Lecture 4: Hashing

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

September 21, 2020

1/78

Overview

@ Introduction
e Hash Functions
e Why is hashing?
e How to hash?

@ Succinctness of Hash Functions

o Coping with randomness

o Universal Hashing

e Hashing using 2-universal families
Perfect Hashing

@ Acknowledgements

2/78

Computational Model

Before we talk about hash functions, we need to state our model of
computation:

Definition (Word RAM model)
In the word RAM? model:

o all elements are integers that fit in a machine word of w bits

@ Basic operations (comparison, arithmetic, bitwise) on such words take
©(1) time

@ We can also access any position in the array in ©(1) time

?RAM stands for Random Access Model

3/78

What is hashing?

We want to store n elements (keys) from the set U ={0,1,...,m— 1},

where m >> n, in a data structure that supports insertions, deletions,
search “as efficiently as possible.”

m>sa ond fgn < W
(each ebmam? “«Wm

{0‘ (-, niy gﬂo in
ome wed

rumetg)

478

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

What is hashing?

We want to store n elements (keys) from the set U ={0,1,...,m— 1},

where m >> n, in a data structure that supports insertions, deletions,
search “as efficiently as possible.”

Naive approach: use an array A of m elements, initially A[/] =0 for all i,
and when a key is inserted, set A[i] = 1.

5/78

What is hashing?

We want to store n elements (keys) from the set U ={0,1,...,m— 1},

where m >> n, in a data structure that supports insertions, deletions,
search “as efficiently as possible.”

Naive approach: use an array A of m elements, initially A[/] =0 for all i,
and when a key is inserted, set A[i] = 1.

@ Insertion: O

e Memory:/O(mlog(m))

: O(1), Search: O(1)

(this is very bad!)
> e

éntine mmwa!

6/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

What is hashing?

We want to store n elements (keys) from the set U ={0,1,...,m— 1},

where m >> n, in a data structure that supports insertions, deletions,
search “as efficiently as possible.”

Naive approach: use an array A of m elements, initially A[/] =0 for all i,
and when a key is inserted, set A[i] = 1.

o Insertion: O(1), Deletion: O(1), Search: O(1)
e Memory: O(mlog(m)) (this is very bad!)
Want to also achieve optimal memory |O(nlog(m)). [For this we will use a
technique called hashing.
@ A hash function is a function h: U — [0, n— 1], where |U| = m >> n.
@ A hash table is a data structure that consists of:

o atable T with n cells [0, n — 1], each cell storing O(log(m)) bits
e a hash function h: U — [0,n — 1]

\\
v, . .
From now on, we will define memory as # of cells. \N= O(&%m\

7/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Why is hashing useful?

Designing efficient data structures (dictionaries) for searching
Data streaming algorithms

Derandomization

Cryptography

Complexity Theory

many more

8/78

Challenges in Hashing

Setup:

@ Universe U ={0,..., m — 1} of size m >> n where n is the size of
the range of our hash function h: U — [0, n — 1]

e Store O(n) elements of U (keys) in hash table T (which has n cells)

9/78

Challenges in Hashing

Setup:

@ Universe U ={0,..., m — 1} of size m >> n where n is the size of
the range of our hash function h: U — [0,n — 1]

e Store O(n) elements of U (keys) in hash table T (which has n cells)

Ideally, want hash function to map different keys into different locations.

Definition (Collision)
We say that a collision happens for hash function h with inputs x,y € U if
x # y and h(x) = h(y).

By pigeonhole principle, impossible to achieve without knowing keys in
advance. Y

LRy

10/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Challenges in Hashing

Setup:

@ Universe U ={0,..., m — 1} of size m >> n where n is the size of
the range of our hash function h: U — [0,n — 1]

e Store O(n) elements of U (keys) in hash table T (which has n cells)

Ideally, want hash function to map different keys into different locations.

Definition (Collision)

We say that a collision happens for hash function h with inputs x,y € U if
x # y and h(x) = h(y).

By pigeonhole principle, impossible to achieve without knowing keys in
advance.

Will settle for: # collisions small with high probability.

11/78

Our solution: family of hash functions

Construct family of hash functions H such that the number of collisions is
small with high probability, when we pick hash function uniformly at
random from the family .

12/78

Our solution: family of hash functions

Construct family of hash functions H such that the number of collisions is
small with high probability, when we pick hash function uniformly at
random from the family .

