your solutions and check if
they are correct. We can help you work out your ideas, but not help
you check that your proof is correct.

9 / 76



Collaboration on Homework

Collaboration is highly encouraged in the homework, and I encourage
everyone to discuss their questions with their colleagues on piazza!

The only thing that is not allowed is for you to tell your solution
verbatim, or to write it down to your colleague. But talking about the
ideas behind it is highly encouraged! :)

Please refrain from asking us to read your solutions and check if
they are correct. We can help you work out your ideas, but not help
you check that your proof is correct.

Writing proofs that are correct (or that correctly showcase your ideas)
is part of you mathematical development! (as well as checking that
your proof is correct)

10 / 76



Collaboration on Homework

Collaboration is highly encouraged in the homework, and I encourage
everyone to discuss their questions with their colleagues on piazza!

The only thing that is not allowed is for you to tell your solution
verbatim, or to write it down to your colleague. But talking about the
ideas behind it is highly encouraged! :)

Please refrain from asking us to read your solutions and check if
they are correct. We can help you work out your ideas, but not help
you check that your proof is correct.

Writing proofs that are correct (or that correctly showcase your ideas)
is part of you mathematical development! (as well as checking that
your proof is correct)

Solutions to the homework problems should be simple. So, if things
are getting very complicated in your solution, there is probably
another way (this is a general hint)
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Why do we want concentration?

When evaluating performance of randomized algorithms, not enough to
know our algorithm runs in expected time T . What we want to say is

“our algorithm will run in time ≈ T very often.”
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Why do we want concentration?

When evaluating performance of randomized algorithms, not enough to
know our algorithm runs in expected time T . What we want to say is

“our algorithm will run in time ≈ T very often.”

That is,

not only analyse the expected running times of the algorithms,

we would also like to know if the algorithm runs in time close to its
expected running time most of the time.

Running time small with high probability better than small expected
running time.

Often times in algorithm analysis, running time is concentrated around
expectation. This concentration of measure proves that our algorithms will
typically run in time close to expectation.
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Today’s inequalities

Theorem (Markov’s Inequality)

Let X be a non-negative discrete random variable. Then

Pr[X ≥ t] ≤ E[X ]

t
, ∀t > 0.
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Theorem (Markov’s Inequality)

Let X be a non-negative discrete random variable. Then

Pr[X ≥ t] ≤ E[X ]

t
, ∀t > 0.

Theorem (Chebyshev’s Inequality)

Let X be a non-negative discrete random variable. Then

Pr[|X − E[X ]| ≥ t] ≤ Var[X ]

t2
, ∀t > 0.
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Today’s inequalities II

Theorem (Chernoff-Hoeffding’s Inequality)

Let X1, . . . ,Xn be independent indicator variables such that
Pr[Xi = 1] = pi , where 0 < pi < 1. Let X =

�n
i=1 Xi and δ > 0. Then

Pr[X ≥ (1 + δ) · E[X ]] ≤
�

eδ

(1 + δ)1+δ

�E[X ]

,

and
Pr[X ≤ (1− δ) · E[X ]] ≤ exp

�
−E[X ] · δ2/2

�
.
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Quicksort: Expected running time of Quicksort is 2n ln n. Markov’s
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Markov’s Inequality

Theorem (Markov’s Inequality)

Let X be a non-negative discrete random variable. Then

Pr[X ≥ t] ≤ E[X ]

t
, ∀t > 0.

Quicksort: Expected running time of Quicksort is 2n ln n. Markov’s
inequality tells us that the runtime is at least 2cn ln n with probability
≤ 1/c, for any c ≥ 1

Coin Flipping: If we flip n fair coins, the expected number of heads
is n/2. Markov’s inequality tells us that Pr[ # heads ≥ 3n/4] ≤ 2/3

Useful when we have no information beyond expected value (or when
random variable difficult to analyze). Otherwise other inequalities much
sharper!
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Markov’s Inequality

Some practice problems.

Is Markov’s inequality tight? Can you give an example?
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Markov’s Inequality

Some practice problems.

Is Markov’s inequality tight? Can you give an example?

Does it hold for general random variables (not just non-negative)?

Can it be modified to upper bound Pr[X ≤ t]?
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Moments and Variance
To give better bounds, we need more information about the random
variable (beyond expected value).
How to distinguish between:
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Moments and Variance
To give better bounds, we need more information about the random
variable (beyond expected value).
How to distinguish between:

X such that Pr[X = i ] =

�
1/n, if 1 ≤ i ≤ n

0, otherwise

Y such that Pr[Y = 1] = 1/2 and Pr[Y = n] = 1/2

same expectation, but very different random variables...

