Lecture 4: Hashing

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

September 21, 2020

Overview

• Introduction

- Hash Functions
- Why is hashing?
- How to hash?

• Succinctness of Hash Functions

- Coping with randomness
- Universal Hashing
- Hashing using 2-universal families
- Perfect Hashing

Acknowledgements

Computational Model

Before we talk about hash functions, we need to state our model of computation:

Definition (Word RAM model)

In the word RAM^a model:

- all elements are integers that fit in a machine word of w bits
- Basic operations (comparison, arithmetic, bitwise) on such words take $\Theta(1)$ time
- We can also access *any* position in the array in $\Theta(1)$ time

^aRAM stands for Random Access Model

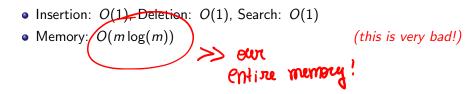
We want to store *n* elements (keys) from the set $U = \{0, 1, ..., m-1\}$, where m >> n, in a data structure that supports *insertions, deletions, search* "as efficiently as possible."

We want to store *n* elements (keys) from the set $U = \{0, 1, ..., m-1\}$, where m >> n, in a data structure that supports *insertions, deletions, search* "as efficiently as possible."

Naive approach: use an array A of m elements, initially A[i] = 0 for all i, and when a key is inserted, set A[i] = 1.

We want to store *n* elements (keys) from the set $U = \{0, 1, ..., m-1\}$, where m >> n, in a data structure that supports *insertions, deletions, search* "as efficiently as possible."

Naive approach: use an array A of m elements, initially A[i] = 0 for all i, and when a key is inserted, set A[i] = 1.



We want to store *n* elements (keys) from the set $U = \{0, 1, \dots, m-1\}$, where m >> n, in a data structure that supports *insertions*, *deletions*, *search* "as efficiently as possible."

Naive approach: use an array A of m elements, initially A[i] = 0 for all i, and when a key is inserted, set A[i] = 1.

• Insertion: O(1), Deletion: O(1), Search: O(1)

• Memory: $O(m \log(m))$ (this is very bad!) Want to also achieve optimal memory $O(n \log(m))$. For this we will use a technique called *hashing*.

- A hash function is a function $h: U \to [0, n-1]$, where |U| = m >> n.
- A *hash table* is a data structure that consists of:
 - a table T with n cells [0, n-1], each cell storing $O(\log(m))$ bits
 - a hash function $h: U \rightarrow [0, n-1]$

From now on, we will define memory as # of cells. $\# = O(100 \text{ m})^{1}$

Why is hashing useful?

- Designing efficient data structures (dictionaries) for searching
- Data streaming algorithms
- Derandomization
- Cryptography
- Complexity Theory
- many more

Challenges in Hashing

Setup:

- Universe $U = \{0, ..., m-1\}$ of size m >> n where n is the size of the range of our hash function $h: U \rightarrow [0, n-1]$
- Store O(n) elements of U (keys) in hash table T (which has n cells)

Challenges in Hashing

Setup:

- Universe $U = \{0, ..., m-1\}$ of size m >> n where n is the size of the range of our hash function $h: U \rightarrow [0, n-1]$
- Store O(n) elements of U (keys) in hash table T (which has n cells)

Ideally, want hash function to map *different keys* into *different locations*.

Definition (Collision)

We say that a *collision* happens for hash function h with inputs $x, y \in U$ if $x \neq y$ and h(x) = h(y).

By pigeonhole principle, impossible to achieve without knowing keys in advance.

< ロ > < 同 > < 回 > < 回 >

Challenges in Hashing

Setup:

- Universe $U = \{0, ..., m-1\}$ of size m >> n where n is the size of the range of our hash function $h: U \rightarrow [0, n-1]$
- Store O(n) elements of U (keys) in hash table T (which has n cells)

Ideally, want hash function to map *different keys* into *different locations*.

Definition (Collision)

We say that a *collision* happens for hash function h with inputs $x, y \in U$ if $x \neq y$ and h(x) = h(y).

By pigeonhole principle, impossible to achieve without knowing keys in advance.

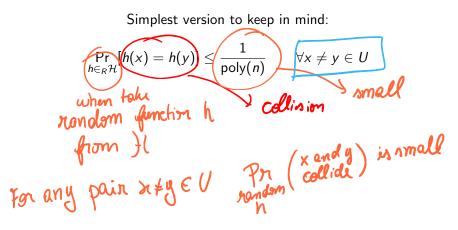
Will settle for: # collisions *small with high probability*.