Simplest version to keep in mind:

13/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Our solution: family of hash functions

Construct family of hash functions H such that the number of collisions is
small with high probability, when we pick hash function uniformly at
random from the family .

Simplest version to keep in mind:

Pr [h(x) = h(y)] < —>

herH poly(n) WFyel

Assumptions:
@ keys are independent from hash function we choose.

e we do not know keys in advance (even if we did, nontrivial problem!)

Still could have collisions. How do we handle them? \

14/78

Random Hash Functions?

Natural to consider following approach:

From all functions h: U — [0, n — 1], just pick one uniformly at random.
—~

N

15/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Random Hash Functions?

Natural to consider following approach:
vath binA
From all functions h: U — [0, n — 1], just pick one uniformly at random.
pl - ‘""S

This setting is same as our balls-and-bins setting!

16/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Random Hash Functions?

Natural to consider following approach:

From all functions h :@—> [0, n — 1], just pick one uniformly at random.

This setting is same as our balls-and-bins setting!

So, if we have to store n keys: Lol in &
: . (epobesl. #H O
@ Expected number of keys in a location: 1 ¥pee bin

e maximum number of collisions (max load) in one particular location:
O(log n/ log log n) keys

17/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Random Hash Functions?

Natural to consider following approach:

From all functions h: U — [0, n — 1], just pick one uniformly at random.
This setting is same as our balls-and-bins setting!
So, if we have to store n keys:
@ Expected number of keys in a location: 1

e maximum number of collisions (max load) in one particular location:
O(log n/ log log n) keys

Solving collisions: store all keys hashed into location i by a linked list.

Known as chain hashing.

18/78

Random Hash Functions?

Natural to consider following approach:
From all functions h: U — [0, n — 1], just pick one uniformly at random.

This setting is same as our balls-and-bins setting!
So, if we have to store n keys:

@ Expected number of keys in a location: 1

e maximum number of collisions (max load) in one particular location:
O(log n/ log log n) keys
Solving collisions: store all keys hashed into location / by a linked list.

Known as chain hashing.

Could also pick two rand
Collision bound becomes O(log log n).

ions and use power of two choices.

() h)

i

19/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Random Hash Functions?

Random hash functions look very good. However, we haven't discussed
the following:

20/78

Random Hash Functions?

Random hash functions look very good. However, we haven't discussed
the following:

How much resource (time & space) does it take to compute random hash
functions?

21/78

Random Hash Functions?

Random hash functions look very good. However, we haven't discussed
the following:

How much resource (time & space) does it take to compute random hash
functions?

e Storing entire function h: U — [0, n — 1] require 6 mlog

too much space!) @t each 1 €v (x, h(\)) j@ﬂ

@ Even if we only stored the elements we saw, would requir time

r,,x,,.,,’(nh(xn‘,)zh(&) Q(m)

F’(X.‘ h(Xo)
(%, h&))

22/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Random Hash Functions?

Random hash functions look very good. However, we haven't discussed
the following:

How much resource (time & space) does it take to compute random hash
functions?

e Storing entire function h: U — [0, n — 1] require O(mlog n) bits (way
too much space!)

@ Even if we only stored the elements we saw, would require O(n) time
to evaluate h(x) (need to decide if we had already computed it!)

Thus, for random function all operations (insert, delete, search) take
O(nlog m) time (at best!)

N RAM O(ﬂ) -\'\fOQf

23/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Random Hash Functions?

Random hash functions look very good. However, we haven't discussed
the following:

How much resource (time & space) does it take to compute random hash
functions?

e Storing entire function h: U — [0, n — 1] require O(mlog n) bits (way
too much space!)

@ Even if we only stored the elements we saw, would require O(n) time
to evaluate h(x) (need to decide if we had already computed it!)

Thus, for random function all operations (insert, delete, search) take
O(nlog m) time (at best!)

How do we cope with the computational problem that arose with
randomness?
24 /78

@ Succinctness of Hash Functions
o Coping with randomness
o Universal Hashing
o Hashing using 2-universal families
o Perfect Hashing

25/78

How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

26 /78

How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

Ideally something that takes O(log m) time to compute (as this is the size
of our input).

y Linear Hime

27/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

Ideally something that takes O(log m) time to compute (as this is the size
of our input).

How many hash functions can we have with the property above? l

28/78

How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

Ideally something that takes/O(log m) time to compute (as this is the size
of our input).

How many hash functions can we have with the property above? l

unctions, as each function takes at most |O(log m) bits|to
describe. Thus these are succinct functions (easy to describe and
compute) which have random-like properties!