Look at how far variable usually is from its expectation. How to do
that?

How to bound Pr[|X − E[X ]| ≥ t]?

Theorem (Chebyshev’s Inequality)

Let X be a non-negative discrete random variable. Then

Pr[|X − E[X ]| ≥ t] ≤ Var[X ]
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Chebyshev’s inequality
Let X be a random variable.
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Chebyshev’s inequality
Let X be a random variable.

Its Variance is defined as Var[X ] := E[(X − E[X ])2]

and its standard deviation is σ(X ) :=
�
Var[X ]
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Covariance

How do we measure the correlation between two random variables?
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Definition (Covariance)

The covariance of two random variables X ,Y is defined as

Cov[X ,Y ] := E[(X − E[X ]) · (Y − E[Y ])].

We say that X ,Y are positively correlated if Cov[X ,Y ] > 0 and negatively
correlated if Cov[X ,Y ] < 0.
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Covariance

How do we measure the correlation between two random variables?

Definition (Covariance)

The covariance of two random variables X ,Y is defined as

Cov[X ,Y ] := E[(X − E[X ]) · (Y − E[Y ])].

We say that X ,Y are positively correlated if Cov[X ,Y ] > 0 and negatively
correlated if Cov[X ,Y ] < 0.

Proposition

Var[X + Y ] = Var[X ] + Var[Y ] + 2Cov[X ,Y ]

If X ,Y are independent, then Var[X + Y ] = Var[X ] + Var[Y ]
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Chebyshev & Covariance example

Coin Flipping: If X be # heads in n independent unbiased coin flips, let
us bound again Pr[X ≥ 3n/4].
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Higher Moments

To obtain even more information of a random variable, useful to see more
of its moments:
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Higher Moments

To obtain even more information of a random variable, useful to see more
of its moments:

the k th moment of random variable X is E[X k ].

the k th central moment of random variable X is

µ
(k)
X := E[(X − E[X ])k ],

if it exists.

Remark

Chebyshev’s inequality is most useful when we only have information
about the second moment of our random variable X .
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Higher Moments

To obtain even more information of a random variable, useful to see more
of its moments:

the k th moment of random variable X is E[X k ].

the k th central moment of random variable X is

µ
(k)
X := E[(X − E[X ])k ],

if it exists.

Remark

Chebyshev’s inequality is most useful when we only have information
about the second moment of our random variable X .

Practice problem: Can you generalize Chebyshev’s inequality to k th order
moments?
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Sums of Independent Random Variables
Often times in analysis of algorithms we deal with random variables which
are sums of independent random variables (see Distinct Elements analysis
from last lecture, hashing, etc).
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Sums of Independent Random Variables
Often times in analysis of algorithms we deal with random variables which
are sums of independent random variables (see Distinct Elements analysis
from last lecture, hashing, etc).

Can we use this information to get better tail inequalities?

Law of large numbers: average of independent, identically distributed
variables is approximately the expectation of the random variables. That
is, if each Xi is an independent copy of random variable X

1

n
·

n�

i=1

Xi ≈ E[X ]
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Sums of Independent Random Variables
Often times in analysis of algorithms we deal with random variables which
are sums of independent random variables (see Distinct Elements analysis
from last lecture, hashing, etc).

Can we use this information to get better tail inequalities?

Law of large numbers: average of independent, identically distributed
variables is approximately the expectation of the random variables. That
is, if each Xi is an independent copy of random variable X

1

n
·

n�

i=1

Xi ≈ E[X ]

Central Limit Theorem: if we let Zn =
�n

i=1 Xi , where Xi independent
copy of X , the random variable

Yn =
Zn − n · E[X ]�

n · σ(X )2
→ N (0, 1)
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Chernoff Bounds

Chernoff bounds give us quantitative estimates of the probability that X is
far from E[X ] for large enough values of n.1

1Also works for sums of random variables which are not identically distributed!
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Chernoff Bounds

Chernoff bounds give us quantitative estimates of the probability that X is
far from E[X ] for large enough values of n.1

Simple Setting: we have n coin flips, each is head with probability p. So

Xi =

�
1, with probability p

0, otherwise
and X =

n�

i=1

Xi .