Our solution: family of hash functions

Construct *family* of hash functions \mathcal{H} such that the *number of collisions* is **small** with **high probability**, when we pick hash function uniformly at random from the family \mathcal{H} .

Our solution: family of hash functions

Construct *family* of hash functions \mathcal{H} such that the *number of collisions* is **small** with **high probability**, when we pick hash function uniformly at random from the family \mathcal{H} .



Our solution: family of hash functions

Construct *family* of hash functions \mathcal{H} such that the *number of collisions* is **small** with **high probability**, when we pick hash function uniformly at random from the family \mathcal{H} .

Simplest version to keep in mind:

$$\Pr_{h \in_{\mathcal{R}} \mathcal{H}}[h(x) = h(y)] \le rac{1}{\operatorname{\mathsf{poly}}(n)} \qquad orall x
eq y \in U$$

Assumptions:

- keys are independent from hash function we choose.
- we do not know keys in advance (even if we did, nontrivial problem!)

Natural to consider following approach:

From all functions $h: U \rightarrow [0, n-1]$, just pick one uniformly at random.

Natural to consider following approach: From all functions $h: U \rightarrow [0, n-1]$, just pick one uniformly at random. Pilon wells-This setting is same as our balls-and-bins setting!

Natural to consider following approach:

From all functions $h: (0) \rightarrow [0, n-1]$, just pick one uniformly at random.

This setting is same as our balls-and-bins setting! • Expected number of keys in a location: 1 (expected # balls in a bin So, if we have to store *n* keys:

- maximum number of collisions (max load) in one particular location: $O(\log n / \log \log n)$ keys

Natural to consider following approach:

From all functions $h: U \rightarrow [0, n-1]$, just pick one uniformly at random.

This setting is same as our balls-and-bins setting! So, if we have to store n keys:

- Expected number of keys in a location: 1
- maximum number of collisions (max load) in one particular location:
 O(log n/ log log n) keys

Solving collisions: store all keys hashed into location i by a linked list.

Known as *chain hashing*.

Natural to consider following approach:

From all functions $h: U \rightarrow [0, n-1]$, just pick one uniformly at random.

This setting is same as our balls-and-bins setting! So, if we have to store n keys:

- Expected number of keys in a location: 1
- maximum number of collisions (max load) in one particular location:
 O(log n/ log log n) keys

Solving collisions: store all keys hashed into location i by a linked list.

Known as *chain hashing*.

Could also pick *two* random hash functions and use *power of two choices*. Collision bound becomes $O(\log \log n)$. $h_{\iota}(x) = h_{\iota}(x)$

Random hash functions look very good. However, we haven't discussed the following:

Random hash functions look very good. However, we haven't discussed the following:

Question

How much resource (time & space) does it take to compute random hash functions?

Random hash functions look very good. However, we haven't discussed the following:

Question

How much resource (time & space) does it take to compute random hash functions?

- Storing entire function $h: U \to [0, n-1]$ require $\Theta(m \log n)$ bits (way too much space!) for each $2 \in \mathcal{O}$ (x, h(x)), leg n
- Even if we only stored the elements we saw, would requir O(n) time to evaluate h(x) (need to decide if we had already computed it!)

 $\begin{array}{c} Y_{o_{1}} \times_{i_{1}} \dots \times_{i_{n-1}} \times_{i_{n}} \\ \xrightarrow{-}(x_{o_{1}} h(x_{o})) & h(x_{n-1}) = h(x_{o}) \\ (x_{i_{1}} h^{(x_{i})}) \end{array}$

Random hash functions look very good. However, we haven't discussed the following:

Question

How much resource (time & space) does it take to compute random hash functions?

- Storing entire function $h: U \rightarrow [0, n-1]$ require $O(m \log n)$ bits (way too much space!)
- Even if we only stored the elements we saw, would require O(n) time to evaluate h(x) (need to decide if we had already computed it!)

Remark

Thus, for random function all operations (insert, delete, search) take $O(n \log m)$ time (at best!)

in RAM O(n) time!

Random hash functions look very good. However, we haven't discussed the following:

Question

How much resource (time & space) does it take to compute random hash functions?