N &o(&%m\

29/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

How to cope with “hardness” of randomness?

We want something that is random-like (few collisions w.h.p.) but easy to
compute/represent.

Ideally something that takes O(log m) time to compute (as this is the size
of our input).

How many hash functions can we have with the property above? l

poly(m) functions, as each function takes at most O(log m) bits to
describe. Thus these are succinct functions (easy to describe and
compute) which have random-like properties!

Part of derandomization/pseudorandomness: huge subfield in TCS!

30/78

k-wise independence

Weaker notion of independence.

31/78

k-wise independence

Weaker notion of independence.

Definition (Full Independence)

A set of random variables Xj, ..., X, are said to be (fully) independent if

they satisfy
Pr m X,' aj|l= H PI’[X,' = a,-]
i=1 i=1

X200 - Xy=%n

32/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

k-wise independence

Weaker notion of independence.

Definition (Full Independence)
A set of random variables Xj, ..., X, are said to be (fully) independent if

they satisfy
n
Pr m X,' = daj
i=1

= ﬁ Pr[X,- = a,-] ><
i=1

Definition (k-wise Independence)

A set of rando iables X1,..., X, are said to be k-wise independent if

for any set‘J C [n] %uch that |J| < k they satisfy 0”‘3 amed? neda
Naniables behave

mX,' = aj| = HPF[X; = a,-] » i(|

ied

iel

Pr

33/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Pairwise independence
When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)
., Yp, we can generate 22 — 1

Given b uniformly random bits Y7, ..
pairwise independent random variables as follows:

Xs: =PV /;[b]{a' S*éﬂj

i€eS

—*-OGG'*%__
Ql—-l-o%t

—O—q|p °

34/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Pairwise independence

When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)

Given b uniformly random bits Yi,..., Yp, we can generate 22 — 1
pairwise independent random variables as follows:

Xs =PV SC[b\0

i€eS

35/78

Pairwise independence

When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)

Given b uniformly random bits Yi,..., Yp, we can generate 22 — 1
pairwise independent random variables as follows:

Xs =PV SC[b\0

i€eS

@ Why are they even random?
. ® s =
Xil;’;"s Y‘ @ YI é
T L

-7
+ 0 ¢

36/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Pairwise independence

When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)

Given b uniformly random bits Yi,..., Yp, we can generate 22 — 1
pairwise independent random variables as follows:

Xs:=@Y: SCb\0
i€eS
@ Why are they even random? 5, £ Hoe 12 VOrebk

@ Why are they pairwise independent? Yl €S \9‘-
S, 5. sabatis of T

Pa|Xs, = O o Xe,: 0% :é-

37/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Pairwise independence

When k = 2, k-wise independence is called pairwise independence.

Example (XOR pairwise independence)

Given b uniformly random bits Yi,..., Yp, we can generate 22 — 1
pairwise independent random variables as follows:

Xs =PV SC[b\0

i€eS

@ Why are they even random?
o Why are they pairwise independent?
@ Are they also 3-wise independent?

)UO KM xsz‘) Xh,l‘) et 3-.1;1,3‘

38/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Pairwise independence Il (mk?”w mecf P

Example (Pairwise independence in [F,)

Let p be a prime number. Given 2 uniformly random variables

Yi,Yo~[0,...,p—1], t irwise ind dent rand iabl
1, Yo [/_SB_\] generate p pairwise independent random variables
as follows: 1

Xii=Y1+i-Y> modp iE[O,p—l]

39/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Pairwise independence I

Example (Pairwise independence in [F,)

Let p be a prime number. Given 2 uniformly random variables

Y1, Y2 ~[0,...,p— 1], generate p pairwise independent random variables
as follows:

Xii=Y1+i-Y> modp iE[O,p—l]

@ Why are they even random?
)(0: \/l J—
X, =Yt Yo o %D(":a]-'P

40/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Pairwise independence I

Example (Pairwise independence in [F,)

Let p be a prime number. Given 2 uniformly random variables

Y1, Y2 ~[0,...,p— 1], generate p pairwise independent random variables
as follows:

Xii=Y1+i-Y> modp iE[O,p—l]

@ Why are they even random?

@ Why are they pairwise independent?

41/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Pairwise independence I

Example (Pairwise independence in [F,)

Let p be a prime number. Given 2 uniformly random variables

Y1, Y2 ~[0,...,p— 1], generate p pairwise independent random variables
as follows:

Xii=Y1+i-Y> modp iE[O,p—l]

@ Why are they even random?