1Also works for sums of random variables which are not identically distributed!
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Chernoff bounds give us quantitative estimates of the probability that X is
far from E[X ] for large enough values of n.1

Simple Setting: we have n coin flips, each is head with probability p. So

Xi =

�
1, with probability p

0, otherwise
and X =

n�

i=1

Xi .

Expected # heads: n · p

1Also works for sums of random variables which are not identically distributed!
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Chernoff Bounds

Chernoff bounds give us quantitative estimates of the probability that X is
far from E[X ] for large enough values of n.1

Simple Setting: we have n coin flips, each is head with probability p. So

Xi =

�
1, with probability p

0, otherwise
and X =

n�

i=1

Xi .

Expected # heads: n · p
To bound upper tail, need to compute:

Pr[X ≥ k] ≤
�

i≥k

�
n

i

�
pi (1− p)n−i

1Also works for sums of random variables which are not identically distributed!
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Chernoff Bounds

Chernoff bounds give us quantitative estimates of the probability that X is
far from E[X ] for large enough values of n.1

Simple Setting: we have n coin flips, each is head with probability p. So

Xi =

�
1, with probability p

0, otherwise
and X =

n�

i=1

Xi .

Expected # heads: n · p
To bound upper tail, need to compute:

Pr[X ≥ k] ≤
�

i≥k

�
n

i

�
pi (1− p)n−i

Not easy to work with, hard to generalize (homework 1 question 6)

1Also works for sums of random variables which are not identically distributed!
53 / 76



Chernoff Bounds

Generic Chernoff Bounds: apply Markov in the following way:

Pr[X ≥ a] = Pr[etX ≥ eta] ≤ E[etX ]/eta, for any t > 0.
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55 / 76



Chernoff Bounds

Generic Chernoff Bounds: apply Markov in the following way:

Pr[X ≥ a] = Pr[etX ≥ eta] ≤ E[etX ]/eta, for any t > 0.

What do we gain by doing this?

If X = X1 + X2, where X1,X2 are independent, note that

E[etX ] = E[etX1etX2 ] = E[etX1 ] · E[etX2 ]
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Chernoff Bounds

Generic Chernoff Bounds: apply Markov in the following way:

Pr[X ≥ a] = Pr[etX ≥ eta] ≤ E[etX ]/eta, for any t > 0.

What do we gain by doing this?

If X = X1 + X2, where X1,X2 are independent, note that

E[etX ] = E[etX1etX2 ] = E[etX1 ] · E[etX2 ]

The moment generating function

MX (t) := E[etX ] = E


�

i≥0

t i

i !
· X i


 =

�

i≥0

t i

i !
· E

�
X i

�

contains information about all moments!
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Chernoff Bounds for Bounded Variables

Example (Heterogeneous Coin Flips)

Let Xi =

�
1, with probability pi

0, otherwise
, X =

�n
i=1 Xi and µ = E[X ]

1 for δ > 0, Pr[X ≥ (1 + δ)µ] ≤
�

eδ

(1 + δ)1+δ

�µ
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Chernoff Bounds for Bounded Variables

Example (Heterogeneous Coin Flips)

Let Xi =

�
1, with probability pi

0, otherwise
, X =

�n
i=1 Xi and µ = E[X ]

1 for δ > 0, Pr[X ≥ (1 + δ)µ] ≤
�

eδ

(1 + δ)1+δ

�µ

2 for 0 < δ < 1, Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3
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Chernoff Bounds for Bounded Variables

Example (Heterogeneous Coin Flips)

Let Xi =

�
1, with probability pi

0, otherwise
, X =

�n
i=1 Xi and µ = E[X ]

1 for δ > 0, Pr[X ≥ (1 + δ)µ] ≤
�

eδ

(1 + δ)1+δ

�µ

2 for 0 < δ < 1, Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3

3 for R ≥ 6µ, Pr[X ≥ R] ≤ 2−R

60 / 76



Chernoff Bounds for Bounded Variables

What about the lower tail?

2See [Motwani & Raghavan 2007, Theorem 4.2] or [Mitzenmacher & Upfal,
Theorem 4.5]
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Chernoff Bounds for Bounded Variables

What about the lower tail?

Similar proof, by setting t < 0.2

2See [Motwani & Raghavan 2007, Theorem 4.2] or [Mitzenmacher & Upfal,
Theorem 4.5]
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Chernoff Bounds for Bounded Variables

What about the lower tail?