- Storing entire function $h: U \rightarrow [0, n-1]$ require $O(m \log n)$ bits (way too much space!)
- Even if we only stored the elements we saw, would require O(n) time to evaluate h(x) (need to decide if we had already computed it!)

Remark

Thus, for random function all operations (insert, delete, search) take $O(n \log m)$ time (at best!)

• Introduction

- Hash Functions
- Why is hashing?
- How to hash?

• Succinctness of Hash Functions

- Coping with randomness
- Universal Hashing
- Hashing using 2-universal families
- Perfect Hashing

Acknowledgements

We want something that is *random-like* (few collisions w.h.p.) but *easy to compute/represent*.

We want something that is *random-like* (few collisions w.h.p.) but *easy to compute/represent*.

Ideally something that takes $O(\log m)$ time to compute (as this is the size of our input).

We want something that is *random-like* (few collisions w.h.p.) but *easy to compute/represent*.

Ideally something that takes $O(\log m)$ time to compute (as this is the size of our input).

Question

How many hash functions can we have with the property above?

We want something that is *random-like* (few collisions w.h.p.) but *easy to compute/represent*.

Ideally something that takes $O(\log m)$ time to compute (as this is the size of our input).

Question

How many hash functions can we have with the property above?

poly(m) functions, as each function takes at most $O(\log m)$ bits to describe. Thus these are *succinct functions* (easy to describe and compute) which have *random-like* properties!

We want something that is *random-like* (few collisions w.h.p.) but *easy to compute/represent*.

Ideally something that takes $O(\log m)$ time to compute (as this is the size of our input).

Question

How many hash functions can we have with the property above?

poly(m) functions, as each function takes at most $O(\log m)$ bits to describe. Thus these are *succinct functions* (easy to describe and compute) which have *random-like* properties!

Part of *derandomization/pseudorandomness*: huge subfield in TCS!

k-wise independence

Weaker notion of independence.

k-wise independence

Weaker notion of independence.

Definition (Full Independence)

A set of random variables X_1, \ldots, X_n are said to be (fully) independent if they satisfy

$$\Pr\left[\bigcap_{i=1}^{n} X_{i} = a_{i}\right] = \prod_{i=1}^{n} \Pr[X_{i} = a_{i}]$$

$$X_1 = \alpha_1$$
, $X_2 = \alpha_2 = X_n = \alpha_n$

k-wise independence

Weaker notion of independence.

Definition (Full Independence)

A set of random variables X_1, \ldots, X_n are said to be (fully) independent if they satisfy

$$\Pr\left[\bigcap_{i=1}^{n} X_{i} = a_{i}\right] = \prod_{i=1}^{n} \Pr[X_{i} = a_{i}] \qquad X$$

Definition (k-wise Independence)

A set of random variables X_1, \ldots, X_n are said to be k-wise independent if for any set $J \subset [n]$ such that $|J| \leq k$ they satisfy $Pr\left[\bigcap_{i \in J} X_i = a_i\right] = \prod_{i \in J} \Pr[X_i = a_i]$ os if independent

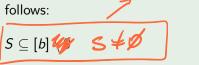
Pairwise independence

When k = 2, k-wise independence is called *pairwise independence*.

Example (XOR pairwise independence)

Given *b* uniformly random bits Y_1, \ldots, Y_b , we can generate $2^b - 1$ pairwise independent random variables as follows:

$$X_{\mathcal{S}} := \bigoplus_{i \in \mathcal{S}} Y_i$$



・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・ …

34 / 78

Pairwise independence

When k = 2, k-wise independence is called *pairwise independence*.

Example (XOR pairwise independence)

Given *b* uniformly random bits Y_1, \ldots, Y_b , we can generate $2^b - 1$ pairwise independent random variables as follows:

$$X_S := \bigoplus_{i \in S} Y_i \qquad S \subseteq [b] \setminus \emptyset$$

Pairwise independence

When k = 2, k-wise independence is called *pairwise independence*.

Example (XOR pairwise independence)

Given *b* uniformly random bits Y_1, \ldots, Y_b , we can generate $2^b - 1$ pairwise independent random variables as follows:

$$X_{\mathcal{S}} := igoplus_{i \in \mathcal{S}} Y_i \qquad \quad \mathcal{S} \subseteq [b] \setminus \emptyset$$

• Why are they even random?

$$X_{j|_{1}^{2}} = Y_{1} \oplus Y_{2} \oplus Y_{3}$$

$$X_{3} = \begin{cases} 1 & 4 \\ 0 & 4 \\ 0 & -3 \end{cases}$$

$$X_{3} = \begin{cases} 1 & 4 \\ 0 & 4 \\ 0 & -3 \end{cases}$$

When k = 2, k-wise independence is called *pairwise independence*.