@ Why are they pairwise independent?

@ Are they also 3-wise independent?

A0 . Puoetice puwtm

42/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Pairwise independence I

Example (Pairwise independence in [F,)

Let p be a prime number. Given 2 uniformly random variables

Y1, Y2 ~[0,...,p— 1], generate p pairwise independent random variables
as follows:

Xi=Y1+i-Y> modp i€0,p—1]

@ Why are they even random?
@ Why are they pairwise independent?
@ Are they also 3-wise independent?

Can think of these random variables as picking a random line over a finite
field. If we only know one point of the line, the second point is still
uniformly random. However two points determine the line.

43/78

Universal Hash Functions
We want hash functions. Why are we talking about random variables?

4478

Universal Hash Functions
We want hash functions. Why are we talking about random variables?

Definition (Universal Hash Functions)

Let U be a universe with |U| > n. A family of hash functions

H={h:U—[0,n—1]} is k-universal if, for any distinct elements
ui,...,ux € U, we have

hePRrH [A(u1) = h(w2) = ... = h(uk)]

45/78

Rafael Oliveira

Universal Hash Functions

We want hash functions. Why are we talking about random variables?

Definition (Universal Hash Functions)

Let U be a universe with |U| > n. A family of hash functions

H={h:U—[0,n—1]} is k-universal if, for any distinct elements
ui,...,ux € U, we have

hEPRrH [h(u) = h(uz) = ... = h(u)] < 1/n%71

Definition (Strongly Universal Hash Functions)

H ={h:U— [0,n— 1]} is strongly k-universal if, for any distinct
elements vy, ..., ux € U and for any values y1, ..., yx € [0,n— 1], we have

~° nomdow
thrH [h(n) = y1, . h(u) = v L1/7) fiue .

46 /78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Relation to k-wise independent random variables

What do the previous definitions have to do with random variables?

47/78

Relation to k-wise independent random variables

What do the previous definitions have to do with random variables?

Family H is strongly k-universal if the random variables
h(O -y h(JU]| — 1) are k-wise independent.

48/78

Rafael Oliveira

Rafael Oliveira

Relation to k-wise independent random variables

What do the previous definitions have to do with random variables?

Family H is strongly k-universal if the random variables
h(0), ..., h(JU| — 1) are k-wise independent.

Can use random variables to construct universal hash functions!

49/78

Strongly 2-universal families of hash functions

Let p be a prime number, U = [0, p — 1].

Proposition

H:{ha7b(x)::a-x+b mod p ’ ,[ZG[O,pfl]}
— v -

is strongly 2-universal.

'P»Neo(~ne azY, bz=Ya Jandem v, M

50/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Strongly 2-universal families of hash functions

Let p be a prime number, U = [0, p — 1].

Proposition

H={hyp(x):==a-x+b modp | abel0,p—1]}

is strongly 2-universal.

How do we make the domain U much larger than image of the maps? (as
usually in hashing size of universe much larger than size of table)

51/78

Strongly 2-universal families of hash functions

Let p be a prime number, U = [0,p — 1].= I‘:P

Proposition

H={hyp(x):==a-x+b modp | abel0,p—1]}

is strongly 2-universal.

How do we make the domain U much larger than image of the maps? (as
usually in hashing size of universe much larger than size of table)

Proposition
Let U=[0,pk —1] =[0,p —1]*\ {(0,...,0)} and a = (ao, . . yak_1)

H={hap(x):=a-x+b modp | acU,bel0,p—1]}

h: H;—) 'fp

is strongly 2-universal.

52/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Strongly 2-universal families of hash functions

Proposition
Let U=1[0,pk —1]=1[0,p — 1]*\ {(0,...,0)} and a = (ag, . .. ax_1)

H ={hap(x):=a-x+b modp | acU,be|0,p—1]}

is strongly 2-universal.

53/78

2-universal families of hash functions

What if my hast table size is not a prime?

Proposition

H={h,p(x):=(a-x+b modp) modn | abe[0,p—1]}

is 2-universal (but not strongly 2-universal).

Practice problem: prove the proposition above.

54 /78

k-universal families of hash functions

Can we construct k-universal families of hash functions like this?

55/78

k-universal families of hash functions

Can we construct k-universal families of hash functions like this?