Similar proof, by setting t < 0.2

Theorem (Heterogeneous Coin Flips - lower tail)

1 Pr[X ≤ (1− δ) · µ] ≤
�

e−δ

(1− δ)1−δ

�µ

2 if 0 < δ < 1 then Pr[X ≤ (1− δ) · µ] ≤ e−µδ2/2

2See [Motwani & Raghavan 2007, Theorem 4.2] or [Mitzenmacher & Upfal,
Theorem 4.5]
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Hoeffding’s generalization

What if the variables Xi took values in [ai , bi ]?
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Hoeffding’s generalization

What if the variables Xi took values in [ai , bi ]?

Theorem (Hoeffding’s Inequality)

Let Xi be independent random variables, taking values in [ai , bi ],
X =

�n
i=1 Xi . Then

Pr[|X − E[X ]| ≥ �] ≤ 2 · exp
�
− 2�2�n

i=1(bi − ai )2

�
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Hoeffding’s generalization

What if the variables Xi took values in [ai , bi ]?

Theorem (Hoeffding’s Inequality)

Let Xi be independent random variables, taking values in [ai , bi ],
X =

�n
i=1 Xi . Then

Pr[|X − E[X ]| ≥ �] ≤ 2 · exp
�
− 2�2�n

i=1(bi − ai )2

�

Proof uses Hoeffding’s lemma: E[et(Xi−E[Xi ])] ≤ exp

�
t2(bi − ai )

2

8

�
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Remarks

In coin flips example from beginning of lecture, by flipping n
independent fair coins, expected # heads is n/2. Chernoff-Hoeffding
implies:

Pr[|# heads − µ| ≥ δµ] ≤ 2 exp(µδ2/3) = 2 exp(nδ2/6)
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�
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15 · n] ≤ 2e−10.
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In coin flips example from beginning of lecture, by flipping n
independent fair coins, expected # heads is n/2. Chernoff-Hoeffding
implies:

Pr[|# heads − µ| ≥ δµ] ≤ 2 exp(µδ2/3) = 2 exp(nδ2/6)

Setting δ =
�
60/n, probability above is ≤ 2e−10. Thus

Pr[|# heads − n/2| ≥
√
15 · n] ≤ 2e−10.

With high probability, # heads is within O(
√
n) of the expected value

(this comes up in many places). Practice problem: prove that with
constant probability that |# heads − n/2| = Ω(n).
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Remarks

In coin flips example from beginning of lecture, by flipping n
independent fair coins, expected # heads is n/2. Chernoff-Hoeffding
implies:

Pr[|# heads − µ| ≥ δµ] ≤ 2 exp(µδ2/3) = 2 exp(nδ2/6)

Setting δ =
�
60/n, probability above is ≤ 2e−10. Thus

Pr[|# heads − n/2| ≥
√
15 · n] ≤ 2e−10.

With high probability, # heads is within O(
√
n) of the expected value

(this comes up in many places). Practice problem: prove that with
constant probability that |# heads − n/2| = Ω(n).

Recall from previous slides that Markov gave us that
Pr[# heads ≥ 3n/4] ≤ 2/3, and Chebyshev gave us
Pr[# heads ≥ 3n/4] ≤ 4/n. Chernoff gives us
Pr[# heads ≥ 3n/4] ≤ e−n/24.
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Remarks

It is often easier to compute moments by computing the moment
generating functions
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Remarks

It is often easier to compute moments by computing the moment
generating functions

Why do we want to compute moments? See Sum-of-Squares and
pseudo-distributions references in course webpage. These methods
give very powerful tools to solve many challenging problems! (great
final project topic!)
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Remarks

It is often easier to compute moments by computing the moment
generating functions

Why do we want to compute moments? See Sum-of-Squares and
pseudo-distributions references in course webpage. These methods
give very powerful tools to solve many challenging problems! (great
final project topic!)

Chernoff-Hoeffding bounds also hold for negatively correlated
variables, because all we need is

E[et(X+Y )] ≤ E[etX ] · E[etY ]

This observation is very useful in many applications (also great source
of final projects!)
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Remarks

It is often easier to compute moments by computing the moment
generating functions

Why do we want to compute moments? See Sum-of-Squares and
pseudo-distributions references in course webpage. These methods
give very powerful tools to solve many challenging problems! (great
final project topic!)

Chernoff-Hoeffding bounds also hold for negatively correlated
variables, because all we need is

E[et(X+Y )] ≤ E[etX ] · E[etY ]

This observation is very useful in many applications (also great source
of final projects!)

For instance: two edges appear in a random spanning tree is a
negatively correlated event, thus Chernoff bounds are useful to
analyze random spanning trees.
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