Example (XOR pairwise independence)

Given *b* uniformly random bits Y_1, \ldots, Y_b , we can generate $2^b - 1$ pairwise independent random variables as follows:

$$X_{\mathcal{S}} := igoplus_{i \in \mathcal{S}} Y_i \qquad \quad \mathcal{S} \subseteq [b] \setminus \emptyset$$

• Why are they even random?
• Why are they pairwise independent?
S₁, S₂ Mabril of [b]

$$P_{32}[X_{51} = 0_1 \text{ and } X_{52} = 0_2] = \frac{1}{4}$$

When k = 2, k-wise independence is called *pairwise independence*.

Example (XOR pairwise independence)

Given *b* uniformly random bits Y_1, \ldots, Y_b , we can generate $2^b - 1$ pairwise independent random variables as follows:

$$X_S := igoplus_{i \in S} Y_i \qquad S \subseteq [b] \setminus \emptyset$$

- Why are they even random?
- Why are they pairwise independent?
- Are they also 3-wise independent?

)
$$X_{315} X_{525} X_{31,25}$$
 not $3 - \omega_{10}$

Example (Pairwise independence in \mathbb{F}_p)

Let *p* be a prime number. Given 2 uniformly random variables $Y_1, Y_2 \sim [0, \dots, p-1]$, generate *p* pairwise independent random variables as follows:

 $X_i := Y_1 + i \cdot Y_2 \mod p$ $i \in [0, p-1]$

Example (Pairwise independence in \mathbb{F}_p)

Let *p* be a prime number. Given 2 uniformly random variables $Y_1, Y_2 \sim [0, ..., p-1]$, generate *p* pairwise independent random variables as follows:

$$X_i := Y_1 + i \cdot Y_2 \mod p \qquad i \in [0, p-1]$$

• Why are they even random?

$$X_0 = Y_1$$

 $X_1 = Y_1 + Y_2 \rightarrow P_{a}[X_1 = a] = \frac{1}{p}$

Example (Pairwise independence in \mathbb{F}_p)

Let *p* be a prime number. Given 2 uniformly random variables $Y_1, Y_2 \sim [0, ..., p-1]$, generate *p* pairwise independent random variables as follows:

$$X_i := Y_1 + i \cdot Y_2 \mod p \qquad i \in [0, p-1]$$

• Why are they even random?

• Why are they pairwise independent?

$$X_{i} , X_{j} , Y_{i} + iY_{2} = \alpha$$

$$Y_{i} + iY_{2} = \alpha$$

$$Y_{i} + jY_{2} = b$$

$$Y_{i} + jY_{2} = b$$

$$P_{n}[X_{i} = \alpha, X_{j} = b] = p^{2} da + \begin{pmatrix} 1 & i \\ 1 & j \end{pmatrix} = j - i (imm + ibk)$$

$$P_{n}[X_{i} = \alpha] \cdot P_{n}[X_{j} = b]$$

$$P_{n}[X_{i} = \alpha] \cdot P_{n}[X_{j} = b]$$

Example (Pairwise independence in \mathbb{F}_p)

Let *p* be a prime number. Given 2 uniformly random variables $Y_1, Y_2 \sim [0, \ldots, p-1]$, generate *p* pairwise independent random variables as follows:

$$X_i := Y_1 + i \cdot Y_2 \mod p \qquad i \in [0, p-1]$$

- Why are they even random?
- Why are they pairwise independent?
- Are they also 3-wise independent?

Example (Pairwise independence in \mathbb{F}_p)

Let *p* be a prime number. Given 2 uniformly random variables $Y_1, Y_2 \sim [0, ..., p-1]$, generate *p* pairwise independent random variables as follows:

$$X_i := Y_1 + i \cdot Y_2 \mod p \qquad i \in [0, p-1]$$

- Why are they even random?
- Why are they pairwise independent?
- Are they also 3-wise independent?

Can think of these random variables as picking a random line over a finite field. If we only know one point of the line, the second point is still uniformly random. However two points determine the line.

Universal Hash Functions

We want hash functions. Why are we talking about random variables?