@ YES! Instead of constructing random lines (degree 1 polynomials),
can construct random univariate polynomials of degree k — 1

axtb]

) ‘ s
| O»k_X“‘+0n-Lx +---+Q|X\0~o

56/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

k-universal families of hash functions

Can we construct k-universal families of hash functions like this?

@ YES! Instead of constructing random lines (degree 1 polynomials),
can construct random univariate polynomials of degree k — 1

@ Two points determine a line. Similarly, k points determine a
univariate polynomial of degree kK — 1

57/78

k-universal families of hash functions

Can

we construct k-universal families of hash functions like this?

YES! Instead of constructing random lines (degree 1 polynomials),
can construct random univariate polynomials of degree k — 1

Two points determine a line. Similarly, k points determine a
univariate polynomial of degree kK — 1

Random degree k — 1 polynomials are k-wise independent!
Practice problem: prove this!

58/78

Efficiency

How did pairwise independent improve the problems we were having with
random functions?

59/78

Efficiency

How did pairwise independent improve the problems we were having with
random functions?

For random function all operations (insert, delete, search) take O(nlog m)
time (at best!)

60/78

Efficiency

How did pairwise independent improve the problems we were having with
random functions?

Remark

For random function all operations (insert, delete, search) take O(nlog m)
time (at best!)

RENEILS

| \

@ In XOR example, our function takes O(n) storage space, and O(n)
time to compute.?

e In [F, examples, our function takes O(1) storage space and O(1) time

1b
to compute! hﬂlb e o,k (Xl)
“Reminder that we assume that n < 2". OX 4 b (xn 1me

b\We assume that p < 2“.

61/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Theorem from Probability

Theorem (Markov's inequality)

If X is a non-negative random variable and t > 0, we have:

PriX >t] < E[tX]

62/78

Hashing with 2-universal families

@ Let U=[0,m—1], and p be a prime number such that m < p <2m
(exists by Bertrand's postulate)

63/78

Hashing with 2-universal families

@ Let U=[0,m—1], and p be a prime number such that m < p <2m
(exists by Bertrand's postulate)

o H={hyp(x):=(a-x+b modp) modn | abe[0,p—1]}
—r —

T ee————

64/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Hashing with 2-universal families

@ Let U=[0,m—1], and p be a prime number such that m < p <2m
(exists by Bertrand's postulate)

o H={hyp(x):=(a-x+b modp) modn | abe[0,p—1]}
@ Only need to choose a, b € [0, p — 1] to store a function from H.

65/78

Hashing with 2-universal families

@ Let U=[0,m—1], and p be a prime number such that m < p <2m
(exists by Bertrand's postulate)

o H={hyp(x):=(a-x+b modp) modn | abe[0,p—1]}
@ Only need to choose a, b € [0, p — 1] to store a function from H.

e Computation time of h,p is also O(log m)

66 /78

Hashing with 2-universal families

@ Let U=[0,m—1], and p be a prime number such that m < p <2m
(exists by Bertrand's postulate)

o H={hyp(x):=(a-x+b modp) modn | abe[0,p—1]}
@ Only need to choose a, b € [0, p — 1] to store a function from H.
e Computation time of h,p is also O(log m)

@ Can this hash function match chain hashing parameters?
(O(log log n) search time)

67/78

Hashing with 2-universal families

@ Let U=[0,m—1], and p be a prime number such that m < p <2m
(exists by Bertrand's postulate)

o H={hyp(x):=(a-x+b modp) modn | abe[0,p—1]}
@ Only need to choose a, b € [0, p — 1] to store a function from H.
e Computation time of h,p is also O(log m)
@ Can this hash function match chain hashing parameters?

(O(log log n) search time)

Do not have same expected search time as chain hashing.

68/78

Hashing with 2-universal families

@ Let U=[0,m—1], and p be a prime number such that m < p <2m
(exists by Bertrand's postulate)

o H={hyp(x):=(a-x+b modp) modn | abe[0,p—1]}
@ Only need to choose a, b € [0, p — 1] to store a function from H.
e Computation time of h,p is also O(log m)
@ Can this hash function match chain hashing parameters?

(O(log log n) search time)

Do not have same expected search time as chain hashing.