Universal Hash Functions

We want hash functions. Why are we talking about random variables?

Definition (Universal Hash Functions)

Let *U* be a universe with $|U| \ge n$. A family of hash functions $\mathcal{H} = \{h : U \to [0, n-1]\}$ is *k*-universal if, for any distinct elements $u_1, \ldots, u_k \in U$, we have

$$\Pr_{h \in_{\mathcal{R}} \mathcal{H}} \left[h(u_1) = h(u_2) = \ldots = h(u_k) \right] \leq 1/n^{k-1}$$

Universal Hash Functions

We want hash functions. Why are we talking about random variables?

Definition (Universal Hash Functions)

Let *U* be a universe with $|U| \ge n$. A family of hash functions $\mathcal{H} = \{h : U \to [0, n-1]\}$ is *k*-universal if, for any distinct elements $u_1, \ldots, u_k \in U$, we have

$$\Pr_{h \in_{\mathcal{R}} \mathcal{H}} [h(u_1) = h(u_2) = \ldots = h(u_k)] \le 1/n^{k-1}$$

Definition (Strongly Universal Hash Functions)

 $\mathcal{H} = \{h : U \to [0, n-1]\} \text{ is strongly } k\text{-universal if, for any distinct} \\ \text{elements } u_1, \dots, u_k \in U \text{ and for any values } y_1, \dots, y_k \in [0, n-1], \text{ we have} \\ \underset{h \in_R \mathcal{H}}{\Pr} \left[h(u_1) = y_1, \dots, h(u_k) = y_k\right] \leq 1/n^k \quad \text{for any distinct} \\ \text{Line}$

Relation to k-wise independent random variables

What do the previous definitions have to do with random variables?

Relation to k-wise independent random variables

What do the previous definitions have to do with random variables?

Family \mathcal{H} is *strongly k-universal* if the random variables $\underline{h(0)}, \ldots, \underline{h(|U|-1)}$ are *k-wise independent*.

Relation to k-wise independent random variables

What do the previous definitions have to do with random variables?

Family \mathcal{H} is *strongly k-universal* if the random variables $h(0), \ldots, h(|U| - 1)$ are *k-wise independent*.

Can use random variables to construct universal hash functions!

Let p be a prime number, U = [0, p - 1].

Proposition

$$\mathcal{H} = \{h_{a,b}(x) := a \cdot x + b \mod p \mid a, b \in [0, p-1]\}$$

is strongly 2-universal.

Let p be a prime number, U = [0, p - 1].

Proposition

 $\mathcal{H} = \{h_{a,b}(x) := a \cdot x + b \mod p \mid a, b \in [0, p-1]\}$

is strongly 2-universal.

How do we make the domain U much larger than image of the maps? (as usually in hashing size of universe much larger than size of table)

Let p be a prime number, U = [0, p - 1]. = **F**p

Proposition

 $\mathcal{H} = \{h_{a,b}(x) := a \cdot x + b \mod p \mid a, b \in [0, p-1]\}$

is strongly 2-universal.

How do we make the domain U much larger than image of the maps? (as usually in hashing size of universe much larger than size of table)

Proposition

Let
$$U = [0, p^k - 1] \equiv [0, p - 1]^k \setminus \{(0, \dots, 0)\}$$
 and $\mathbf{a} = (a_0, \dots, a_{k-1}) \in \mathcal{U}$
 $\mathcal{H} = \{h_{\mathbf{a}, b}(\mathbf{x}) := \mathbf{a} \cdot \mathbf{x} + b \mod p \mid \mathbf{a} \in U, b \in [0, p - 1]\}$
is strongly 2-universal.

Proposition

Let
$$U = [0, p^k - 1] \equiv [0, p - 1]^k \setminus \{(0, \dots, 0)\}$$
 and $\mathbf{a} = (a_0, \dots a_{k-1})$

 $\mathcal{H} = \{h_{\mathbf{a},b}(\mathbf{x}) := \mathbf{a} \cdot \mathbf{x} + b \mod p \mid \mathbf{a} \in U, b \in [0, p-1]\}$

is strongly 2-universal.

What if my hast table size is not a prime?

Proposition

 $\mathcal{H} = \{h_{a,b}(x) := (a \cdot x + b \mod p) \mod n \mid a, b \in [0, p-1]\}$

is 2-universal (but not strongly 2-universal).

Practice problem: prove the proposition above.

Can we construct k-universal families of hash functions like this?

Can we construct k-universal families of hash functions like this?

• YES! Instead of constructing random lines (degree 1 polynomials), can construct random univariate polynomials of degree k - 1

$$a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_{1}x + a_{0}$$

Can we construct k-universal families of hash functions like this?

- YES! Instead of constructing random lines (degree 1 polynomials), can construct random univariate polynomials of degree k 1
- Two points determine a line. Similarly, k points determine a univariate polynomial of degree k 1

Can we construct k-universal families of hash functions like this?

- YES! Instead of constructing random lines (degree 1 polynomials), can construct random univariate polynomials of degree k 1
- Two points determine a line. Similarly, k points determine a univariate polynomial of degree k 1
- Random degree k 1 polynomials are k-wise independent!
- Practice problem: prove this!

Efficiency

How did pairwise independent improve the problems we were having with random functions?

Efficiency

How did pairwise independent improve the problems we were having with random functions?

Remark

For random function all operations (insert, delete, search) take $O(n \log m)$ time (at best!)

Efficiency

How did pairwise independent improve the problems we were having with random functions?

Remark

For random function all operations (insert, delete, search) take $O(n \log m)$ time (at best!)

Remark

- In XOR example, our function takes O(n) storage space, and O(n) time to compute.^a
- In \mathbb{F}_{p} examples, our function takes O(1) storage space and O(1) time to compute!^b $h_{a,b}$ store a, b O(1)

^aReminder that we assume that $n < 2^{w}$. **QX+b Q(1)** Fine ^bWe assume that $p < 2^{w}$.

Theorem from Probability

Theorem (Markov's inequality)

If X is a non-negative random variable and t > 0, we have:

$$\Pr[X \ge t] \le rac{\mathbb{E}[X]}{t}$$

 Let U = [0, m − 1], and p be a prime number such that m ≤ p < 2m (exists by Bertrand's postulate)

 Let U = [0, m − 1], and p be a prime number such that m ≤ p < 2m (exists by Bertrand's postulate)

•
$$\mathcal{H} = \{h_{a,b}(x) := (a \cdot x + b \mod p) \mod n \mid a, b \in [0, p-1]\}$$

- Let U = [0, m − 1], and p be a prime number such that m ≤ p < 2m (exists by Bertrand's postulate)
- $\mathcal{H} = \{h_{a,b}(x) := (a \cdot x + b \mod p) \mod n \mid a, b \in [0, p-1]\}$
- Only need to choose $a, b \in [0, p-1]$ to store a function from \mathcal{H} .

- Let U = [0, m − 1], and p be a prime number such that m ≤ p < 2m (exists by Bertrand's postulate)
- $\mathcal{H} = \{h_{a,b}(x) := (a \cdot x + b \mod p) \mod n \mid a, b \in [0, p-1]\}$
- Only need to choose $a, b \in [0, p-1]$ to store a function from \mathcal{H} .
- Computation time of $h_{a,b}$ is also $O(\log m)$

 Let U = [0, m − 1], and p be a prime number such that m ≤ p < 2m (exists by Bertrand's postulate)

• $\mathcal{H} = \{h_{a,b}(x) := (a \cdot x + b \mod p) \mod n \mid a, b \in [0, p-1]\}$

- Only need to choose $a, b \in [0, p-1]$ to store a function from \mathcal{H} .
- Computation time of $h_{a,b}$ is also $O(\log m)$
- Can this hash function match chain hashing parameters?
 (O(log log n) search time)

 Let U = [0, m − 1], and p be a prime number such that m ≤ p < 2m (exists by Bertrand's postulate)

• $\mathcal{H} = \{h_{a,b}(x) := (a \cdot x + b \mod p) \mod n \mid a, b \in [0, p-1]\}$

- Only need to choose $a, b \in [0, p-1]$ to store a function from \mathcal{H} .
- Computation time of $h_{a,b}$ is also $O(\log m)$
- Can this hash function match chain hashing parameters?
 (O(log log n) search time)

Do not have same expected search time as chain hashing.

 Let U = [0, m − 1], and p be a prime number such that m ≤ p < 2m (exists by Bertrand's postulate)

• $\mathcal{H} = \{h_{a,b}(x) := (a \cdot x + b \mod p) \mod n \mid a, b \in [0, p-1]\}$

- Only need to choose $a, b \in [0, p-1]$ to store a function from \mathcal{H} .
- Computation time of $h_{a,b}$ is also $O(\log m)$
- Can this hash function match chain hashing parameters?
 (O(log log n) search time)

Do not have same expected search time as chain hashing.