Lemma (Maximum number of collisions)

The expected number of collisions using a 2-universal hash family is

= 7 elemenin +it
€2/2n w.'u haah

69 /78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Hashing with 2-universal families

2% clemsnta Lrom U that we will hoah

Lemma (Maximum number of collisions)

The expected number of collisions using a 2-universal hash family is

< (%/2n
Kii < |3 i{ ey L ond y aw m a pyeol +om
O ot hotwine
K=y X # cllinim pouns

Isiej=d
Py Mon bev we hewe Hert
e g < &

vaany asfisiv)

70/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Hashing with 2-universal families

Lemma (Maximum number of collisions)

The expected number of collisions using a 2-universal hash family is

22 /2n
2 A 1 b
Thus, by Markov's inequality, we haveiz_ ~(-§) < % with "f,’lh

Lemma (Maximum load of entry of hash table)

With probability > 1/2 the ﬂvﬂﬂmﬂf@zusing a 2-universal hash
family is max celf ¢ < 20
/202 n
< —,
n

When{ ¢ = n\(as is usually assumed in hashing), we expect &ﬂ ,Jp nmw,
1 ontnics 0 0 cdh =5 have % (1) cethiaiow

71/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Perfect Hashing

How to build a hash table with O(1) search time and O(n) memory? Can
we still do it with a 2-universal family of hash functions?

he
keyy i ahvamce (ote
we b Hi ¥ (Aﬁwdm
hew cam we wat 2-univwsel hothiag
Jo gt O() march time bud het et

O(Y)l) Mumery

72/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Perfect Hashing

How to build a hash table with O(1) search time and O(n) memory? Can
we still do it with a 2-universal family of hash functions?

If h € H is a random hash function from a 2-universal family of hash
functions, then for any set S C U of size { < +/n, the probability of h

lnéirg//mfe% is at least 1/2.

Proof: Theﬁ is no collision with probability > 1/2.
no ollinemn em S

73/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Perfect Hashing

How to build a hash table with O(1) search time and O(n) memory? Can
we still do it with a 2-universal family of hash functions?

If h € H is a random hash function from a 2-universal family of hash
functions, then for any set S C U of size { < +/n, the probability of h
being perfect for S is at least 1/2.

Proof: There is no collision with probability > 1/2.

U New idea: build a two-level hash table!
s L)
I. ”-:a/; | ‘3
— k;(")
h
v

74/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Perfect Hashing

How to build a hash table with O(1) search time and O(n) memory? Can
we still do it with a 2-universal family of hash functions?

If h € H is a random hash function from a 2-universal family of hash
functions, then for any set S C U of size { < +/n, the probability of h
being perfect for S is at least 1/2.

Proof: There is no collision with probability > 1/2.

New idea: build a two-level hash table!

The two-level approach gives perfect hashing scheme.

; we Ul ? (On))V
hiws moy hach \a““;mmh;: i0 0b9.0(M)

75/78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Proof (sketch) of Theorem
Temoik we hvow kca,, n odvamce S et o key

Apprsach . pick finrt Losgn hesh fumckon e wnfamdy
ot aandem . Teel hem S

Wi h (waaﬁtﬂdﬁ 34, mox H# cllinomn i U
bn 40 < . We will ng %eod hesh @cnh
Wi conntomt # tico:

Amwnd Hat mex F i niono (h.S) AU

9; ¢ Jeod ot i ol o hroh tobls geven by
h-

76 /78

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

koew : L< (becowne h is W fﬂﬁ)
ond hZ“.Ql =M (;ls])

D
Lomma _i{ tola . yomelem heoh famchiow
fom (0= & | i in prfect o
Jhe & ommly thed wiap m1se i%ceff

L] bod ecawr
,Qi ((’}T . (ﬁ)t - n‘s/z)

=0

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

We alpe ko (beeaun h.w?@{@t@
W'h-(" # clinions Lo < ,1/7“
(ex[x_ck»(¥ cllbiows in < &}m é—femmo\)
whom f=n (et o)) we get fhot
7t collisims = M

%Q} - O(# clinioms o 1)

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Acknowledgement

@ Lecture based largely on Lap Chi's notes.

@ See Lap Chi's notes at
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L05.pdf

77/78

https://cs.uwaterloo.ca/~lapchi/cs466/notes/L05.pdf

References |

B
B

Motwani, Rajeev and Raghavan, Prabhakar (2007)
Randomized Algorithms

Mitzenmacher, Michael, and Eli Upfal (2017)

Probability and computing: Randomization and probabilistic techniques in
algorithms and data analysis.

Cambridge university press, 2017.

78/78

	Introduction
	Hash Functions
	Why is hashing?
	How to hash?

	Succinctness of Hash Functions
	Coping with randomness
	Universal Hashing
	Hashing using 2-universal families
	Perfect Hashing

	Acknowledgements