Lemma (Maximum number of collisions) The expected number of collisions using a 2-universal hash family is $\ell^2/2n$ $\ell^2/2n$ $\ell^2/2n$

Hashing with 2-universal families L=# elements from U that we will hash

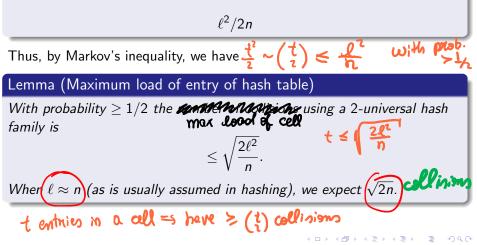
Lemma (Maximum number of collisions)

The expected number of collisions using a 2-universal hash family is

 $\leq \ell^2/2n$

Lemma (Maximum number of collisions)

The expected number of collisions using a 2-universal hash family is



How to build a hash table with O(1) search time and O(n) memory? Can we still do it with a 2-universal family of hash functions?

How to build a hash table with O(1) search time and O(n) memory? Can we still do it with a 2-universal family of hash functions?

Corollary

If $h \in \mathcal{H}$ is a random hash function from a 2-universal family of hash functions, then for any set $S \subseteq U$ of size $\ell \leq \sqrt{n}$, the probability of h being perfect for S is at least 1/2.

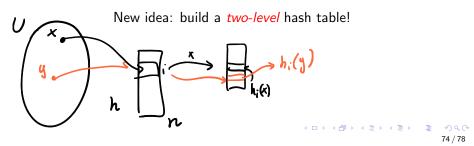
Proof: There is no collision with probability $\geq 1/2$.

How to build a hash table with O(1) search time and O(n) memory? Can we still do it with a 2-universal family of hash functions?

Corollary

If $h \in \mathcal{H}$ is a random hash function from a 2-universal family of hash functions, then for any set $S \subseteq U$ of size $\ell \leq \sqrt{n}$, the probability of h being perfect for S is at least 1/2.

Proof: There is no collision with probability $\geq 1/2$.



How to build a hash table with O(1) search time and O(n) memory? Can we still do it with a 2-universal family of hash functions?

Corollary

If $h \in \mathcal{H}$ is a random hash function from a 2-universal family of hash functions, then for any set $S \subseteq U$ of size $\ell \leq \sqrt{n}$, the probability of h being perfect for S is at least 1/2.

Proof: There is no collision with probability $\geq 1/2$.

New idea: build a *two-level* hash table!

Theorem

The two-level approach gives perfect hashing scheme.

how many hash functions have we used? (O(n)) ~ menning io also O(n) = = ore 75/78 Proof (sketch) of Theorem S set of kuyp Remark we know keys in advance Approach: pick first layer hash function h uniformly at random. Toot hen S. With probability > 1/2 max # collisions in one bin is < Un. We will get good hash for h with constant # tries. Assume that max # collisions (h,S) is Un e; - load at it cell of head table given by h٠

know: $li \leq Vn$ (because h is good for s) and $\sum_{i=0}^{n-1} l_i = n$ (= |s|)

Lemma if take h_i roundom head function from $h_i: 5 \longrightarrow l_i^2$ h_i is perfect for the li elements that map into it cell of first table h. We showed that expected # collisions is O. Bound on Memory: $\sum_{i=0}^{p-i} l_i^2$ (bad because $\sqrt{n} \cdot (\sqrt{n})^2 = n^{3/2}$)

We also know (because h is good for S) whp # collisions is < l'n (expected # collisions is < l'/in <- lemma) when l=n (our case) we get that the collisions & n $\sum_{i=1}^{p-1} \mathcal{Q}_{i}^{2} = O(\# \text{ collisions of } h)$

Acknowledgement

- Lecture based largely on Lap Chi's notes.
- See Lap Chi's notes at https://cs.uwaterloo.ca/~lapchi/cs466/notes/L05.pdf

References I

Motwani, Rajeev and Raghavan, Prabhakar (2007) Randomized Algorithms

Mitzenmacher, Michael, and Eli Upfal (2017)

Probability and computing: Randomization and probabilistic techniques in algorithms and data analysis.

Cambridge university press, 2017.